
MSC��� and Beyond � a Critical Look

Stefan Loidl� Ekkart Rudolph� Ursula Hinkela

aInstitut f�ur Informatik� Technische Universit�at M�unchen� D������ M�unchen
floidl�rudolphe�hinkelg�informatik�tu�muenchen�de

De	ciencies and inconsistencies within the semantics and graphical syntax of the new
MSC
�� concepts are outlined� Problems in the combined use of language constructs�
already contained in MSC
��� and the new concepts are discussed� Main goal is the
exhibition of open questions and con�icts within the new MSC
�� standard and the pre�
sentation of possible solutions� Though already positive experiences have been gained
with MSC
�� in the 	eld of protocol speci	cation and prototype implementation� the new
concepts need further completion and semantic foundation in order to be successfully
applicable in all parts�

�� INTRODUCTION

During the last ITU�study period� ��� � ���� Message Sequence Chart has advanced
to a considerably powerful and expressive language ���� Main emphasis has been put on
the development of new structural concepts� generalized ordering� new formulation of
instance decomposition� inline expression� MSC references� gates and High�level MSCs�
In the following� only a brief outline of the new concepts is presented since the paper
essentially is addressed to a readership which already is su�ciently familiar with the
MSC language� A more extensive description of MSC
�� can be found in ����
Generalized ordering constructs serve for the de	nition of general time orderings be�

tween MSC events� MSC
�� is restricted to total event ordering on MSC instances �normal
case� and to complete unordering of the events contained within coregions� Since MSC
instances may refer to higher level entities like� e�g� SDL blocks� language constructs
for the speci	cation of more general time orderings within one instance are demanded�
The same refers to the event de	nition on decomposed instances� As a straightforward
generalization� the coregion is enhanced by ordering relations graphically represented by
special symbols� called connection lines� which denote the generalized time ordering in an
intuitive manner� Events between di�erent instances within MSC
�� are ordered merely
via messages� However� on an early stage of requirement speci	cation� one often abstracts
from the internal message exchange while specifying the external behaviour only� On this
level of abstraction� synchronisation constructs are demanded similarly to Time Sequence
Diagrams which impose a time ordering between events attached to di�erent instances�
This kind of generalized ordering in MSC
�� again is de	ned by means of ordering rela�
tions graphically represented by connection lines between di�erent instances�
Since MSCs can be rather complex� there is a need for a re	nement of one instance by a set

of instances de	ned in another MSC� By means of instance decomposition� a re	ning MSC
may be attached to an instance� which describes the events of the decomposed instance
on a more detailed level� The re	ning MSC represents a decomposition of the instance
without a�ecting its observable behaviour� i�e� it must be possible to map the messages
leaving or entering the re	ning MSC to the messages of the decomposed instance� Thus�
instance decomposition determines the transition between di�erent levels of abstraction�
By means of inline expressions� composition of event structures may be de	ned inside an
MSC� The composition operators alt� par� loop� exc and opt refer to alternative and parallel
composition� iteration� exception and optional region� Graphically� the inline expression
is described by a rectangle with dashed horizontal lines as separators� The operator key�
word is placed in the left upper corner� Each section of an inline expression in principle
again describes one MSC which represents a small trace segment� Thus� inline expressions
are ideally suited for the comprehensive description of small variations of system runs�
MSC references are used to refer to other MSCs of the MSC document� The MSC refer�
ences are objects of the type given by the referenced MSC� Each MSC reference points to
another MSC which de	nes the meaning of the reference� i�e� the reference construct can
be seen as a placeholder for an MSC diagram� MSC references may not only refer to a
single MSC� but also to MSC reference expressions constructed by means of the operators
alt� par� seq� loop� opt� exc and subst� and MSC references� By means of the subst operator
a textual substitution inside the referenced MSC may be de	ned� Graphically an MSC
reference is represented by a rectangle with rounded corners containing the name of the
referenced MSC or an MSC expression�
Gates are used to de	ne connection points for messages and order relations with respect
to the interior and exterior of MSC references and inline expressions� Gates on inline
expressions are merely transit points on the frame of the inline expression� A message
gate name can be de	ned explicitly by a name associated with the gate on the frame or
implicitly by the direction of the message through the gate and the message name�
High�level MSCs �HMSCs� provide a means to graphically de	ne how a set of MSCs can
be combined� The composition of MSCs speci	ed by HMSCs can be guarded by condi�
tions in the HMSCs� The conditions can be used to indicate global system states� An
HMSC is a directed graph where each node is either a start symbol� an end symbol� an
MSC reference� a condition� a connection point or a parallel frame� Contrary to plain
MSCs� instances and messages are not shown within an MSC� This way� HMSCs can
focus completely on the composition aspects� HMSCs are hierarchical in the sense that a
reference again may refer to an HMSC�
These new MSC concepts have been stimulated essentially by two main streams of

modern computer science� A major input for MSC
�� was provided by the development
of a formal MSC semantics within the last ITU study period� based on process alge�
bra �������� This has led quite naturally to an enhancement of MSC with composition
mechanisms which now play a central role within inline expressions� MSC references with
operator expressions and HMSCs� Object�oriented techniques have been equally in�uen�
tial� e�g� for the reuse of MSCs by means of MSC references and substitution ������ In
this context� also the MSC based formalization of Use Cases� which play a central role
within the method Objectory ������ has been a major stimulus and has contributed to the
development of inline expressions and HMSCs� After this period of rapid and sometimes

rather hectical development of new MSC concepts� naturally a period of consolidation
has to follow� Most of the new concepts need further elaboration and� in particular� a
precise formal foundation� Certainly� the elaboration of a formal semantics will promote
the clari	cation of these language parts considerably� A corresponding standard docu�
ment is in preparation which is developed along the same lines as the MSC
�� semantics
and therefore again is based on process algebra� An outline of parts of the new semantics
can be found in ��� We do not aim to provide a formal de	nition for the semantics
gaps pointed out within this paper� Main goal of this paper� which is based on a diploma
thesis ������ carried out at Technical University of Munich and Corporate Research and
Development of Siemens AG� is to exhibit the de	ciencies discovered in MSC
�� and to
discuss possible solutions�

�� GENERAL ORDERING RELATION

General ordering is used to describe the temporal order of two events� in case where
this cannot be deduced from the ordering imposed by the instances and messages� In
the graphical representation� two general ordering symbols are de	ned � a line symbol
without arrow head �general ordering symbol � and a line symbol with an arrow head
in the middle �general ordering symbol ��� For the ordering of two events attached to
di�erent instances only the general ordering symbol � is allowed� This symbol can have
any orientation and also be bent�

���� Combined general ordering and messages

Messages and general ordering relations may cause confusions in the graphical represen�
tation� Beginning and ending points of messages and general ordering relations may lead
to ambiguities� in case where a message sending event is connected to a general ordering
symbol �� This situation occurs if the message and�or the general ordering symbol crosses
one or more instances �see 	gure �� It is not obvious whether the message is sent from
instance or instance� and this applies also for message� with regard to instance� and
instance��

message1

general_ordering_and_messagesmsc

instance1 instance2 instance3 instance4

message2

Figure � General ordering relation between two messages

Suggested solutions�

� In case� where the general ordering symbol is supposed to cross instances� several
arrow heads may be attached to it in order to separate the ordering symbol from
message line symbols �see 	gure ��� This solution does not demand a special ar�
rangement of instances�

� Beginning and end of the general ordering symbol may be indicated by means of
special symbols� e�g� semicircles� This solution has the same generality as the second
one but needs additional symbols�

message1

msc

instance1 instance2 instance3 instance4

general_ordering_and_messages

message2

Figure �� Representation of the general ordering relation with many arrow heads

���� Graphical representation of general ordering in combination with other

orderable events

Apart from message events� MSC
�� contains several other orderable events� incomplete
messages �lost and found messages�� create� timer statements and action� The graphical
grammar for the combination of general ordering symbols with orderable events appears
to be not su�ciently precise� e�g� general ordering symbols may be attached to any point
of timer symbols� This may easily lead to rather complicated pictures or even to misinter�
pretations� Additional drawing rules would be very advantageous� e�g� a rule for timer
symbols which states that generalized ordering symbols may only be attached to the
connection points of timer symbols with the instance axis�

�� INSTANCE DECOMPOSITION

Within MSC
��� a re	ning MSC may be attached to an instance� The external be�
haviour of the re	ning MSC de	ned by the messages entering and leaving the environment
is formally related to the messages sent and consumed by the decomposed instance� No
formal mapping is prescribed for other language constructs like conditions and actions�

���� Generalized ordering and instance decomposition

Generalized ordering relations between events on decomposed instances and events
on other instances or gates are not excluded within MSC
��� Therefore� it seems to be
natural to de	ne a formal mapping between decomposed instances and re	ning MSCs also
for general ordering relations in analogy to messages� However� the mapping is unclear
in case where more than one general ordering relation are attached to one decomposed
instance since no names are associated with general ordering relations� Since gates are not
de	ned on decomposed instances also a mapping via gates is not possible �see 	gure ���

T2

msc instance_decomposition

decomposed
sys1

m1

T1

cond1

T2

g1 g2

msc

instance1 instance2

sys1

T1
m2

m1

cond1

Figure �� Instance decomposition with general ordering� timer and conditions

���� Timer and instance decomposition

Within MSC
��� no rules concerning the mapping of timer elements of a decomposed
instance to timer elements in the re	ning MSC are de	ned� Timers� however� are essential
constituents of the MSC
�� standard� One possible solution is to map each timer construct
of a decomposed instance to a corresponding timer construct on one of the instances of
the re	ning MSC� Together with the additional rule that correlated timer constructs� like
timer setting and timeout of the same timer� have to be attached to the same instance
within the re	ning MSC� a consistent mapping of timers for decomposed instances can be
achieved�

���� Instance creation and instance stop in combination with

instance decomposition

Within the MSC
�� standard� an instance may be created by a decomposed instance�
however� this instance creation cannot be mapped consistently onto the re	ning MSC� In
order to achieve such a formal mapping the standard has to be extended by including

gates for instance creation events in addition to messages and general ordering relations�
Otherwise� instance creation should be disallowed on decomposed instances�
Equally� it is not de	ned how the termination of decomposed instances by an instance

stop � which is possible within MSC
�� � may be carried over to the re	ning MSC� Two
solutions seem to be possible� Either all instances within the re	ning MSC have to stop
or instance stop is disallowed on decomposed instances� A similar reasoning holds for the
creation of decomposed instances�

���� Conditions on decomposed instances

Within MSC
��� there is also no formal mapping de	ned for conditions between decom�
posed instance and re	ning MSC� This is problematic� in particular� in case where the
condition attached to the decomposed instance also refers to other instances �non�local
condition� or even to all instances in the MSC �global condition�� The case of global
initial and 	nal conditions deserves special attention since such global conditions play
an important role for MSC composition� Therefore� at least for global initial and 	nal
conditions� a formal mapping between decomposed instance and re	ning MSC should be
de	ned� It seems to be reasonable that initial and 	nal conditions in an MSC containing
a decomposed instance also appear as initial and 	nal condition in the re	ning MSC with
the same condition name �see 	gure ��� This would perfectly 	t with the interpretation
that global conditions always refer to all instances contained in the MSC document� How�
ever� this interpretation needs further discussion� too� The alternative� to introduce gates
also for conditions� appears to be not very attractive� It should be noted that the role of
decomposed instances within MSC composition needs further elaboration�

���� Inline expressions and references on decomposed instances

Within MSC
��� inline expressions and references must not be attached to decomposed
instances� In practice� such a rule seems to be too restrictive� In particular� the use of
MSC references without operator expressions in combination with decomposed instances
is requested� E�g�� related to SDL� it should be possible to attach references to instances
of type block which may be further decomposed into re	ning MSCs containing instances
of type process� Since decomposed instances refer to a vertical �de�composition and
references or inline expressions to a horizontal �de�composition the combination seems to
produce nontrivial problems� In full generality� this appears to be a challenging task for
MSC�����

�� INLINE EXPRESSIONS

Inline expressions introduced in MSC
�� contain several con�icting points� The textual
and graphical grammar contain some inconsistencies and the semantics of some operators
�alt� opt� exc� loop� is not su�ciently de	ned�

���� Inconsistencies of textual and graphical grammar

The textual grammar allows the use of instance creation� instance stop and the repre�
sentation of instance beginning and instance end within inline expressions� Within the
graphical grammar� instance stop and the beginning and end of instances are excluded
inside an inline expression� A create event is not explicitly ruled out� however� this does

not make sense without a new instance beginning� Apart from these inconsistencies� the
use of instance creation and stop in connection with operator expressions leads to several
semantic problems�
From that we conclude that for both� textual and graphical grammar� creation and stop

as well as beginning and end of instances should be disallowed within inline expressions�

���� Inline expressions with gates

Inline expressions with message gates or general ordering gates can lead to problems�
As an example �see 	gure ��� we take an optional region with a message
m
 crossing
an inline gate and being sent to the instance
instance�
� Due to the optionality� it is
possible that the message will not be sent from the inline expression and therefore also
not be received by
instance�
 which causes a deadlock on
instance�
� For an illustration�
the semantics of the MSC
opt inline expression
 is modelled by a corresponding Petri net
�condition event system� see �����

instance1

msc

instance1

opt

instance2

m1m1

opt_inline_expression

instance2

endinstance2endinstance1

m1out_m1 in_m1skip

Figure �� Optional inline expression with message gate

Within the corresponding Petri net� obviously a con�ict arises between the transitions

skip
 and
out m
� In case� where the transition
out m
 	res� the transition
in m
 is
enabled and may 	re� In case� where the transition
skip
 	res� the transition
in m
 is
deadlocked�
Similar examples can be constructed for the alt operator� Gates for general ordering

relations lead to corresponding problems� In case of the alt operator� con�icts could be
avoided if all alternatives contain the same gate interface� In general� however� a consid�
erable number of additional static semantic rules would be necessary to avoid deadlock
situations� Therefore� it has been decided in MSC
�� to leave it to the user
s own respon�
sibility�
The loop operator may cause several problems due to the repetition of events inside the

inline expression� in particular in connection with gates �see 	gure ��� A message entering
an inline expression with a loop operation cannot be received several times inside if it

is sent only once outside� A consistent solution may be obtained only if the messages
arise from a corresponding loop expression� In case� where the gate refers to a general
ordering relation� the interpretation is even more problematic� The semantics of general
ordering relations in connection with the repetition of events is not de	ned� Loop ex�
pressions may lead to interpretation problems also for timer constructs� Timer in inline
expressions with a loop operation cannot expire several times without being set again�
This situation corresponds to the message gate problem� only that in the case of timer
constructs the connection between individual timer events is not de	ned via gates but via
name identi	cation�

msc loop_inline_expression

instance3instance2

inf><0,loop

instance1

m1 m1

m2 m3g1
T1

Figure �� Inline expression with loop operator

Within MSC
loop inline expression
� the message
m
 is sent only once but� according
to the loop expression� it should be possibly received and consumed several times� There�
fore� after the 	rst repetition� a deadlock results on
instance
� The inverse case� where
the message is leaving the inline expression� may be interpreted in form of lost messages
after the 	rst repetition�
The ordering of message
m�
 with respect to message
m�
 is not obvious in case of the

loop� It may be interpreted in the way that all repeated message events
m�
 are ordered
with respect to the single message event
m�
�
MSC
loop inline expression
 also contains the expiration of timer
T
 which according

to the loop expression may possibly be repeated several times� Again� this leads to a
deadlock on
instance
 after the 	rst repetition�

���� Inline expressions containing the exc operator

The exc operator may be employed within inline expressions and MSC references con�
taining operator expressions� The semantics is de	ned in MSC
�� in form of a shorthand
notation� The exc operator can be viewed as an alternative inline expression where the
second operand is the entire rest of the MSC� The meaning of the operator is that either
the events inside the exc inline expression are executed and then the MSC is 	nished or

the events following the exc inline expression are executed� For nested inline expressions
this rule may lead to inconsistencies� For an exc inline expression in one of the sections
of a parallel inline expression� the semantics is not precise� It is not clear whether the
events in the other sections of the parallel expression shall be executed or not�

m4

msc

instance1 instance2

exc

par

exception

m2

m1

m3

Figure �� MSC with nested exc inline expression

Within MSC
exception
 in 	gure �� the message
m�
 is exchanged in parallel with
the exception region containing the message
m�
� It is not clear how to interpret the
entire rest of the MSC with respect to the exception region� One possibility to solve this
ambiguity concerning nested expressions would be to relate the exc region to the section
in which it is contained� After the execution of the exception inline expression the rest of
the section in which it is contained is skipped� A probably more realistic solution would
be to forbid exception regions within nested inline expressions� The same problems occur
in MSC references with operator expressions �see section ���

�� MSC REFERENCES

MSC references are comparable in their functionality with inline expressions� Inline
expressions can be represented equivalently by references with operator expressions� The
gate interface of an inline expression corresponds to the gate interface of an MSC reference
together with the gate interface of the referenced MSCs� The other way round� apart
from some minor discrepancies� MSC references may be substituted by inline expressions
with the additional rule that simple expressions containing only one MSC reference or
sequentially composed MSC references are replaced by their expanded form� Because of
this equivalence� we discuss only problems speci	c for MSC references in this section� All

con�icts listed for inline expressions apply to MSC references as well�

���� Decomposed instances in MSC references

Decomposed instances must not be attached to MSC references according to MSC
���
Contrary to that� decomposed instances may appear within referenced MSCs� This is
consistent since the decomposed instance may only appear in the referenced MSC but
it has to be ruled out explicitly that a non�decomposed instance with the same name
is contained in the enclosing MSC� In case of a decomposed instance in a referenced
MSC� the enclosing MSC may contain instances of the re	ning MSC� Within MSC
���
the semantics of such a combination is not clear�

���� Cyclic connectivity graphs caused by MSC references with gates

According to the drawing rules and static semantics rules for messages� deadlocks are
excluded within MSC
��� i�e� the corresponding connectivity graph cannot contain loops�
Contrary to that� general ordering relations in MSC
�� may lead to cyclic graphs since no
special drawing rules �or static semantics rules in the textual grammar� are prescribed�
Possible deadlocks can be prevented by forbidding general ordering symbols with upward
slope�
This� however� is not su�cient since MSC references with gates may lead to deadlocks

even if special drawing rules for messages and general ordering relations are obeyed� The
problem arises since the graphical order of gate de	nitions on an MSC frame need not
agree with the order of corresponding actual gates on the MSC reference� This may be
illustrated by the example in 	gure ��

gate_ordering

instance1

msc

instance2

gate_orderingmsc

instance2

m1 g1

m2 g2

m2

m1
g1

g2

message_deadlock

Figure �� Deadlock caused by message gates

Obviously� the MSC
message deadlock
 with the MSC reference
gate ordering
 leads
to a deadlock since the order of gate de	nitions�
g
 and
g�
� in
MSC gate ordering

has been interchanged for actual gates in MSC
message deadlock
� This problem may
be solved by an additional drawing rule� The graphical order of actual gates has to agree

with the order of gate de	nitions� In the textual grammar� additional static semantics
rules are necessary which exclude loops of the connectivity graph including message events
for the referenced MSC� Similar problems occur if the gates refer to generalized ordering
relations�

���� Gate interface of MSC reference expressions

Within MSC
��� the relation between the gate interface of the MSC reference and the
interface of the MSCs referenced in the expression may be quite intricate� Not all gate
de	nitions of the referenced MSCs must have a correspondence in the gate interface of
the MSC reference� Gate de	nitions of the referenced MSCs which have no corresponding
gate interface are propagated to the environment� The other way round� the interface of
the MSC reference must match the interface of the MSCs referenced in the expression�
i�e� any gates attached to the reference must have a corresponding gate de	nition in
the referenced MSCs� However� the interface of the MSC reference in general does not
match the interface of only one of the referenced MSCs� It is not always obvious how the
gate interface of an operator expression is built of the gate interfaces of the individual
referenced MSCs� The referenced MSCs of an alternative expression may have di�erent
gate interfaces so that the gate interface of the expression has to be adjusted accordingly�
For parallel and sequential operator expressions� it even seems that the gate interfaces
have to be di�erent for the individual referenced MSCs in order to be meaningful� In any
case� a clear semantics de	nition is demanded urgently�

���� Substitution in MSC references

MSC
�� essentially contains four semantic rules for the substitution in MSC references�

� All substitutions in a substitution list are thought to be applied in parallel� Thus
the order in which the substitutions take place is not relevant�

� The substitution of an MSC name must share the same gate interface as what it
replaces�

� If an MSC de	nition to which substitution is applied contains MSC references� then
the substitution should be applied also to the MSC de	nitions corresponding to
these MSC references�

� An MSC containing references and substitutions is illegal if the application of the
substitutions results in an illegal MSC�

In some cases� additional static semantics rules are necessary� The parallel substitution
of the same element is not excluded� The following MSC expression is syntactically
correct�
MSC subst msg m by m�� msg m by m�
� The result� however� is unclear� It
is not de	ned which operation has to be executed 	rst�
As the substitution is de	ned recursively within MSC
��� all substitutions in an MSC

de	nition are carried over to the MSCs� referenced within this MSC� In case that the
referenced MSCs contain further substitution lists� this may lead to unde	ned overlapping�
i�e� it is not clear which substitution has to be carried out 	rst� Apart from such semantic
problems� the substitution concept seems to be too narrow in practice� Only instance

names but not instance types may be replaced� For messages� only the message names may
be substituted but in practice also the substitution of message parameters is requested�
Beyond that� also the substitution for other language constructs� like timer and conditions�
may be useful�

�� HIGH LEVEL MSCS

Whereas in MSC
�� the composition was based completely on the merging of 	nal
and initial conditions� within MSC
��� the composition of MSCs is de	ned by means
of HMSCs� The conditions in MSC
�� play a restrictive role de	ned by a set of static
semantics rules� Compared with MSC
��� the composition mechanisms of MSC
�� are
much more �exible� e�g� MSCs may be composed with or without initial or 	nal conditions�
This �exibility� however� leads to some semantic problems which need further clari	cation�

���� HMSCs without end symbol

According to the MSC
�� standard� an HMSC need not contain an end�symbol� i�e�
it may be completely cyclic� In case� where an MSC reference refers to a cyclic HMSC�
this leads to a dead branch because the events following the MSC reference will not be
executed any more� Therefore� an MSC reference pointing to a cyclic HMSC should be
disallowed�

���� Con�icts in the semantics of MSC composition

For HMSCs� similar problems as for operator expressions may occur in connection with
instance creation� instance stop and timers contained in the referenced MSCs� The follow�
ing situations which are allowed for HMSCs according to MSC
�� lead to inconsistencies�

� Instances which are terminated within one referenced MSC may be contained in the
subsequent referenced MSC or in a parallely executed MSC�

� In HMSCs containing free loops� instances in referenced MSCs may be created
several times�

� In HMSCs containing free loops� instances in referenced MSCs may be terminated
several times�

� Instances with the same name may be contained in one referenced MSC as decom�
posed� in another one as non�decomposed�

� Instances with the same name may vary in di�erent MSC references by the instance
type�

� The same timer may expire in subsequent referenced MSCs without being set be�
tween them again�

These inconsistencies should be disallowed by additional static semantics rules�

���� Composition rules for HMSCs

At a 	rst glance the role of conditions on the level of HMSCs is not immediately visible�
Since the HMSC conditions are not mandatory� they only play a restrictive role� Their
use becomes more obvious in examples taken from practice� HMSCs without conditions
become di�cult to handle since conditions� representing global system states� provide
natural check points�
Nevertheless� conditions on the HMSC level could play a more signi	cant role if they

are employed for a dynamical choice in form of guards� In fact� such a mechanism is
demanded urgently� Within MSC
��� alternatives de	ned within a referenced MSC cannot
be continued di�erently outside of the reference� In practice� this makes the speci	cation�
in particular of exception handling� quite clumsy� E�g� in 	gure �� within the HMSC

setup attach
� the choice made in the referenced MSC
connect request
 between failure
�	rst alternative� and successful connection �second alternative� cannot be carried over to
the subsequent branching in the HMSC� That means� according to the present standard�
both branches inside of MSC
connect request
 can be continued by both branches outside
�with the HMSC conditions
failure
 and
connection
�� It would be advantageous to
change the semantics and to employ HMSC conditions as guards�
Some immediate de	ciencies of the present standard may be removed by a reformulation

of the static semantics rules� In case of the composition of simple MSCs without �unique�
global initial �	nal� conditions� the set of initial �	nal� conditions is de	ned to be the
set of all possible condition names� By means of this default value no empty sets of
initial or 	nal conditions can be produced� Such a rule is not carried over consistently
to referenced HMSCs and referenced MSC expressions� E�g� the sets of initial �	nal�
conditions of alt and par MSC expressions are de	ned as the intersection of the sets
of initial �	nal� conditions of the referenced MSCs� This way� the sets can be empty�
Similarly to simple MSCs� the default value in this case should be the set of all possible
condition names� Beyond that� for the exc operator expression any de	nition is lacking
in the standard�

�� CONCLUSION AND OUTLOOK

Contrary to MSC
�� ������ the new standard MSC
�� o�ers the promising possibility of a
fairly comprehensive system speci	cation in an intuitive and transparent manner� In this
respect� MSC
�� has been applied already successfully to an ISDN service speci	cation
����� and to the formalization of Use Cases ����� Practical experience has been gained by
the implementation of one of the new MSC
�� concepts �MSC reference� as a prototype
component within the Siemens SICAT tool� This has been part of the diploma thesis on
which this paper is based ������
Nevertheless� as was pointed out in the preceding chapters� MSC
�� still contains a

number of obvious de	ciencies� inconsistencies and semantic gaps� Most evidently� MSC
inline expressions and MSC reference expressions combined with gate concepts need fur�
ther elaboration and precise mathematical foundation� This� of course� also demands an
intense feedback from tool makers� users and the academic community since standardiza�
tion is a highly interactive process� Certainly� the completion of the formal semantics for
MSC
�� based on process algebra will contribute considerably to a further consolidation

setup_attachmsc connect_requestmsc

con_req data(con_req) con_ind

T

T

alt

Initiator Responder

failure

data(con_resp) con_resp
T

connection
data_transmission

connect_request

failure connection

Figure �� HMSC and MSC reference for connection setup

of the language�
Whilst most of the new MSC
�� concepts need further elaboration� a number of im�

portant concepts have been left out in the Z��� since they were found either to be not
su�ciently mature or they have not been su�ciently supported yet by the standardization
community� The list contains disruption and interruption operator� parallel composition
with synchronisation mechanism� strong sequencing operator� concepts for synchronous
communication� formal data concepts� inclusion of non�functional properties� The list
may be easily extended� All these open items are included in the working program for the
next ITU�study period which is supposed to result in an addendum to MSC
�� in ���
and in a new recommendation in ���� �MSC������

ACKNOWLEDGEMENTS

We thank Dieter Kolb for interesting discussions about MSC
��� We are grateful to
Sjouke Mauw and Michel Reniers for having a critical look at our paper�

REFERENCES

� M� Andersson and J� Bergstrand� Formalizing Use Cases with Message Sequence
Charts� Master
s thesis� Lund Institute of Technology� ����

�� P� Graubmann� E� Rudolph� and J� Grabowski� Towards a Petri Net Based Semantics
De	nition for Message Sequence Charts� In O� F�rgemand and A� Sarma� editors�
SDL��� � Using Objects� North�Holland� ����

�� �� Haugen� MSC
�� � The advanced MSC� SISU Report L�������� September ����
�� �� Haugen� The MSC��� Distillery� In A� Cavalli and A� Sarma� editors� SDL����

North�Holland� ����
�� ITU�T� Z���� 	 Message Sequence Chart
MSC�� ITU�T� Geneva� ����
�� ITU�T� Z���� 	 Message Sequence Chart
MSC�� ITU�T� Geneva� ����
�� I� Jacobson� Object�Oriented Software Engineering 	 A Use Case Driven Approach�

Addison�Wesley� ����
�� S� Loidl� Interpretation und Werkzeugunterst�utzung von Message Sequence Charts

�MSC
���� Master
s thesis� Technische Universit�at M�unchen� ���� in German�
�� S� Mauw� The formalization of Message Sequence Charts� Computer Networks and

ISDN Systems � SDL and MSC� ������ June ����
�� S� Mauw and M�A� Reniers� An algebraic semantics of Basic Message Sequence Charts�

The Computer Journal� ����� ����
� S� Mauw and M�A� Reniers� High�level Message Sequence Charts� In A� Cavalli and

A� Sarma� editors� SDL���� North�Holland� ����
�� E� Rudolph� P� Graubmann� and J� Grabowski� Tutorial on Message Sequence Charts

�MSC
���� Forte�PSTV
��� Kaiserslautern� October ����

