
Type Checking Higher�Order Polymorphic Multi�Methods

Fran�cois Bourdoncle Stephan Merz

Centre de Math�ematiques Appliqu�ees� Institut f�ur Informatik�
�Ecole des Mines de Paris Universit�at M�unchen

Francois�Bourdoncle�ensmp�fr merz�informatik�uni�muenchen�de

Abstract

We present a new predicative and decidable type sys�
tem� called ML�� suitable for languages that integrate
functional programming and parametric polymorphism
in the tradition of ML ���� ���� and class�based object�
oriented programming and higher�order multi�methods
in the tradition of CLOS ����� Instead of using ex�
tensible records as a foundation for object�oriented ex�
tensions of functional languages� we propose to rein�
terpret ML datatype declarations as abstract and con�
crete class declarations� and to replace pattern match�
ing on run�time values by dynamic dispatch on run�time
types� ML� is based on universally quanti�ed polymor�
phic constrained types� Constraints are conjunctions
of inequalities between monotypes built from type con�
structors organized into extensible and partially ordered
classes� We give type checking rules for a small� ex�
plicitly typed functional language 	a la XML ��
� with
multi�methods� show that the resulting system has de�
cidable minimal types� and discuss subject reduction�
Finally� we propose a new object�oriented programming
language based on the ML� type system�

� Introduction

Designing object�oriented extensions of functional lan�
guages is a challenging problem which has received much
attention lately� Apart from special object�oriented cal�
culi ���� which adopt the view that objects are more
primitive than functions� two major approaches have
been studied� In the �rst approach� objects are exten�
sible records with single�dispatch methods attached to
them� The major advantage of this approach is that
data encapsulation and inheritance are modeled very

To appear in the ��th ACMConf� on Principles of Prog�

Languages

naturally� However� type systems for extensible records
often rely on intricate higher�order formalisms and�or
recursive types ���� ����

The second approach� which has received much less
attention both from language designers and type theor�
ists� is to put the emphasis on methods� rather than
objects� and resort to module systems to provide scop�
ing and data encapsulation� In this approach� �rst
proposed in CLOS ����� and also used in more recent
languages such as Cecil ��
�� methods are overloaded
functions dispatching on the type of all their input ar�
guments simultaneously� Implementing binary opera�
tions� such as an addition operator over a hierarchy of
numeric classes� is a very natural and easy thing to do in
these languages� In contrast� such multi�methods� are
notoriously hard to type and de�ne in the objects�as�
records model ���� Moreover� multi�methods de�ned by
cases look very similar to functions de�ned by pattern
matching� which makes them an obvious candidate for
extending functional languages like ML� Despite these
advantages� however� no satisfactory static type system
has been proposed so far for functional languages with
multi�methods�

In this paper� we present what we believe to be
the �rst practical and decidable type system� called
ML�� suitable for languages that integrate functional
programming� parametric polymorphism� class�based
object�oriented programming� and higher�order multi�
methods� In order to motivate our choices� the examples
of this paper are written in an explicitly typed ML�like
language� namely� a higher�order functional language
with implicit predicative polymorphism� but without
type inference� Our key ideas are to introduce subtyp�
ing via extensible hierarchies of type constructors� to
replace functions de�ned by pattern matching by meth�
ods performing dynamic dispatch on the type of their
input arguments� to clearly separate speci�cation and
implementation� and to use a module system to pro�
vide separate compilation and encapsulation� As a con�
sequence� we do not model implementation inheritance

Constructor class Point� � List���

Type constructors

bpol bcart cart

blinking cartesian

point

�� �� �� ��

�� ��

snil

slist

scons

nil

list

cons

�� ��

�� ��

Data types

cart� � � hhx� real � y � real ii

bpol� � � hh r � real � a� real � f � int ii

bcart� � � hhx� real � y � real � f � int ii

nil���� snil��� � hh ii

cons��� � hhh� � � t� list��� ii

scons��� � hhh� � � t� slist��� � s� int ii

Figure �� The Point and List constructor classes

in the type system itself� but provide this important
feature using syntactic sugar�

This extended abstract is organized as follows� In
section �� we give an intuitive introduction to the sys�
tem using simple examples� motivating our choices as we
go along� Section � gives a more formal introduction to
the system as well as major results �completeness� de�
cidability� and minimal typing�� For the sake of simplic�
ity� we restrict ourselves to single�module languages� In
section �� we propose a new modular object�oriented
programming language with multi�methods based on
the type system of section �� We conclude in section �
with a discussion of related work� A complete exposi�
tion of the system� including all proofs which had to be
omitted due to space restrictions� can be found in ����

� Overview

��� Constructor classes

Our guiding principle in the design of ML� has been
to favor the generalization of well�understood concepts�
rather than introducing new and ad�hoc ones� To start
with� instead of de�ning objects as extensible records�
we take the view that objects are �xed tagged records�
exactly as in ML� For instance� the bottom part of
�g� � de�nes three records representing points in the
plane with Cartesian coordinates� and blinking points in
the plane with polar and Cartesian coordinates� These
records are tagged with cart� bpol� and bcart respec�
tively� The same �gure also de�nes records tagged with
nil and cons� representing empty and non�empty lists�
as well as records tagged with snil and scons� represent�
ing empty and non�empty sized lists with constant�time
access to their size�

We call cart� bpol� bcart� snil� nil� cons� and scons
data type constructors� The only run�time entities in

ML� are functions� methods� and records tagged with
data type constructors� Note that the x �elds of cart� �
and bcart� �� for instance� are totally unrelated� In other
words� we do not model implementation inheritance�

One way to write multi�methods is to de�ne them
for every possible combination of tags� However� it is
often desirable to de�ne uniform behaviors over a group
of tags by a single de�nition� That is why we introduce
the notion of type constructor as a means of naming
groups of tags and allowing for the de�nition of methods
uniformly over these groups� Technically� we introduce
subtyping through user�de�ned extensible hierarchies of
type constructors like blinking� cartesian� point� slist� and
list� As opposed to ML� every data type constructor is
a valid type constructor and denotes the group that
consists of only that tag�

In order to prevent arbitrary overloading� we group
semantically related type constructors into extensible
and partially ordered constructor classes like Point and
List� Monotypes are built from type constructors in the
usual way� We identify zero�ary type constructors like
point with the monotype point� �� The intuition is that a
type like blinking denotes the set of all blinking points�
irrespective of their representation as data types� The
ordering between constructors re�ects the inclusion of
the sets they denote� Similarly� the monotype cons�int�
denotes the type of non�empty lists of integers� whereas
��� nil��� is the type of the empty list� Consequently� ex�
tensible classes like List generalize closed algebraic ML
datatypes like

datatype list��� � nil j cons of �� � list�����

Monotypes are partially ordered by a structural sub�
typing relation based on the variance of each class� The
variance of a class is a tuple of elements of f�����g
that speci�es the arity of the type constructors of the
class as well as the variance of each type parameter�
For instance� class List is unary and covariant� since

�

we intend cons�int� to be a subtype of list�real� �assum�
ing int is a subtype of real�� However� the binary class
Arrow� which contains the arrow type constructor� is
contravariant in its �rst argument� and covariant in its
second argument� so that real � int is a subtype of
int� real� All data types of a given class must conform
to its variance� For instance� the record implementa�
tion of cons��� is valid because � being covariant both
in the h �eld and in the t �eld� it is covariant in the
record� However� this record could not have an extra
�eld with type � � �� in which � is non�variant� This
variance speci�cation allows us to reason about the type
constructors of a given class irrespective of the actual
contents of the class� which is clearly a prerequisite for
extensibility in the context of object�orientation�

The partial ordering of type constructors is arbitrary
and allows multiple inheritance of speci�cations �but
not of implementations�� The only restriction is that
data type constructors be minimal� which� as we shall
see in section ���� is essential for typing polymorphic
methods� The declaration of a datatype like scons im�
plicitly declares a constructor function scons with type

��� �� slist���� int� scons���

that builds a sized cons from an �� a sized list of ��s�
and the size of the list� as well as three selector functions

scons �h � ��� scons���� �

scons �t � ��� scons���� slist���

scons �s � ��� scons���� int

which� in contrast with ML� are total over their domain�

��� Methods

Instead of referring to the notion of a self object� as
in the objects�as�records paradigm� we propose to de�
�ne methods as overloaded functions dispatching on the
tags of all their arguments simultaneously� in pretty
much the same way that ML functions perform pattern
matching on the tags of their arguments�

In the simple system presented in this paper� the
only patterns allowed are � �any�� or a type construc�
tor like slist� meaning that for the associated branch
to be selected� the tag of the actual argument must be
a subconstructor of slist� Strictly speaking� we do not
propose a generalization of pattern matching� since ML
patterns can be more complex than ours� but our system
could be enhanced to allow all ML patterns� In section
�� we show how both dynamic dispatch and pattern
matching could be integrated in a real programming
language�

For instance� method head of �g� � raises an excep�
tion by default� and returns the h �eld of conses and

vcons � ��� ��� list����� list����
vcons �h� � t� � � cons h t �
vcons �h� � t� snil� � scons h t � �
vcons �h� � t� scons� � scons h t �� � �scons �s t���

head � ��� list���� ��
head �x� � � raise Empty �
head �x� cons� � cons �h x �
head �x� scons� � scons �h x �

map � ��List� �� �� ��List���� � � ��� �List����
map �l� nil� f � � � nil �
map �l� snil� f � � � snil �
map �l� cons� f � � �
cons �f �cons �h l�� �map �cons �t l � f ���

map �l� scons� f � � �
scons �f �scons �h l�� �map �scons �t l � f �� �scons �s l��

Figure �� Operations on lists

sized conses� As opposed to ML� the order in which the
alternatives of a method are de�ned is irrelevant� since
dynamic dispatch is based on a best match� approach�
This choice is of course essential to ensure that alterna�
tives of a given method �assumed to be speci�ed by its
type in some interface� can be implemented in several
modules� We show in section ��� that by imposing that
the set of patterns of a method be a partition of the
domain of the method� it is possible to guarantee the
absence of message not understood� or match fail�
ure� run�time errors �exhaustivity�� and to ensure the
existence of a best match �non�ambiguity��

Our methods are thus always total over their do�
main� For instance� method freq of �g� � is total over its
domain blinking� and� as opposed to head� this method
does not have a catch�all� alternative to ensure ex�
haustivity� Such a method could not have been written
as it is in ML� where intermediate type constructors like
blinking cannot be de�ned�

More interesting� method vcons of �g� � is a virtual
constructor� dispatching on the type of its second ar�
gument� This method by default builds a regular cons�
except when its second argument is a sized list� in which
case it builds a sized cons� Using this virtual construc�
tor� a list built from a sized nil will only consist in sized
conses� For instance� the following expression

E� � vcons �bpol � �� � �� � �

vcons �bcart � �� � �� � � snil��

builds a non�empty heterogeneous sized list of polar and
Cartesian blinking points� Note that it is not possible to
build arbitrary heterogeneous lists in ML�� as opposed
to type systems based on dynamics ��� ���� Also� note
that our methods allow a form of overloading that is

�

not possible in ML� For instance� it is possible to de�ne
a fully polymorphic function like

shift � ��� �� ��
shift �p� � � p�
shift �p� cart� � cart ��cart �x p� � � �� � �cart �y p��

which is essentially the identity� except for non�blinking
Cartesian points� This function is well typed� because
cart being a minimal data type constructor in any ex�
tension of class Point� the run�time tag cart of

cart ��cart �x p� � � �� � �cart �y p�

is identical to the tag of p for any non�blinking Carte�
sian point p� Methods like shift can thus be used to
perform a weak form of typecase statement ���� and
can be used in particular to perform narrowing type
casts� The scheme we propose to de�ne methods is
thus a mixture of what is traditionally called para�
metric polymorphism� in the functional programming
community�� and polymorphism�� or dynamic dis�
patch�� in the object�oriented community�

��� Constrained types

The system we have described so far� in which functions
and methods are explicitly typed� can be made to work
only if every expression has a minimal type� To under�
stand the problem� assume given a function twice with
type

��� ��� ��� ��� ��

and a function trunc with type real � int� The ML
scheme for typing the application of a polymorphic func�
tion like twice to an argument like trunc consists in ap�
plying the most speci�c monomorphic instance of twice
to the type of the argument� However� two instances of
the type of twice can be applied here� namely �int �
int� � �int � int� and �real � real� � �real � real��
none of which is more speci�c than the other� We thus
propose to type the expression �twice trunc� as

��� �int � � � � � real�� �� �

The intuitive denotation of this polymorphic con�
strained type is� as in ML� a type which is below all
its ground instances� that is� all the ground substitu�
tions of � � � such that � satis�es the constraint
int � � � � � real� In other words� an expression with
this type has both type int � int and type real � real�
and can be used in any context where one of these
monomorphic types is acceptable�

�There are generally very few functions with type ��� � � � in

traditional models of parametric polymorphism� where methods like

shift cannot be de�ned�

freq � blinking� int�
freq �p� bpol� � bpol �f p�
freq �p� bcart� � bcart �f p�

move � ��� � � point� �� ��

move �p� cart� � cart ������ �cart �x p��
������ �cart �y p���

move �p� bcart� � bcart ������ �cart �x p��
������ �cart �y p�� �freq p��

move �p� bpol� � bpol ����� �bpol �r p��
�� � �bpol �a p�� �freq p��

Figure �� Operations on points

This example shows that polymorphic constrained
types �types for short� allow the minimal typing of term
application in the context of primitive subtyping� How�
ever� many syntactically di�erent types can have the
same meaning� For instance� we certainly intend the
types �� 	� int� and ��� �int � � � � � int�� � to have
the same meaning� since they have the same unique
ground instance int� However� not only are we inter�
ested in semantic equivalence between types� but we
�nd it useful to de�ne a partial ordering between types�
for instance to check that the type of a function in a
module conforms to its speci�cation in a recursive let
or in some interface� This idea of subtyping polytypes
is reminiscent of the subtyping rules of F�� and departs
from the tradition in predicative type systems to rely
on a non�deterministic instantiation rule for typing term
application�

In order to ensure that the ordering between types
is compatible with the ordering between monotypes� we
thus say that a polytype �� is a subtype of another
polytype �� if every ground instance of �� is above some
ground instance of �� w�r�t� the ordering on monotypes�
As usual� we say that two types are equivalent if they
are subtypes of one another� For instance� ��� int �
�� � is a subtype of � 	� real� because there exists an �
satisfying int � � which is above real� namely � � real�
As a matter of fact� the former type is equivalent to
int� and the above de�nition of subtyping is compatible
with the interpretation of the universal quanti�er of a
type as a greatest lower bound operator�

��� Type application

The general typing rule for term application is the fol�
lowing� Suppose e� has type �� � ��� � 	��
� �
���
where �� is a list of variables� 	� is a constraint� and
�
and
�� are monotypes with free variables in ��� and that
e� has type �� � ��� � 	��
�� with �� and �� disjoint�
Then �e� e�� has type

app���� ��� � ���� �� � 	� � 	� �
� �
��

�
�

�

provided the constraint 	��	��
� �
� is satis�able� as
de�ned in section ���� The interpretation of this typing
rule is that �e� e�� has any ground monotype
�� such
that
� �
�� is a ground instance of the type of e�
and
� is above some ground instance
� of the type of
e�� which is what is intuitively required to apply the
function� For instance� the type of �id ��
�� where id is
the identity with type ��� �� �� has type ��� �oat �
�� �� which is equivalent to � 	� �oat� Similarly� the
�static� type of expression E� of section ��� is

�� � ��� �� � � �bpol � � � list��� � list����

bcart � � � snil��� � list����� list���

which� thanks to the variance of List� is in fact formally
equivalent to

��� �bpol � � � bcart � ��� list���

which� in turn� is a subtype of �� � � 	� list�blinking��
An interesting question is whether or not �� is a sub�
type of ��� In a closed world� the only solution of the
constraint of �� is � � blinking� which is below blinking�
so we could be tempted to consider the two types equiv�
alent� However� in an open world� it may be the case
that some module of the program extends class Point
and de�nes a strict subconstructor sblinking of blinking
above both bpol and bcart� Such an extension� called
an admissible extension� is allowed provided it does not
modify the ordering between existing type constructors�
In the context of the extended class� � � sblinking is
thus a ground instance of �� but is not above the only
ground instance blinking of ��� In section �� we shall
de�ne a complete and decidable axiomatization of sub�
typing based on a notion of constraint implication that
is invariant w�r�t� admissible extensions of classes�

In conclusion� the type of E� is a strict subtype of
list�blinking�� and can be read as the type of all lists
containing blinking points with polar and Cartesian co�
ordinates� but nothing else� and in particular� no other
kind of blinking points� In other words� a type like
��� �bpol � ��bcart � ��� � can be read as the small�
est � above bpol and bcart� and can be understood as
the set union of bpol and bcart�

��� Polymorphic multi�methods

In addition to ensuring minimal types� constrained poly�
morphic types also allow for a very precise typing of
methods� For instance� method move of �g� � has type

��� � � point� �� �

meaning that move returns an object with the same tag
as its argument of type point� The implementation of

neg zero pos

�oat int per

real �adic

��

��

����

��

��

Figure �� The numeric class Num

move conforms to this speci�cation since bpol� bcart�
and cart are minimal data type constructors� More�
over� we show in section � that the type of move is a
strict subtype of � 	� point � point� which shows that
move can be used anywhere a function with the lat�
ter type is expected� More interesting� as opposed to
single�dispatch languages� method move is a �rst�class
function which can be passed as a parameter to other
functions� such as the higher�order polymorphic multi�
method map of �g� �� The type of map states that
given a list with type �List���� where �List is some type
constructor in List� and a function with type � � ��
map returns a list with type �List���� which shows in
particular that map applied to an empty list returns
an empty list� Note that this precise type ensures that
the recursive call of map in the fourth alternative of its
de�nition is a sized list and can thus be used to build a
sized cons� Similarly� it can be shown that the expres�
sion E� � map �E�� move� has type

��� �bpol � � � bcart � � � � � point�� list���

which shows that freq �head E�� is well�typed and has
type int� Methods like move can be speci�ed in some
object�oriented languages with a speci�cation like

abstract class point is
virtual method move��� like self

end

However� the advantage of our approach is that it
generalizes to multi�methods� and is also much more
expressive� For instance� the subtraction method sub of
�g� � has type ��� int � �� ��� �� � �� The hierarchy
used in this example� shown in �g� �� has positive� nega�
tive� and zero integers� as well as �oating point numbers
and periodic ��adic numbers�� The type of sub ensures
that per�s and �oat�s cannot be subtracted from one an�
other �since the constraint int � �� per � ���oat � �
has no solution over the class shown in �g� �� and also
ensures that the static type of a subtraction is always a
supertype of int� For instance� using the typing rule for
application� we can show that the type of sub �������
is ��� �int � � � pos � � � neg � ��� �� which is equiv�
alent to � 	� int� In other words� the type of sub is
polymorphic above int� and constant below int�

�This numeric hierarchy is used in the hardware description lan�

guage �z� which motivated this work ���	�

�

It is interesting to compare our approach to similar
systems in the literature� The language presented by
Reppy and Riecke ���� ��� allows the de�nition of meth�
ods returning objects with the type selfty of the re�
ceiver� so that methods like move can be written� How�
ever� the restriction that selfty cannot occur in nega�
tive positions in the type of methods prevents methods
like sub to be given the precise type of our example�
The language of Bruce et al� ��� uses a similar notion of
MyType without the restriction on negative positions�
However� the interpretation of MyType in a method
type like MyType � MyType and the interpretation of
the type variable � in the type ��� int � �� ��� ��� �
of the sub function are quite di�erent� MyType refers to
the dynamic type of the receiver �i�e�� the �rst argument
of the multi�method�� whereas � is the minimum� type
which is above both arguments of the method� This in�
terpretation of MyType thus prevents reals to be sub�
tracted from integers� One possible remedy� for single�
inheritance languages� could be to replace the notion
of selfty or MyType by the notion of alike� denot�
ing the smallest supertype of all arguments with type
alike� including the receiver�

Type classes ���� ��� ��� and constructor classes ����
have also been advocated as a means to provide some of
the functionality of methods in ML�like languages� In
essence� these systems allow the instantiation of over�
loaded speci�cations which consist in type templates
with a single type variable� such as the instantiation
of the template ��� ��� � for � � int and � � real� In
the absence of any subtyping relation between int and
real� such simple speci�cations cannot express complex
types such as the type of the sub method and� in par�
ticular� do not allow the typing of mixed operations
like sub����� ��� Multi�parameter type classes� i�e�� type
templates with more than one variable� have thus been
proposed to lift this restriction� The idea is to use a tem�
plate like ��� ��� � and instantiate it with all possible
interesting combinations of �� �� and �� for example
�int� int� int�� �int� real� real�� However� multi�parameter
type classes are not without problems� type�checking
is undecidable in general ����� it is possible to overload
functions with structurally di�erent signatures� and the
overloading resolution algorithm can be quite tricky and
unintuitive� a mixture which has already proven very
dangerous in C��� This is why we believe that the
dispatching mechanism based on structural subtyping
that is used in ML� is closer in spirit to that of clas�
sical object�oriented languages than the non�structural
overloading scheme used in languages like Haskell and
Gofer� Nonetheless� it may be interesting to add type
classes to ML� to allow for overloaded functions like
print with type ��� Print���� � � unit where Print is
an inductively de�ned predicate on types�

toFloat � real� �oat�
toPer � �adic� per�
subInt � �int� int�� int�
subFloat � ��oat� �oat�� �oat�
subPer � �per� per�� per�

sub � ��� int � �� ��� �� � ��
sub �x� � �oat� x� � real� � subFloat �x�� toFloat x���
sub �x� � per� x� � �adic� � subPer �x�� toPer x���
sub �x� � int� x� � int� � subInt �x�� x���
sub �x� � int� x� � �oat� � subFloat �toFloat x�� x���
sub �x� � int� x� � per� � subPer �toPer x�� x���

Figure �� Subtraction

� Type system

We now formally de�ne our type system� A constructor
class C is given by a name� a �nite and non�empty set
TC of type constructors tC � a subset DC
 TC of data
type constructors dC � a partial order vC on TC such
that data type constructors are minimal with respect
to vC � and a tuple of elements of the set f�����g
called the variance of the class� The arity of a class is
the length of its variance�

A type structure is a �nite set T of constructor classes
with distinct names and pairwise disjoint sets of type
constructors� We assume that every type structure con�
tains a ������variant class Arrow with at least one
data type constructor �� In order to model object�
orientation� we must provide for the extension of type
structures� Adding new classes is never a problem �as�
suming that there are no name clashes�� because type
constructors of di�erent classes are completely unre�
lated to each other� When new type constructors are
added to existing classes� one has to preserve the order�
ing on existing type constructors as well as the minimal�
ity of data type constructors� We thus formally de�ne
T � to be an admissible extension of T if for every class
C in T � there exists a class C� in T � with the same
name and variance such that TC� is a superset of TC �
the intersection of TC and DC� is equal to DC � and for
all type constructors t�� t� � TC � we have t� vC� t�
if and only if t� vC t�� The overall requirement that
data type constructors are minimal in any class implies
that T � cannot de�ne a subconstructor of any data type
constructor de�ned in T �

We assume given countable and pairwise disjoint sets
of type variables v� v�� etc�� and� for each class C� C�
constructor variables vC � v

�
C � etc� The set of monotypes

 over T is the least set containing type variables such
that when �C is a list of monotypes whose length agrees
with the arity of C� and �C is a C�constructor� i�e�� a
C�type constructor tC in TC or a C�constructor variable

�

vC � then �C ��C � is a monotype� A variable�free mono�
type is said to be T �ground �or just ground� for short��
As usual� we write
� �
� instead of � �
��
���

The ordering � on ground monotypes is the least
relation such that tC vC t�C and �C �C ��C imply
tC ��C � � t�C ��

�
C �� where the relation �C on lists of

ground monotypes is de�ned as the componentwise or�
dering induced by the variance of C� For instance�

��
� �Arrow
���

�
� if and only if
�� �
� and
� �
���

We use � to denote a list of type or constructor vari�
ables� and �C to denote a list of distinct type variables
whose length agrees with the arity of C�

��� Constraints

A constraint 	 is a conjunction of inequalities �C v ��C
between C�constructors and inequalities
 �
� between
monotypes� A variable�free constraint is said to be
ground� We treat constraints as sets of conjuncts� and
we write 	 f	�g to denote that 	� is a subset of 	� We
denote by
 �
� the constraint
 �
� �
� �
� and by
true the empty constraint�

Intuitively� we intend a constraint to be satis�able
if it has a solution on ground monotypes� However� for
the subtyping relation between polytypes discussed in
section ���� we also need a notion of satis�ability of a
constraint w�r�t� some other� To this end� we de�ne the
implication of constraint 	� by constraint 	� for all �
as the judgment ��� 	� j� 	� axiomatized by the rules
of �g� � together with the transitivity rule

��� 	� j� 	� ��� 	� j� 	

�Trans�

��� 	� j� 	

In rule VElim � we write
 �
� to denote either

 �
� or
� �
� A ��substitution � maps type vari�
ables to monotypes and C�constructor variables to C�
constructors� and is the identity over variables in �� We
denote by 	��� the application of � to 	�

Rule VIntro introduces new variables on the right�
hand side by abstracting away certain subterms of the
left�hand side� For example� an instance of this rule is

� 	� bpol � blinking � bcart � blinking

j� bpol � � � bcart � �

which reads bpol � blinking and bcart � blinking im�
plies the existence of some � such that bpol � � and
bcart � ��� In other words� the free variables of 	� and
	� that are not in � are existentially quanti�ed�

Rules MIntro� MElim � and VElim re�ect the fact
that the ordering on monotypes is purely structural�
that is� comparable types must have the same shape��
Therefore� every solution for a variable v in constraint
v � �C ��C � is of the form ��C ��

�
C ��

�Approx � ��� 	 f	�g j� 	�

�CRef � ��� 	 j� 	 � �C v �C

�CTrans � ��� 	 f�C v ��C v ���Cg j� 	 � �C v ���C

�CGnd � ��� 	 j� 	 � tC v t�C �if tC vC t�C�

�CMin � ��� 	 f�C v dCg j� 	 � dC v �C

�MRef � ��� 	 j� 	 �
 �

�MTrans � ��� 	 f
 �
� �
��g j� 	 �
 �
��

�MIntro� ��� 	 f�C �C ��C � �C v ��Cg

j� 	 � �C ��C � � ��C ��
�
C �

�MElim � ��� 	 f�C ��C � � ��C ��
�
C �g

j� 	 � �C v ��C ��C �C ��C

�VIntro� ��� 	��� j� 	 �if � is a ��substitution�

�VElim � ��� 	 fv � �C ��C �g

j� 	 � v � vC ��C � �vC � �C fresh�

Figure �� Constraint implication

We say that a constraint 	 is well�formed if and only
if the judgment �	� true j� 	 is derivable� The following
theorems show that implication is decidable� and that
the axiomatization of �g� � is both sound and complete
w�r�t� the extensibility of constructor classes� In par�
ticular� it follows that well�formedness and satis�ability
coincide�

Theorem � If 	� is a well�formed constraint� and 	�
is an arbitrary constraint� then it is decidable whether
��� 	� j� 	� holds	 In particular� well�formedness of
constraints is decidable	

Theorem � Let � be a list of variables� and 	� and 	�
be two well�formed constraints	 Then ��� 	� j� 	� is
derivable if and only if for every admissible extension
T � of T and every T ��ground substitution �� such that
	����� is satis�ed in T �� there exists a T ��ground sub�
stitution �� that agrees with �� on the variables of �
such that 	����� is a ground constraint satis�ed in T �	

The algorithm to determine the well�formedness of a
constraint 	 described in ��� �rst checks that 	 is well�
kinded and then determines a representation of its so�
lutions in the form of a most general substitution con�
strained by a set of independent base constraints on
type variables and C�constructors for each class C�

A constraint 	 is well�kinded if the set of equations
built from 	 by replacing C�constructors by the unin�
terpreted function symbol C and inequality symbols by
equalities is uni�able� Similar notions have been intro�
duced in the literature ���� ��� �
��

Given a well�kinded constraint 	� the �rst step of
the decision procedure for well�formedness consists in

�

�N�� 	� �	� � �C ��C � � ��C ��
�
C �� ��

	� �	� � �C v ��C ��C �C ��C�

�N�� 	� 	� fv � �C ��C �g ��

�	 � v � vC ��C ��� 	
��vC ��C �v�

Figure �� Normalization of well�kinded constraints

rewriting �true� 	� by the two rules of �g� �� where vC
and �C are assumed to be fresh� The well�kindedness of
	 ensures that this process eventually terminates� and
that the result �	�� 	�� is such that 	� represents a
most general substitution�� whereas 	� is a conjunc�
tion of a constraint on type variables and constraints 	C
between C�constructors for each class C� The last step
for deciding well�formedness consists in checking that
each constraint 	C is satis�able over the current type
structure� which is trivially decidable by �nite enumer�
ation� For instance� the solutions of the constraint

�� � � � �� � �� � real�

are of the form � � �� � ��� � and � � ��� � where
� � �� and �� v �� � �� v real� which is satis�able� for
instance� taking �� � int and �� � real�

The procedure for deciding ��� 	� j� 	� consists in
applying the decision procedure for well�formedness to
compute the most general substitution 	�� of 	� and the

base constraints 	�� as above� For the sake of simplicity�
we assume that 	� and 	� do not share variables except
for the ones in �� It can be shown that the free variables
of 	�� � together with the partial ordering induced by 	

�
� �

de�ne the most general� admissible extension of the
current type structure satisfying 	�� Deciding the im�
plication then amounts to deciding the well�formedness
of 	� w�r�t� this extended type structure� thus consider�
ing the variables of 	� as constants�

It is easy to see that rewriting may cause an exponen�
tial increase in the size of the constraints� Since satis�a�
bility of a set of base constraints is NP�complete ���� ����
our decision procedure for well�formedness is thus at
worst doubly exponential� but ���� shows that the prob�
lem is in fact in DEXPTIME� Finally� it follows from
���� that deciding well�formedness is PSPACE�hard� A
fortiori� deciding implication is PSPACE�hard�

However� when type�checking real�life programs� we
believe that the rewriting step will not cause a blowup
in the number of variables� and the only costly part of
the decision procedure will be to test the satis�ability
of base constraints� which is NP�complete� Figure �
gives a �xpoint�based algorithm C�SAT� inspired by an
incomplete algorithm by Fuh and Mishra ����� to decide
the satis�ability of a base constraint 	C � The initial
call C�SAT�	C � �C� must be performed with a valuation
function �C mapping every C�constructor �C to the set

procedure C�SAT�	C � �C� is

let ��C �
T

i� � �i
C�	C � �C� in

if vC � j��C�vC�j �
 then fail�

if � vC � j��C�vC�j � � then succeed�

for each vC such that j��C�vC�j � � do

for each tC in ��C�vC� do

C�SAT�	C � �
�
C �vC �� ftCg��

end C�SAT

Figure �� Satis�ability of base constraints

TC � The functional �C is de�ned as follows

�C�	C � �C��tC� � f tCg

�C�	C � �C��vC� �
T

�C f�CvvCg
�C �C��C�

�
T

�C fvCv�Cg
�C �C��C�

where �C S �resp� �C S� denotes the upper �resp� lower�
ideal generated by the subset S of TC w�r�t� the partial
order �TC �vC�� Our experience with a �rst implemen�
tation of this algorithm has been very encouraging�

��� Types and domains

Typing judgments in our system are always expressed
w�r�t� a constraint context � � ��� 	�� which is used to
store type information for symbols de�ned in the con�
text of the current declaration� and intuitively asserts
the existence of variables � satisfying 	� We say that a
type �� � ��� � 	��
� is well�formed w�r�t� � if � and
�� are disjoint and the free variables of 	� and
� are
either in � or in ��� and if 	 implies 	� for all �� The
latter condition ensures that 	� is well�formed for ev�
ery solution of the global� constraint 	� As a concrete
example� consider the function

fun f� j trueg �x� ��� let y � sub�x� �� in �not x�

expressed in the language de�ned in section ���� If� in
the de�nition of well�formed types� we simply required
that 	 � 	� be well�formed� instead of requiring that 	
imply 	� for all �� then y would have type

�� � �int � � � � � � � pos � ��� �

w�r�t� constraint context ��� true�� and �not x� would
have type �	� � � bool� bool� so that the function would
appear to be well�typed� with type ��� � � bool� � �
bool� but every application of that function would fail
at run�time�

For the sake of simplicity� we assume that the bound
variables of types can be freely ��converted to names
that do not occur in the constraint context� In the light
of theorem � and of the discussion of section ���� we

�

say that �� � ��� � 	��
� is a subtype of �� w�r�t� �
�assuming �� and �� disjoint�� written � � �� � ��� if
and only if

��� ��� 	 � 	� j� 	� �
� �
�

This de�nition of subtyping can be seen as a gener�
alization of the instance relation between well�typings
of Mitchell ���� �
�� We show in ��� that this rule is also
sound w�r�t� the three variants ��orig� ��top� and ��Fun
of the subtyping rule of F� considered in ����

It follows immediately from theorem � that subtyp�
ing is decidable� As an example� let us prove that the
type

��� � � point� �� �

of method move is a strict subtype of � 	� point� point
w�r�t� the empty context� We have to prove

�	� true j� � � point � �� � � point� point

which follows by rule VIntro from

�	� true j� point � point �

point� point � point� point

On the other hand� � 	� point � point is not a sub�
type of ��� � � point� � � �� so the latter type is
a strict subtype of the former one� For otherwise� we
would have to show

��� � � point j� point� point � �� �

which� by rule MElim � amounts to proving

��� � � point j� � � point

which is obviously not derivable�
One distinguishing feature of our system is that the

type application operator app is monotonic in both ar�
guments w�r�t� the subtyping relation� which shows that
every functional type �� � ��� � 	��
� �
�� can be
identi�ed with a monotonic type transformer� as op�
posed to F� where type application is de�ned in terms
of syntactic substitution� Note that the downside of
this property is that type application in ML� is ap�
proximated ����

We formally de�ne the domain dom���� of the func�
tional type �� as �� � �� � 	��
�� Intuitively� domains
denote downward closed sets of types� It can be shown
that dom is contravariant w�r�t� the subtyping relation�
We say that a domain �� � �� � 	��
� is a subdomain
of �� w�r�t� � �assuming �� and �� disjoint�� written
� � �� � ��� if and only if

��� ��� 	 � 	� j� 	� �
� �
�

and we say that a type �� � ��� � 	��
� belongs to ��
w�r�t� �� written � � �� � ��� if

��� 	 j� 	� � 	� �
� �
�

It can be shown that app���� ��� is well�formed w�r�t�
� if and only if �� belongs to dom���� w�r�t� �� More�
over� the subtyping and membership relations are tran�
sitive in the following sense

� � �� � �� � � �� � �

� � �� � �

� � �� � �� � � �� � �

� � �� � �

so that every subtype of a type in dom���� also belongs
to dom����� which agrees with the substitutivity prin�
ciple of object�oriented languages and justi�es the view
of domains as downward closed sets of types�

Finally� we show in ��� that types form a preorder�
and that two compatible types �i�e�� types with a com�
mon upper bound� ��� � 	��
� and ��� � 	��
� have the
following least upper bound

�v� ��� �� � �	� � 	� �
� � v �
� � v�� v

where v is a fresh type variable� and �� and �� are as�
sumed to be disjoint� Dually� two compatibles domains
�� and �� always have a greatest lower bound �� � ���

��� Type checking

Fig� � gives type checking rules for an explicitly typed
functional language 	a la XML ��
� with higher�order
multi�methods� Programs consist in a single expression
type checked w�r�t� a �xed type structure T that we
assume to be de�ned with some concrete syntax� A
well�formed typing context is a pair ��� � where � is a
well�formed constraint context� and is a list of bind�
ings of the form x� � for expression variables� where each
� is well�formed w�r�t� �� We assume that binds con�
structor and selector functions to their type� as de�ned
at the end of section ���� The domain � � �� 	�
 of a
function

fun f� j	g �x�
�� e

is given explicitly but� as opposed to methods� the re�
turn type of functions is inferred from their bodies by
rule Fun� A method m is an expression of the form

meth f� j	g �x�
��
� � ��� � e�� � � � ��n � en�

where each pattern �i is a special kind of domain of the
form� �� �
�� � � � �
n�� where � is a list of type variables

�We used some syntactic sugar� explained in section �� for the

examples of section ��
�We assume that tuples are implicitly de�ned data types� with

appropriate constructor and selector functions�

�

�� fx� �g � x� � �Var �

�� � e� � � � � � � �
�Sub�

�� � e� � �
�� � e� � �� �� �x� � ��� � e� � ��

�Let �
�� � �let x� � e� in e��� ��

�� �x� � ��� � � � � xn � �n� � ei � �i �
 � i � n�
�Letrec�

�� � �letrec x� � �� � e�� � � � �xn � �n � en in e��� ��

�� � e� � �� � e� � � � � � � � � dom�fun����
�App�

�� � �e e��� app�fun���� � ��

��v� �� 	 � v �
�� �x� � 	� v� � e� ���� � 	��
�� �v fresh�
�Fun�

�� � �fun f� j	g �x�
�� e�� ��v� �� �� � 	 � 	� � v �
� v �
��

� � �� 	�
 �i � �i�
i ��� � � � � �n is a partition of � w�r�t� �

��v� �� �i � 	 � v �
 � v �
i�� �x� � 	� v� � ei � �� 	�
�� �� � i � n� v fresh�
�Meth �

�� � �meth f� j	g �x�
��
� � ��� � e�� � � � ��n � en��� ���� 	�
 �
��

Figure �� Typing rules

with at most one occurrence in �
�� � � � �
n�� and each

i is either a single variable or tC ��C � for some type
constructor tC and variables �C �

We think of a method as a set of functions� one for
each pattern �i� whose type is a subtype of the method
type� restricted to the domain �i� In contrast to ML
patterns� which may be complex� the present de�nition
of ML� patterns allows for dynamic dispatch according
to the outermost type constructor only� Rule Meth de�
�nes the type of method m as ��� 	�
 �
�� provided
that two conditions are met�

First� the set of patterns must be a partition of the
method�s domain �� 	�
� to ensure the absence of
method not understood� errors at run�time� as well
as the existence of a most speci�c pattern for every
type in the domain of the method� Technically� we
say that a set of patterns ��� � � � � �n is a partition of
� � �� 	� �
�� � � � �
k� if ��� every pattern is compati�
ble with � w�r�t� �� and ��� for all data type construc�
tors dC�

� � � � � dCk in the current type structure such that
���� and

� � �C�
� � � � � �Ck � �dC�

��C�
�� � � � � dCk ��Ck ��

are compatible� the set f�i j i � ��� n�� � � �ig has
a minimum element� In the presence of a module sys�
tem� this decidable condition must be checked at link
time� when all the data type constructors� and there�
fore� all the entities that can possibly exist at run�time�
are known� The closure ���� of � w�r�t� � � ��� � 	�� is
de�ned by ��� �� 	� � 	� �
�� � � � �
k�

Second� the body ei of each alternative must have
type � 	�
� in the context where x is assumed to have

both monotype
 enforced by the domain of m and
monotype
i enforced by pattern �i�

The remaining rules are straightforward� Rule Sub is
a subsumption rule reminiscent of F�� Rule App uses
the app and dom operators de�ned earlier� as well as
the upper�closure operator fun de�ned by

fun���� 	�
� � �v� v�� �� �	 �
 � v � v��� v � v�

Assuming that e and e� have minimal types� the co�
variance of fun and app� the contravariance of dom �
and the transitivity of the subtyping and the member�
ship relations ensure that �e e�� has a minimal type�
This is the main argument in the proof of the following
theorem� which expresses that ML� has minimal types
�but not minimal typings� since we are not concerned
about type inference in this paper��

Theorem � Let ��� � be a well�formed typing context	
It is decidable whether an expression e is well�typed in
the context ��� �	 If e is well�typed� it has a minimal
type and this minimal type can be e
ectively determined	

Having minimal types is an important property of
type systems� However� soundness is even more im�
portant� For lack of space� we omit the de�nition of
an operational semantics for ML�� and the proof of
soundness� A strict operational semantics� as well as
a subject�reduction theorem� can be found in the tech�
nical report ���� This operational semantics tags every
run�time object with its minimal� closed type � � and
dynamic dispatch is performed by selecting the small�
est pattern � such that � belongs to ���� � ��

�

interface List is

�� Covariant class of all list constructors
class List�covariant T��

�� Lists �declares list�
abstract list in List�T� is

�� No �eld
with

�� Constructors
vcons�h� T�� cons�T��

cons�h� T�� 	cons�T��

scons�h� T�� 	scons�T��

�� Methods
head��� T�

tail��� list�T��

size��� int�

reverse��� alike�

concat�l� alike�� alike�

map�f� T �� U�� L�U�

where alike
 L�T� end

end�

�� Empty list �declares nil and 	nil�
concrete nil � list in List�T� is

�� No new �eld or method
end�

�� Cons lists �declares cons and 	cons�
concrete cons � list in List�T� is

�� Head and tail �elds
h� T�

t� list�T�

end�

�� Sized lists �declares slist�
abstract slist � list in List�T� is

�� No new �eld or method
end�

�� Empty sized lists �declares snil and 	snil�
concrete snil � nil� slist in List�T� is

�� No new �eld or method
end�

�� Sized cons lists �declares scons and 	scons�
concrete scons � cons� slist in List�T� is

�� Size �eld
s� int

end

end List�

module List is

open List�

�� Constructors
list��vcons�h� ��
 self�cons�h��

slist��vcons�h� ��
 self�scons�h��

list��cons�h� ��

	cons fh
h� t
selfg�
list��scons�h� ��

	scons fh
h� t
self� s
�self�size��g�

�� Head of a list
nil��head��
 raise Empty�

cons��head��
 self�h�

�� Tail of a list
nil��tail��
 raise Empty�

cons��tail��
 self�t�

�� Size of a list
nil��size��
 ��

cons��size��
 �self�t�size���

scons��size��
 self�s�

�� Reverse method and local auxiliary method rev

nil��reverse��
 self�

	cons��reverse��

rev�self�t� 	nil�cons�self�h�g��
	scons��reverse��

rev�self�t� 	snil�scons�self�h�g��

rev�l� list�T�� r� L�T��� L�T�

where L �� cons end�

rev�l� nil� r� ��
 r�

rev�l� cons fh� tg� r� 	cons�

rev�t� r�cons�h���

rev�l� cons fh� tg� r� 	scons�

rev�t� r�scons�h���

�� Concatenation
nil��concat�l� ��
 l�

	cons��concat�l� ��

self�t�concat�l��cons�self�h��

	scons��concat�l� ��

self�t�concat�l��scons�self�h��

�� Map method
	nil��map�f� ��
 	nil�

	snil��map�f� ��
 	snil�

	cons��map�f� ��

self�t�map�f��cons�f�self�h���

	scons��map�f� ��

self�t�map�f��scons�f�self�h��

end List�

Figure �
� The List package

��

� Towards a real programming language

We now sketch a new class�based object�oriented lan�
guage with multi�methods� and show how its syntax can
be desugared into ML�� Instead of formally de�ning the
language� we exemplify its constructs at the hand of the
List package of �g� �
� Note that the type hierarchy of
this package� shown in �g� ��� is more re�ned than the
one of �g� ��

First of all� we show how to add implementation in�
heritance� For the sake of simplicity� as for most clas�
sical object�oriented languages� we do not separate the
implementation inheritance hierarchy from the subtyp�
ing hierarchy� but doing so would be easy� A declaration
like abstract list declares a type constructor list

in constructor class List� This type constructor corre�
sponds to an abstract parameterized class in OO par�
lance� A declaration like concrete cons declares both
a type constructor cons below list in class List and a
data type constructor 	cons below cons in class List�
As always� cons can have subconstructors� but 	cons
is minimal� and has its own constructor and selector
functions� The declaration of cons imposes that ev�
ery data type constructor below cons� including 	cons�
has two �elds h of type T and t of type list�T�� The
syntax 	cons fh
� t
	nilg can be used to build a
	cons data object� and access� e�g�� to the h �eld of a
cons object is performed via a method named List��h

implicitly de�ned as follows

List��h�self� cons�T��� T�

List��h�self� 	cons�
 	cons�h�self��

List��h�self� 	scons�
 	scons�h�self��

using the selector functions of each data type below
cons� Note the use of constructor classes to provide a
scope for �eld and method names� Also� note that the
above notation for de�ning methods by cases� which al�
lows a method to be implemented in di�erent modules�
is syntactic sugar for the following ML� method

meth f� j trueg �self� cons����� ��

� �� !cons���� !cons�h self �

�� !scons���� !scons�h self �

If l is a list with a type in the domain of method
List��h� the dot notation l�h translates into the func�
tion call List��h�l�� Such a disambiguation� based on
the class of the �rst argument� is always possible pro�
vided that l does not have the empty type ��� ��

Class methods like map specify a regular method
List��map with two parameters� an implicit self pa�
rameter with type alike� and a parameter f with type
T �� U� The fact that map is de�ned in the scope of the
de�nition of list automatically enforces the constraint

list

nil slist cons

!nil snil scons !cons

!snil !scons

�� ��

�� AA �� AA �� ��

�� ��

Figure ��� Type hierarchy of the List package

alike �� list�T�� The type of map is thus

�T� U� LList� alike � alike � list�T � � alike � LList�T ��

�alike � T � U�� LList�U �

As explained in section ���� alike does not neces�
sarily denote the minimum type of the self parameter�
in contrast to what selfty does in Object ML ���� ����
For example� method concat has type

�T� alike � alike � list�T �� �alike � alike�� alike

which shows� in particular� that the concatenation of
two empty lists is an empty list� a property not ex�
pressible in any language we are aware of� The dot
notation l�map�f� can be used as for �elds to perform
the function call List��map�l� f��

A class method like head is implemented by de�ning
method List��head by cases� and the syntax

cons��head��
 self�h

in the de�nition of head is syntactic sugar for

List��head�self� cons�
 self�h

that makes the self parameter explicit� The latter style
of de�nition o�ers the possibility to perform pattern
matching on the self parameter as in

List��head�self� cons fhg�
 h

where cons fhg is syntactic sugar for cons fh
hg�
Note the use of the local method rev to implement

reverse� This method accepts any list�T� as �rst ar�
gument� any L�T�� where L is a type constructor below
cons� as second argument� and returns a L�T�� De�ning
methods independently from the type hierarchy allows
this kind of methods to be de�ned as required with�
out the need to introduce a new subtype to hold the
method� Also� note how the fairly imprecise type of the
virtual constructor vcons prevents its use in methods
like map with very precise types� Finally� remark that
an interface de�nes a name space for the entities that it
declares� For instance� the quali�ed name of class List
is List�List� and the fully quali�ed name of method
map is List�List��map� The meaning of a program
with several modules and interfaces consists in a global
letrec containing all the declarations and implementa�
tions contained in these modules and interfaces�

��

� Related work and conclusion

Our interest in this paper has been to enhance the stan�
dard Hindley�Milner type system ���� ��� for an explic�
itly typed version of ML so that it can be used for
higher�order object�oriented languages with polymor�
phic multi�methods� We believe that ML� is a practical
and natural extension of the Hindley�Milner type sys�
tem� and that constraint implication is a unifying con�
cept for such extensions� In particular� it should not be
too di"cult to add type classes ���� ��� to our framework
by re�ning the notion of constraint implication� We
conjecture that type inference for ML� programs with�
out methods could be easily adapted from techniques
developed in the literature ��� ��� ��� ��� ��� �
� ����
We believe that inferring the type of methods will be
much more challenging�

The model developed in this paper is very similar
to that of the programming language Cecil ��
�� in par�
ticular by its distinction between concrete and abstract
classes� the distinction between subtyping and imple�
mentation inheritance� the use of method speci�cations�
and the use of modules to provide encapsulation� How�
ever� the type system proposed by Chambers and Leav�
ens is only �rst�order and monomorphic� and the spec�
i�cation of methods by means of sets of monomorphic
signatures is less expressive and more ad�hoc than ours�
Nonetheless� many of the techniques developed in ��
�
could be adapted to our system� in particular tech�
niques for true separate compilation of multi�methods
and compilation of dynamic dispatch�

Castagna et al� ��� have de�ned an extension of F�
that allows function overloading in a higher�order set�
ting with explicit polymorphism and primitive subtyp�
ing� Their model is quite powerful but technically rather
tricky� as all impredicative models� Moreover� methods
lack speci�cations� which can be a problem for modu�
larity and scalability�

ML� also has strong links with all systems derived
from the Hindley�Milner type system� in particular� sys�
tems of overloaded functions built around the notions of
type and constructor classes ���� ��� ���� These systems
are incomparable to ML� in terms of expressive power
�non�structural overloading vs� true methods� but we
�nd ML� much closer in spirit to class�based object�
oriented languages� and also easier to extend�

Duggan ���� ���� and then Odersky� Wadler� and
Wehr ���� have proposed the use of kinded types� which
are polymorphic constrained types with constraints on
available instances of the operations used by function
bodies� This approach can be made to work under the
open world� assumption ���� ���� but types are rather
hard to read� since they mention program functions� and
lead to method speci�cations which are dependent on

the program�s text� which may be a problem for modu�
larity and scalability� On the other hand� type inference
is made easier by such an approach�

Kaes ���� has tackled the decidability of type infer�
ence in the context of overloading� subtyping� and recur�
sive types� using polymorphic constrained types which
are more expressive than ours� and with a precise typ�
ing of arithmetic operators� Moreover� his notion of
structural similarity� is fairly close to our notion of
constructor class� However� his paper does not address
the problem of de�ning methods and performing dy�
namic dispatch�

Mitchell ���� �
�� Fuh and Mishra ���� ���� Aiken and
Wimmers ���� and Eifrig� Smith� and Trifonov ����� have
also addressed the problem of type inference in the pres�
ence of primitive subtyping� Our notion of constraint
implication can be seen as a generalization of the in�
stance notion for well�typings� Smith et al� ���� propose
a record�based object�oriented language with polymor�
phic methods which are less expressive than ours� and
the use of recursive types leads to a complex and po�
tentially undecidable subtyping relation with an incom�
plete� but decidable� axiomatization �����

The model proposed by Reppy and Riecke ���� ���
is record�based and single dispatch� and is powerful
enough to type a method like move � but not to type
a multi�method like sub� Moreover� their model lacks
parameterized classes� In contrast with our hypothesis
that data type constructors be minimal� the technique
used by Reppy and Riecke to implement methods like
move that return a new object with exactly the type
selfty of the receiver is to pass the constructor new of
the receiver as an argument�

Mitchell and Jategaonkar ���� propose to extend ML
pattern matching with �exible records and primitive
subtyping� in order to allow some form of object�orien�
ted programming� Their system only has built�in oper�
ations with constrained types like that of method sub�
However� they informally show how to accommodate a
user�de�ned class hierarchy of points with methods like
move � � t
 point� t � t with a unique implementation
de�ned in the root class�

Finally� we want to mention that a type checker for
ML� has been implemented in Objective Caml� This
prototype type checks approximately �

 lines per sec�
ond on a low�cost workstation� A system derived from
ML� will be used in a forthcoming version of the hard�
ware description language �z developed in collaboration
with G#erard Berry and Jean Vuillemin ��
��

References

��� M� Abadi� L� Cardelli� B� Pierce� G� Plotkin� Dynamic Typ�

ing in a Statically�Typed Language� ACM Transactions on

��

Programming Languages and Systems� ��	�
 	����
 ������

��� M� Abadi� L� Cardelli� A Theory of Primitive Objects�

Second�Order Systems� Proc� of the European Symposium

on Programming� Springer�Verlag 	����
 ���

��� A� Aiken� E� Wimmers� Type Inclusion Constraints and

Type Inference� Proceedings FPCA��� 	����
 ����

��� F� Bourdoncle� S� Merz� On the integration of func�

tional programming� class�based object�oriented program�

ming� and multi�methods� Technical Report ��� Centre des

Math�ematiques Appliqu�ees� �Ecole des Mines de Paris 	����

http���www�ensmp�fr��bourdonc�

��� F� Bourdoncle� S� Merz� Primitive subtyping � implicit�

polymorphism j� object�orientation� Third International

Workshop on Foundations of Object�Oriented Languages

	����
 http���www��informatik�tu�muenchen�de��merz�

��� K� B� Bruce� A� Schuett� R� van Gent� PolyTOIL� a type�safe

polymorphic object�oriented language 	extended abstract
�

Proc� of ECOOP���� LNCS ��� 	����
 ����

��� K� B� Bruce� L� Cardelli� G� Castagna� The Hopkins Object

Group� G� T� Leavens� B� C� Pierce� On binary methods�

Technical report LIENS������ 	����

��� G� Castagna� G� Ghelli� G� Longo� A calculus for overloaded

functions with subtyping� Information and Computation�

���	�
 	����
 ������

��� G� Castagna� B� C� Pierce� Corrigendum� Decidable Bound�

ed Quanti�cation� Proc� of the ��nd Symp� on Principles of

Programming Languages 	����
 ������

���� C� Chambers� G� Leavens� Typechecking and Modules for

Multi�Methods� Technical Report UW�CS TR ���������

University of Washington 	����

���� P� L� Curien� G� Ghelli� Coherence of subsumption� min�

imum typing and the type checking of F�� Mathematical

Structures in Computer Science �	�
 	����

���� L� G� DeMichiel� R� P� Gabriel� Common lisp object system

overview� ECOOP���� LNCS ��� 	����
 ������

���� D� Duggan� J� Ophel� Kinded Parametric Overloading�

Technical Report CS������� University of Waterloo 	����

���� D� Duggan� Polymorphic Methods With Self Types for ML�

like Languages� Technical Report CS������� University of

Waterloo 	����

���� D� Duggan� J� Ophel� Multi�Parameter Parametric Over�

loading� Technical report� University of Waterloo 	����

	submitted to publication

���� J� Eifrig� S� Smith� V� Trifonov� Sound Polymorphic Type

Inference for Objects� Proc� of OOPSLA��� 	����
 ������

���� Y��C� Fuh� P� Mishra� Type inference with Subtypes� �nd

European Symp� on Programming� LNCS ��� 	����
 ��

���

���� Y��C� Fuh� P� Mishra� Polymorphic Subtype Inference� Clos�

ing the Theory�Practice Gap� TAPSOFT���� LNCS ���

	����
 ������

���� K� Hammond� editor� Report on the Programming Lan�

guage Haskell� version ��� 	����

���� R� Harper� J� Mitchell� On the Type Structure of Standard

ML� TOPLAS ��	�
 	����
 ������

���� R� Hindley� The principal type�scheme of an object in com�

binatory logic� Trans� Amer� Math� Soc�� ��� 	����
 ����

���� L� Jategaonkar� J� C� Mitchell� Type Inference with ex�

tended pattern matching and subtypes� Fundamenta Infor�

maticae� �� 	�� �
 	����
 ������

���� M� P� Jones� A system of constructor classes� overloading

and implicit higher�order polymorphism� FPCA��� 	����

���� S� Kaes� Parametric Polymorphism� Proc� of �nd European

Symp� on Programming� LNCS ��� 	����

���� S� Kaes� Type inference in the presence of overloading� sub�

typing and recursive types� Proc� of Conf� on Lisp and Func�

tional Programming 	����
 ������

���� X� Leroy� M� Mauny� Dynamics in ML� Journal of Functional

Programming� �	�
 	����
 ������

���� P� Lincoln� J� C� Mitchell� Algorithmic Aspects of Type In�

ference with Subtypes� Proc� of the ��th ACM Symp� on

Principles of Programming Languages 	����
 �������

���� R� Milner� A theory of type polymorphism in programming�

Journal of Computer and System Sciences� vol� �� 	����

������

���� J� C� Mitchell� Coercion and Type Inference 	Summary
�

Proc� of the ��th ACM Symp� on Principles of Programming

Languages 	����
 ������

���� J� C� Mitchell� Type inference with simple subtypes� Journal

of Functional Programming� �	�
 	����
 ������

���� M� Odersky� P� Wadler� M� Wehr� A second look at over�

loading� Proc� of the �th Conf� on Functional Programming

and Computer Architecture 	����
 ������

���� J� Palsberg� E�cient inference of object types� Proc� IEEE

Symp� Logic in Computer Science 	����
 ������

���� B� C� Pierce� D� N� Turner� Simple type�theoretic foun�

dations for object�oriented programming� Journal of Func�

tional Programming � 	�
 	����
 ������

���� V� Pratt� J� Tiuryn� Satis�ability of Inequalities in a Poset�

Technical Report �����	���
� Institute of Informatics� War�

saw University 	����

���� J� Reppy� J� Riecke� Simple objects for Standard ML� Proc�

of the ���� SIGPLAN Conference on Programming Lan�

guages Design and Implementation 	����
 ������

���� J� Reppy� J� Riecke� Classes in Object ML via Mod�

ules� Presented at the Third International Workshop

on Foundations of Object�Oriented Languages 	����

http���www�cs�williams�edu��kim�FOOL�

���� J� Tiuryn� Subtype Inequalities� Proceedings of the Seventh

Symposium on Logic in Computer Science 	����
 ������

���� J� Tiuryn� M� Wand� Type Reconstruction with Recursive

Types and Atomic Subtyping� ��th Colloquium on Trees in

Algebra and Programming 	����

���� V� Trifonov� S� Smith� Subtyping Constrained Types� Third

International Static Analysis Symposium� Lecture Notes in

Computer Science ���� 	����
 ������

���� J� Vuillemin� On circuits and numbers� IEEE Trans� on

Computers� ���� 	����
 ������

���� P� Wadler� S� Blott� How to make ad�hoc polymorphism

less ad�hoc� Proc� of the ��th ACM Symp� on Principles of

Programming Languages 	����
 ����

��

