1

A methodology integrating formal and informal

software development®

Barbara Paech
Institut fir Informatik, Technische Universitat Minchen

Arcisstr.21, D-80290 Miinchen

Abstract

This paper presents a methodology integrating formal and informal soft-
ware development. By distinguishing several dimensions and perspectives we
structure the development process into stages and documents with different
emphasis on formality. Formality is only be required for documents which can
be related through formal techniques to the system design.

Introduction

Recently the applicability of formal methods in industrial software development has
found significant interest. According to the different facets of a software devel-
opment method (distinguished e.g. in [Hus94]), namely notation, techniques and
methodology, three main approaches exist:

o formal notations: While formal methods define syntax and mathematical se-

mantics for their notations, industrial methods mostly do not give a mathe-
matical semantics to their notations, sometimes not even a complete syntax is
provided. Thus several formalizations of informal notations have been given,
e.g. for entity-relationship or data-flow diagrams [Nic94, Het93, PWM93].

e formal techniques: Formal notations are indispensable for formal methods.

Based on formal notations also the techniques establishing the relationships
between several documents can be formalized. One prominent example for
such a formal relationship is refinement, others have been identified e.g. in the

KORSO-project [PW94].

e formal methodology: The methodology describes how to use the notations

and techniques in the development process. In the attempt to support the

*This work has been supported by the SysLab-project, conducted at the Technical University

Munich, Department of Computer Science, Prof. Dr. M. Broy



development process with CASE-tools process models have been defined which
identify the steps a development process is based on. These steps operate on
a common repository of documents. By giving an operational semantics to
these steps formality is achieved. For the process of requirements engineering

such a process model has been given e.g. by the NATURE-project [JPRS94].

While process models are very useful for method comparisons and CASE-support,
they do not address the question of how to integrate formal notations and techniques
into the development process. The simplest solution is, of course, to apply the
methodology of a well-known method (e.g. SSADM [DCC92]) on the formalized
documents. This way, however, formality only improves single documents, and the
process does not make use of the advantages gained by the formality, namely precise
semantics and machine support. Also, since different documents serve different
purposes during the process, it is not adequate to formalize all documents.

In the following we propose a more subtle solution to the above question. We have
chosen a specific set of documents and steps which in our view is especially suited
to combine formal and informal notations and techniques. Qur choice has been
inspired by the detailed methodology of SSADM and their more general counterpart
described in [OHM*88]. It serves as an outset of the SysLab-project which aims at
a scientific foundation of software development.

2 Dimensions and Perspectives in the Develop-
ment Process

Our methodology covers requirements engineering and logical system design. It is
particularly suited for the development of information systems, but may also be
useful in other areas. In [Poh93] three dimensions of the requirements engineering
process have beed identified :

e specification (opaque to complete),
e agreement (personal to common) and
e representation (informal to formal).

The specification dimension deals with the degree of requirements understanding,
the agreement dimension captures the degree of acceptance of the specification by
the different people involved in the development process and the representation di-
mension classifies the notations used to denote the specification. The process should
lead from an opaque, personal and informal specifcation to a complete, commonly
accepted and formal one.



We also add different perspectives to the specification and agreement dimension. We
distinguish

e a data-oriented,
e a behaviour and process oriented and
e an objective oriented perspective

on the specification. The first two are also distinguished in [OHM*88]. The be-
haviour and process oriented perspective deals with the events the system reacts
upon and the activities constituting the reaction. The distinction between data and
behaviour is fundamental in all system models and also useful here: very often it
is quite easy to give a complete specification of data, while the behaviour specifi-
cation remains opaque for some time. In our view it is also important to capture
the objectives underlying the different parts of the specifications. They give context
information which is essential e.g. for a meaningful revision of the specification.
Typically this kind of information is represented by informal text, but also formal
relationships like the aggregation of activities into superactivities provide context
information to specification parts.

For the agreement dimension the perspectives of the three typical participants of
the development process should be distinguished:

e the business representative,
e the system user and
o the system designer.

The business representative is concerned with the embedding of the software system
into the overall business processes, the system user is interested in an optimal inte-
gration of manual and automatic activities at his or her workplace and the system
designer will implement the identified requirements by software. All of them have
their own objectives and their own view on the data and the behaviour of the system.
All of them use different representations for the specification of data, behaviour and
objectives with different degrees of formality (see e.g. figure 1).

Perspectives data behaviour objectives
business results business processes | business options
user forms tasks work place options
system data structures transactions design options

Figure 1: the matrix of perspectives



Although being desirable, it seems too expensive to record the full matrix of per-
spectives during the whole design process. At different stages some perspectives
will be more important than others. This may very well depend on the project.
In the following we describe one possible selection which seems reasonable in most
information system development projects.

3 The Methodology

Since only the functional aspects of a system can be formalized, this section con-
centrates on the development of the system functionality. Similar to SSADM we
distinguish analysis and definition in the requirements engineering process. Thus
our methodology is divided into the three stages:

e requirements analysis,
e requirements definition and
o logical system design.

Requirement analysis® is mostly concerned with the business perspective. A model
of (part of) the business is produced in order to understand the environment the
software system is to be placed in. Requirement definition focuses on the user per-
spective. The functional requirements are captured by so called system functions,
where system functions are the smallest processing units of the system to be called
from outside. In the logical system design (emphasizing the system designer view)
the system functions are associated to system components and the data and be-
haviour of the components is specified.

Although the stages to some extent correspond to phases of the development process,
the main emphasis is on the products of the different stages. Underlying all stages
are two documents

e a textual description of all project relevant concepts, the glossary, and
o a textual description of the requirements, the requirements catalogue.

Hypertext links should be used to establish the relationship between textual parts
and their counterparts in the more formal documents. The glossary can also be
organized as a meta-model as in [FL94].

As in STEPS [FRS89] our methodology embodies an evolutionary approach devel-
oping the system in versions. We call a consistent set of products of the three stages
together with the glossary and the requirements catalogue a version of the system?.

Lalso called business analysis in [OHM*88]
Zor, more precisely, a version of the system model



3.1 Formality

Based on [BDD192] we provide a mathematical system model covering distributed
processes and explicit time. Similarly to the glossary, which gives an informal mean-
ing to all conceptions encountered in the development process, the system model
gives a formal semantics to all concepts of the documents. The formal semantics can
be exploited in the definition of powerful CASE-tools. For example, at each stage
the consistency of the documents can be checked. This is especially important, since
the documents emphasize different perspectives. The formal semantics can also be
used to verify the development steps of the logical design out of the requirement
definition. However, to allow for a true integration of the perspectives of the dif-
ferent participants there always has to be a way to represent the formal documents
informally.

3.2 Requirements Analysis

Requirements analysis is used to capture the business the software system is to
be placed in. The data of the business is usually described by entity-relationship
diagrams (possibly extended, e.g. class diagrams), the behaviour can be described
by data-flow diagrams or event diagrams. The behaviour description very often will
be based on some kind of organizational diagram of the enterprise. Since it references
human activities, one should not aim at a complete behaviour specification capturing
all possible models. The behaviour description should mirror the perspective of
the business representative and the users on the business and the embedding of
the software system to be build. It should help the system designer to identity
the activities and the objectives relevant to the software system (consistency and
formalizable properties being less significant). This cannot be directly supported
by mathematical semantics [Blu93]. However, the formal semantics helps to define
compact notations and techniques which in our view are missing in the area of
business process modelling.

At this stage the distinction between data and behaviour is relevant. Most kind of
data is already formalized to some extent (e.g. using specific forms) such that it
seems feasible to strive for a complete specification of the data involved. Also, as
discussed in [GZ92], data represents the stable part of the business which will have
a direct counterpart in the software system. Therefore the effort necessary to obtain
the complete specification will pay off in the rest of the project.

Altogether the following documents should be produced:

e a thorough data specification of the business (using the formal semantics to
specify all kinds of integrity constraints),

e an exemplary behaviour description of the business which allows to identify
the structure of the business activities and

e a thorough description of the objectives of the different participants.



3.3 Requirement Definition

Requirements definition identifies the data and the activities of the business to be
incorporated into the software system. On one hand the possible system states are
specified. This can be derived from the data specification documents of the require-
ments analysis. On the other hand the possible inputs and the system reaction in
terms of data changes and output (called system functions in the following) have to
be determined.

For definition of the system functions the perspective of the users is important. The
only hard constraint is that consistency of system states has to be preserved by the
system functions. The granularity of the functions (how many activities are covered
by one system function) depends very much on the non-functional requirements and
the perspective of the users. To allow for user participation in the development
process the behaviour of the system functions must be specified using informal no-
tations ®. The formal semantics is necessary for validation of the design against the
requirements definition.

Thus the following documents should be produced:

e a precise specification of the consistent system states,

e for each system function a precise specification of the input/output behaviour
and the induced changes of the system states and

e a description of the structure of the user interface.

3.4 Logical System Design

Here the logical structure (architecture) of the software system is devised. The
responsibility for data and the system functions has to be distributed over a set
of (logical) components. This way the system behaviour in terms of component
interaction is determined. To allow for a smooth development process it should
be possible to view the documents of the requirements analysis and definition as
abstractions of the logical system model.

Up to now the structure and style of the system has not be mentioned in the doc-
uments. So one can e.g. choose an object-oriented design or a more traditional
module-oriented design. Also reuse of existing (software) components is important
here. On the logical level a fine grained distribution of responsibilities is desirable
allowing for centralization of functions in the physical design.

Clearly, the design of the structure is a difficult task which cannot be directly sup-
ported by formality. However, to allow for a thorough validation against the require-
ments definition, a precise semantics should be given to the design. Since the design
will be developed incrementally, also the formal specification should be developed
incrementally (for examples of suitable formalisms see [HSJ794, PW94]).

3compare the different types of matrices employed in SSADM. Also prototyping will be helpful.



The logical design consists of

e a precise specification of the system components and their interaction

3.5 Versions

We have discussed how to integrate formal and informal documents within one
system version. By revision all advantages of formality seem to be lost, since it
might be difficult to relate the semantics of the old version to the semantics of the
new version. However, this is also true for informal semantics. To allow for revision
it is necessary to structure the documents, formal or informal, and to interrelate
corresponding parts of different documents such that the revision can as far as
possible be confined to parts of one version.

4 Conclusion

By differentiating the three specification perspectives data, behaviour and objectives
and the three agreement perspectives business,user and system we have structured
the development process into stages and documents with different emphasis on for-
mality and participants. Only the system designer can take direct advantage of the
formal semantics (mainly through suitable tools). Therefore formality should only
be required for documents which can be related through formal techniques to the
system design. There will always be a rich set of informal documents (referring
to objectives and the business in general) whose relation to the system design is
important, but can only informally be traced.

Acknowledgements

Thanks are due to the SysLab-group, in particular Alfred Aue, Manfred Broy, Eva
Geisberger, Christoph Hoffmann and Jirgen Kazmeier, for critical discussions and
remarks on the proposed methodology.

References

[BDD*92] M. Broy, F. Dederichs, C. Dendorfer, M. Fuchs, T. Gritzner, and R. We-
ber. The design of distributed systems - an introduction to FOCUS.
Technical Report TUM-19202, Technische Universitat Miinchen, 1992.

[Blu93| B.I. Blum. Formalism and prototyping in the software proccess. In
Program Verification (eds.: T.R. Colburn, J.H. Fetzer, T.L. Rankin),
pages 213-238. Kluwer Academic Publishers, 1993.



[DCCY2]

[FL94]

[FRS89)]

[GZ92]

[Het93]

[HSJ*94]

[Hus94]

[JPRS94]

[Nic94]

[OHM*88]

[Poh93]

[PW94]

[PWMO3]

E. Downs, P. Clare, and 1. Coe. Structured systems analysis and design
method: application and context. Prentice-Hall, 1992.

M.J. Freeman and P.J. Layzell. A meta-model of information sytems
to support reverse engineering. Information and Software Technology,

36(5):283-294, 1994.

C. Floyd, F. Reisin, and G. Schmidt. Steps to software development
with users. In ESEC 89, LNCS 387. Springer Verlag, 1989.

G. Gryczan and H. Zillighoven. Objektorientierte Systementwicklung -
Leitbild und Entwicklungsdokumente. [Informatik Spektrum, (15):264—
272, 1992.

R. Hettler. On the translation of E/R schemata to SPECTRUM. Tech-
nical Report TUM-19333, Technische Universitat Miinchen, 1993.

T. Hartmann, G. Saake, R. Jungclaus, P. Hartel, and J. Kusch. Revised
version of the modelling language TROLL. Technical Report 94-03,
Technische Universitat Braunschweig, 1994.

H. Hussmann. Formal Foundations for SSADM. handed in as Habilita-
tionsschrift, Technische Universitat Miinchen, 1994.

M. Jarke, K. Pohl, C. Rolland, and J. Schmitt. Experience-based method
evaluation and improvement. In [FIP 8.1. CRIS Conference. North-
Holland, 1994.

F. Nickl. Ablaufspezifikation durch Datenflussdiagramme und Axiome.
In GI-Jahrestagung 1994, Informatik aktuell, pages 10-18. Springer Ver-
lag, 1994.

T.W. Olle, J. Hagelstein, [.G. Macdonald, C. Rolland, H.G. Sol, F.J.M.
van Assche, and A.A. Verijn-Stuart. Information Systems Methodologies.
Addison-Wesley, 1988.

K. Pohl. The three dimensions of requirement engineering. In CAWSE
1993, LNCS 685, pages 275-292. Springer Verlag, 1993.

P.Pepper and M. Wirsing. KORSO: A Methodology for the development

of correct software. draft version, 1994.

F. Polack, M. Whiston, and K. Mander. The SAZ project: Integrating
SSADM and 7. In Formal Methods Furope 1993, LNCS 670, pages
541-557. Springer Verlag, 1993.



