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Abstract

Reuse of high confidence subsystems depends on their appropriate
modelling and documentation. This paper discusses the different aspects
that have to be considered when modelling a system and its subsystems.
We propose a concrete artefact model for integrated reuse from require-
ments to technical architecture, which satisfies documentation demands
with respect to functionality and the context assumed by the subsystem.
Based on the artefact model, we describe the steps for conformity and
compatibility checking at the development stage of subsystem integration
and/or reuse.1
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1 Motivation

“How do we achieve reuse of high confidence software in large systems?” An
answer to this question first requires an answer to the question “How do we
build high confidence software?” To classify a software as deserving the predi-
cate “high confidence”, it has to be well-understood, predictable, and reliable:
Well-understood requires a well documented requirements engineering and sys-
tem’s design, supported by a continuous modelling of the system. Predictability
necessitates proper modelling with different, but consistent, interrelated views
on the system to prevent modelling errors or architectural mismatches proac-
tively. Reliability needs validation and verification of the modelled system.

Additionally, returning to the first question, we want the software to be
reusable within large systems. Reuse is, inter alia, performed to reduce devel-
opment costs. However, inappropriate or incomplete documentation sabotages
this goal by increasing the effort for the (re)integration of an existing subsystem.
Therefore it has to encompass clearly delimited and well documented subsystem
borders.

We define a subsystem border as the interface of a subsystem plus the
relevant surrounding context from the operational environment, the business do-
main, and organizational issues. To be able to model and document the subsys-
tems in such a way, we need an adequate system requirements artefact model. A

1This work was partially funded by the German Federal Ministry of Education and Re-
search (BMBF) in the framework of the REMsES project. The responsibility for this article
lies with the authors.
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corresponding subsystem model with its artefacts and explicitly modelled sub-
system border information allows the developer to extract such a subsystem,
including its documenting artefacts, and reuse it independent from the former
environment within a new surrounding system.

Contribution: We present an approach for the explicit modelling of subsys-
tem borders (interface plus context), thereby facilitating communication with
subcontractors and reuse. We start with requirements engineering, go on to
system’s design and end with system (re-)integration. We present an artefact
model, then discuss aspects of modelling subsystems for reuse, and propose
concrete subsystem artefacts and explicit modelling of information about the
subsystem borders. Finally we validate conformity and verify compatibility
when reusing a subsystem. Our approach is useful for the development of high
confidence COTS as well as all other types of high confidence software as soon
as the system is complex enough to require decomposition into subsystems.

Related Work: There are some approaches that co-develop requirements and
architecture, e.g. [23], and two that derive architecture from requirements, one
for multi-agent systems [2] and an aspect-oriented method [21], but none that
documents refinements of contextual issues within the subsystem.

Other work focuses on architecture design [26] and on the modelling of soft-
ware libraries [12]. Close to the idea of software libraries is also software car-
tography [17], but without explicit consideration of compatibility and reuse.
The composability and compatibility of services on the basis of components is
discussed by [7] and [1].

Although the last ICSR [20] was concerned with COTS (components off-
the-shelf), there was no work presented on either the representation of COTS
borders with regard to ease reuse or concerning validation of conformity and
verification of compatibility. The FLP component model [19] enhances system-
atic reuse by considering non-technical issues. However, there is no approach
yet that explicitly models the borders of a subsystem.

Related work in terms of being able to make use of our ideas are the ap-
proaches to selecting adequate components for reuse, for example [18], who
propose a systematic process for decision support in evaluating and ranking
components, or [4], who focus on piecewise evaluation during component selec-
tion.

Outline: After introducing our background in Sec. 2, we start with our system
requirements artefact model in Sec. 3 and explain subsystem border information
documentation in Sec. 3.2. Then we give an example in Sec. 3.3 and present
our steps for reuse in Sec. 4, before concluding with future work in Sec. 5.

2 Foundations

We follow an integrated approach of requirements engineering (RE) and sys-
tem’s design that develops a first sketch of the design during RE. This is based
on an artefact-oriented requirements engineering reference model and a system
architecture model with three abstraction layers.
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The requirements engineering reference model (REM [11]) classifies the
artefacts of the individual requirements engineering process into three content
categories and assigns documents for them building an integrated view by the
use of quality gates (not further discussed here). The general business needs
(later on referred to as context) incorporate general business objectives, return-
on-investment analysis, high level system vision given by the stakeholder, and
so on. The requirements specification includes the domain analysis, the func-
tional analysis, and quality requirements and their dependencies. The system
concept (later on referred to as design) comprises a detailed functional system
concept and the system test criteria. This point of view is gained from indus-
trial best practices while its content also includes aspects known from process
driven frameworks and templates (e.g. using the Volere requirements specifica-
tion templates [25] and the IEEE 830-1998 standard [13]).

Our system architecture model is based on the following three abstraction
layers: the usage layer gives a specification of the system behaviour as it is
perceived at the system border by the user (black box). It is represented as a
hierarchy of services, which give a formal specification of parts of the system’s
behaviour, and lateral relationships between them. Next, the logical architecture
is a realization of the services from the usage model defined in the layer above.
It is modelled as a net of communicating (logical) components and can simulate
the system’s behaviour. Usually, there is an n : m-relationship between the
services of the usage layer and the components of the logical architecture. The
third layer, the technical architecture, comprises a software and a hardware view,
linked via the deployment description. The software is modelled in tasks that
are structured in clusters and those are mapped to the hardware units. The
system architecture model is explained in detail in [6].

3 Artefact Model

According to [24] the quality criteria for requirements are, inter alia, to be
complete, consistent, unambiguous, and traceable. These criteria are decideable
and can be evaluated. Further discussion of that aspect is out of scope for this
paper, instead we assume the requirements to have sufficient quality so we can
concentrate on their appropriate documentation within the system’s artefact
model.

3.1 General System Artefact Model

We use the system artefact model depicted in Fig. 1. It features the three
content categories context, requirements, and design, and orthogonally the three
abstraction layers usage, logical architecture, and technical architecture. The
mapping of artefacts to content category and abstraction layer is not always
unique, but we have placed them according to their main focus. Some of the
artefacts may appear refined on lower abstraction layers with an increased degree
of detail.

The context artefacts are - ordered according to a decreasing level of ab-
straction - a domain model, the business context, the stakeholder context with
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Figure 1: Artefact model
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a listing and the characteristics for each of them, an operational context includ-
ing a listing and characteristic of each external actor, an input/output list, and
technical constraints. The business context can be further detailed into system
vision, business goals, quality goals, and normative constraints.

The requirements artefacts are system goals, use cases and scenarios, func-
tional requirements, and quality requirements. The functional requirements can
be modelled as behavioural, functional, or data requirements according to the
appropriateness for the system’s design.

The design artefacts are interface, interaction, behaviour, and data specifi-
cations and a system’s function net. The latter provides an intuitive functional
overview of the system by depicting the interplay between the functions in form
of a graph, but these details that are not relevant for this paper. The design
artefacts will be refined on the lower abstraction layers.

The subsystems we are focusing on are modelled on the logical architecture
layer. To enable a separate treatment of subsystems, there is an artefact called
subsystem border specification. The explicit modelling and documentation of this
artefact is crucial to enable integration or extraction and reuse of a subsystem.
For that purpose we extract the subsystem model and complete it with the
corresponding information required to document its borders as we detail in Sec.
3.3.

Due to limitations of space, we assume for the following that the system
decomposition has been decided. The influencing criteria for this decision are
discussed in [22].

3.2 Subsystem Borders

Garlan et al. have discussed, that architectural mismatch stems from mis-
matched assumptions a reusable part makes about the system structure it is
to be part of. They blame this problem on conflicts of these assumptions with
the assumptions of other parts, which are almost always implicit, thus they are
extremely difficult to analyze before building the system. [10]

Therefore the appropriate modelling of the subsystem borders is crucial to
avoid mismatches when integrating the subsystem into a (new) surrounding
system. The guiding question regarding the artefact model is:
“What information can we use and what do we have to add?”
For the information that is already present, we have to decide whether the
given form is already appropriate, or if we have to adapt a different form to
avoid dragging along too much information.

Before reasoning on the representation of the (sub)system borders, we have
to be aware of the information that is necessary to document them for appro-
priate retrieval when searching for solutions by reuse during development: the
interface and any corresponding constraints. As we are aware of the chal-
lenges which the idea of software libraries bring with them, we do not attempt
to solve all their problems, but instead focus on the adequate documentation
of subsystems. The latter includes a clear description of the functionality of-
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fered by the system and the functionality it requires from other system parts to
perform at its optimum.

The constraints can roughly be divided into hardware and software con-
straints and then categorized as static or dynamic [15]. There is a great diversity
of electrical and mechanical hardware constraints, but in this paper we consider
only the ones that are related to software requirements.

The interface specification can be divided into a static (syntactic) and a
dynamic (behavioural) part. The differentiation between static and dynamic
specifications is cost-efficient, as verification of static specification usually re-
quires less effort. So if the static specifications of the corresponding interfaces
are compatible, the dynamic specifications are evaluated. A static interface
specification includes:

Functions name, header
Parameters names and corresponding values (variable or object)
Data types e.g. integers, strings, objects, . . .
Type representation e.g. volt, an email address,. . .
Value ranges valid range for parameter
Stepping maximum degree of increase or decrease
Pre-/postcond., invariants e.g. voltage greater than zero
Communication protocol and order of sent & received information

In the static specification there are some issues that, at a certain stage of
development, could not be solved yet. For this reason, conditions and invariants
have to appear in both listings, as some of them can be verified statically,
but others only during runtime. The dynamic specification has to hold all
information that can only be tested at runtime or (maybe) in a model simulation.
Dynamic aspects, where compatibility has to be determined, are:

Message order correct causal order as expected by receiver, including
protocol communication messages

Message timing e.g. message arrival within a certain time slot
Pre-/postcond., invariants e.g. temporal logic formulae like always(b < c)
Ranges conformance to limits
Stepping conformance to min./max. in-/decrease

The constraints usually affect a greater part of the system or even the whole
system, while the interface specifications described above normally apply only
to the interfaces of components inside a system. Nevertheless, these constraints
have to be refined for the subsystem and documented accordingly to have the
complete relevant information available within the subsystem documentation.
The constraints can also be categorized into static and dynamic parts and are
imposed by the surrounding environment. The static constraints are for exam-
ple:

Rules of conformity e.g. standards, laws or business rules
Quality requirements e.g. response time of database less than 20 seconds
Variability optional parts within the subsystem

Note that laws or standards are to be considered as static in the sense of
checking the conformity of the system to constraints they imply, because the
internal system state at runtime does not take influence on whether the system
is conform to a certain law or standard. However, on the other hand normative
constraints do sometimes change during system development. This has to be
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taken care of by requirements evolution and change management, but the issue
is independent from the here presented concerns about conformity. The dynamic
constraints affect the whole system and can only be evaluated at runtime:

Ressources the required processing speed, required memory space
Realtime conditions overall response time of the system, system speed
Reliability for example Mean Time To Failure

All of the listed information should ideally already be present in the artefact
model defined above. This would reduce the task to extracting the information
using the appropriate filter and feeding it into a template that features fields
for the interface and the constraints listed above. We are aware that this is the
theory while, in practise, it will be necessary to actively accumulate the required
knowledge from different sources of information.

3.3 Subsystem Border Artefacts

The first idea of how the border modelling for subsytems should be documented
is depicted in Fig. 2.

Figure 2: Subsystem Bor-
der Modelling

Functionality: For the functionality of the
subsystem we extract part of the system
model with explicit interface documentation.
To describe the general purpose of the subsys-
tem, we use a textual form with a short ver-
sion of a system vision. This can be seen as
kind of “abstract” of the subsystem that shall
give a concrete idea of what the system is built
for and what functionality it offers. The ex-
plicit interface documentation already reflects
the realization, as it lists the services provided
by the subsystem (also known as export inter-
face [5]) and the services required from other
subsystems by the subsystem (also import in-
terface).

Conformity issues: These encapsulate
contextual issues like laws, business rules,
stakeholders, and operational environment.
With regard to the three abstraction layers
(Fig. 1) we can picture most of the content
as imposed from “above”, to say from the
business needs and the context of the usage
layer.

In detail, the business context contains nor-
mative, company-specific, and system-specific
constraints. Normative constraints are impli-
cations from laws that have to be obeyed, e.g.
data protection act, standards that the com-
pany wants to conform to, e.g. from ISO, and
patents and licenses that are used.
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Company-specific constraints are influences from business rules or informa-
tion politics, e.g. servers may only be set up in countries with a special commer-
cial agreement, and system-specific constraints derive from business goals, the
system vision, and system goals, e.g. the system that shall achieve a 10% mar-
ket share. Furthermore, we list implications from the stakeholder context, e.g.
concerning reporting, and the operational environment, e.g. backup routines.

Compatibility: Compatibility issues contain descriptions of data flow, com-
munication and technical constraints, and quality requirements. Most of the
content in this section are implications from below with regard to the abstrac-
tion layers, to say from the software and hardware layer and the technical re-
alization of the system. The data flow is characterized through its input and
output, described through syntax, semantics, and further constraints imposed
e.g. by value ranges or stepping. Communication and technical constraints are
for example the message format that is used on the communication bus of the
system. Quality requirements are usually the same as for the whole system. In
some cases it may be possible to break them down, e.g. for response time.

Illustrating example “Travel booking system”: A simple realization for
the subsystem border documentation is depicted in Fig. 3 in form of a template.
We use a travel booking system for illustration. The travel booking system
includes all features related to travel booking, for example flight reservations
and bookings, hotel bookings, check-in, reporting, accounting, and scheduling.
It is designed as web service. The chosen subsystem is flight reservation and
booking.

Figure 3: Template for subsystem border documentation with example “Flight
Booking”
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4 Reuse of a Subsystem

For the reuse of a subsystem that has been documented in the way described
above, we have to ensure matching functionality as well as both conformity
and compatibility. We assume, we have listed all available subsystems in our
software (reuse) library with the purpose description provided in the subsystem
border documentation template, as described in the box entitled Functionality
in Fig. 2 or in the example in Fig. 3. By performing a search on the software
library, we have found a subsystem with the functionality that matches our
demands. For the integration into a new surrounding system, we have to check
for conformity and compatibility with the new environment.

4.1 Validation of Conformity

In order to validate the conformity of the proposed subsystem with regard to
the new surrounding context, we consider a guided review as the most appro-
priate technique. When developing a system, we move downwards through the
abstraction layers, enrichening each layer with more technical detail. After
implementation, the integration process follows the reverse path through the
abstraction layers. Thereby we have to validate on each level, that the system
under construction is conform to the specification developed earlier. This is the
only way to ensure that we developed “the right system”. The review has to be
performed manually by checking the different areas of context and comparing
them to the context of the new surrounding system. The structure of the sub-
system border documentation (Fig. 2) may serve as guidance for the review and
the corresponding part of the example in Fig. 3 is the box titled Conformity.

4.2 Verification of Compatibility with (U)CML

Verification ensures that we developed “the system right”, meaning that we
verify that our implemented technical solution is compatible to the surrounding
environment. Therefore we have to check the static (syntactic) as well as the
dynamic (behavioural) fitting of a component with its environment. (U)CML -
(Unified) Compatibility Modelling Language has been developed to solve static
compatibility issues. (U)CML enables to model systems from scratch, specify
the interfaces of the components, compare corresponding interfaces, and check
their compatibility. It is also possible to verify the exchangeability of com-
ponents. Referring to our example in Fig. 3, we can verify the box headed
Compatibility. Similiar to interface automata [8], (U)CML takes an optimistic
view on compatibility, that means, interfaces do not have to be a perfect match
to be compatible, but in contrast to interface automata this is not achieved by
finding an environment which is compatible (via the game theory). Instead, it
is defined by applying compatibility rules to the in- and output to expand the
compatibility matching range. Furthermore, interface automata are restricted
to software, whereas (U)CML can also model hardware and electrical aspects of
a system.

(U)CML Models consist of one system package on the highest level, which
defines and capsules the system. It consists of packages (containers) and com-
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Figure 4: A UCML model

ponents. Packages can contain other packages and components, components
cannot be decomposed any further.
Packages and components are connected via arrows and the endpoints on com-
ponents are called plugs (in- and outputs). Arrows can only have one source and
one destination point and cannot be recursive. For bi-directional communica-
tion there is a special communication-arrow. Information about the modelling
objects is stored inside description fields. Description fields store structural in-
formation. Additionally, the component description field holds invariants and
the plug description field holds part of the interface specification for each in-
and output of the component. This can be for example a type, a variable name,
or a function. For a detailed introduction, see [16].
The two outstanding features are compatibility rules and optional in- and out-
puts. The latter is especially useful when using the same components in different
systems. In- or outputs do not have to be connected necessarily, as the system
still works without errors, and therefore the component is (re)usable for more
than one system.
The other feature is the assignment of compatibility rules to the whole system
or to a specific in- or output. Rules are, e.g., that an integer output can be
matched to a long input or that a certain output value range corresponds to a
certain input value range. With these rules it is possible to expand the compati-
bility check for corresponding out- an inputs. Rules can also be added as pre- or
postconditions and invariants. They can be written in CCL, the Compatibility
Constraint Language, which is similar to OCL [14].

Static Compatibility Tests: (U)CML allows two different kinds of com-
patibility tests. One is the structural correctness of the (U)CML model, for
example, if every mandatory output plug is connected to a mandatory input
plug, or if every component has at least one input and one output plug. The
other one are compatibility tests, which are mainly performed by evaluating the
corresponding description fields of the output- and input-plugs. If they match,
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the plugs are syntactically compatible, if they do not match, the compatibility
rules have to be evaluated to check, whether they are compatible after applying
the rules.
After the static checks, the dynamic checks have to be performed. This is cur-
rently being implemented in (U)CML by adding message sequence charts that
model the behavior of the components [9].

5 Conclusions and Future Work

We have presented an approach to the explicit modelling of subsystem borders
that facilitates communication with subcontractors and reuse. We have intro-
duced a concrete artefact model for the integrated reuse from the requirements
to the technical architecture. It provides for documentation demands with re-
spect to functionality and the context assumed by the subsystem.

Based on that artefact model, we have described the steps for conformity
and compatibility checking at the development stage of subsystem integration
and/or reuse. The approach presented in this paper will be validated and applied
more extensively to a case study within the REMsES research project [3].

Future work is to further detail the border documentation, as the proposed
template is still scarce and needs to be extended with appropriate documenta-
tion techniques and tracing methods.

In parallel, we are currently working on an analysis of the criteria for the
decomposition of systems, the influences and trade-offs between them, and the
documentation of the rationale leading to such design decisions to further im-
prove the trust for reuse of high confidence systems modeling.

Acknowledgements: We would like to thank Daniel Mendez-Fernandez, Fe-
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References
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