
4everedit – Team-Based Process Documentation Management*

* This work was partially funded by Bundesministerium für Bildung und Forschung (01 ISB 04)

Michael Meisinger

Institut für Informatik
Technische Universität

München
Boltzmannstr. 3

D-85748 Garching
meisinge@in.tum.de

Andreas Rausch
Fachbereich Informatik
Technische Universität

Kaiserslautern
Gottlieb-Daimler-Straße
D-67653 Kaiserslautern

rausch@informatik.uni-kl.de

Marc Sihling
4Soft GmbH

Mittererstraße 3
D-80336 München
sihling@4soft.de

Abstract

The introduction and successful application of

engineering processes demands a modern infra-
structure which supports efficient and convenient
management of the various work products, their
life-cycle, and their relations to each other. Mostly,
work products are realized in form of electronic
documents which can easily be edited, stored, cop-
ied and exchanged. However, most infrastructures
are fundamentally limited by the fact that the in-
formation contained in many documents is not
accessible because its semantics is unknown.

For example, software engineers often document
the design of a software architecture in a rather
unstructured way and hence cannot benefit from
automatic evaluations such as consistency checks
regarding the document itself (is it complete?) or its
dependencies to other documents (is there a test
specification for each component?).

Because most documents are inherently struc-
tured as a result of applying certain methods (such
as CRC-Cards for software requirements engineer-
ing) and because techniques are available to model
and handle structured documents (such as XML),
combining both successfully seems to be a small
gap to bridge.

In this paper we present the essential concepts
to support team-based editing of structured text-
based engineering documents. We report on our
experiences from the application of the infrastruc-
ture “4everedit” in a large-scale industrial process
engineering project.

Keywords: document management, process
documentation, team-based editing, consistency
checking, document generation

1. Introduction

During development projects in engineering dis-
ciplines such as construction, mechanical and soft-
ware engineering, many different types of elec-
tronic work results are created, edited and post-
processed by hand as well as by tools. We propose
to distinguish these products into three categories:
• Integrated models, which generally contain

complex models and diagrams in binary for-
mat. Examples are software architecture and
design models in UML and CAD drawings.
Engineers, for instance, use CASE, CAD and
CAE tools to edit them.

• Tool processed documents, which are in gen-
eral plain text documents that conform to a
formal syntax that can be parsed by tools. Such
files are read or generated by transformation
and interpretation tools, such as compilers and
interpreters. Typical examples are source code
or configuration files.

• Structured text-based documents contain tex-
tual information that follows a predefined – of-
ten hierarchical – structure. Such documents
are frequently used for specification, documen-
tation and management purposes. Require-
ments specifications, software architecture
documents, process documentations and pro-
ject status reports fall into this category. Often,
proprietary tools with binary file formats such
as Microsoft Word™ are used to edit and store
structured text-based documents.

While the importance of integrated models and tool
processed documents is certainly growing – see
model based software development [3] to mention
just one example – there is also a fundamental need
for the efficient and consistent editing and process-
ing of structured text-based documents. In software
engineering, such documents are often demanded
by development process models such as the Unified
Process [19] or the German V-Modell®1 [7]. Even
agile approaches like eXtreme Programming (XP)
require structured text-based documents such as
story cards or task cards [1]. As for process engi-
neering, processes can be modeled and documented
efficiently in the form of structured text-based
documents, because they contain significant
amounts of textual data that is generally structured
according to a well-defined meta-model. Processes
that are documented this way are much easier ac-
cessible by process support, enactment or simula-
tion tools, such as XCHIPS [15].

Requirements for editing and processing struc-
tured text-based documents in an engineering con-
text are different from those for writing books or
articles. Besides commonly accepted requirements
such as what-you-see-is-what-you-get-editing
(WYSIWYG) and spell-checking, we identified
additional requirements that reflect the specific
needs of engineers. Our list of requirements was
inspired by the lists in [34] and [21]:
• Support team-based editing (R1): In engineer-

ing projects, usually groups rather than indi-
viduals work on documents. Parallel editing
and feedback about the impact of changes are
important necessities in a groupware environ-
ment [13]. In process engineering, group-
editing capabilities are particularly important
during initial process documentation and dur-
ing organization and project specific process
adaptations, because the editing involves an
abundance of domain, application, process and
organization experts all contributing at the
same time to the same result.

• Assure structure and consistency (R2): Text-
based engineering documents mostly have a
rigid and well-defined internal structure. Main-
taining the structure and internal consistency is
of paramount importance for the quality of the
result and for efficient handling. Consistency
often exceeds the single document and spans a
set of different, interconnected, concurrently

1 V-Modell is a registered trademark of the Federal Republic of
Germany.

edited documents. Fixed structure and consis-
tency are also important for process models
that are input for project support and process
simulation tools, for instance.

• Enable post processing (R3): In engineering
projects, people and tools often need to access
and process the information contained in the
work documents. This is necessary, for in-
stance, to generate customized representations
of a document’s contents. Tools must be able
to access and query the document contents.
Processes and process models, for instance, can
be automatically enacted or simulated by tools,
provided the process information is present in a
post-processable format and structure [15].

In general, tool support for editing and process-
ing integrated models and tool processed docu-
ments has steadily improved over the last years (cf.
[12], [16], [17], [33]). Configuration management
systems, such as CVS, Subversion, PVCS™, and
Microsoft Visual SourceSafe™, have proven their
usefulness and efficacy for team-based editing (R1)
in many years. They enable distributed, parallel
editing of source files with automatic merging of
concurrent changes.

Working on structured, text-based documents in
distributed and parallel work sessions, however,
still yields a variety of problems. Some, often only
theoretical answers, are provided by the research
field “Computer Supported Collaborative Work
(CSCW)” [4] which offers a wide variety of differ-
ent approaches. However, only some have proven
in practice.

On the one hand, there are solutions based on
the comparison and integration of several Microsoft
Office Documents, possibly exchanged via a central
server. Because the documents themselves are quite
complex, this integration is a rather manual and
cumbersome task. Moreover, common experiences
with Microsoft Word show vital problems in han-
dling large files (i.e. documents with more than 200
pages). Therefore, this solution is only suitable for
smaller projects.

On the other hand, there are proven approaches
based on text files and corresponding version man-
agement systems. Many very large documents have
been successfully written in this way in distributed
teams based on a combination of TEX [20] and the
versioning system CVS [10], for instance. Hereby,
many conflicts usually arising during the process of
writing can be automatically resolved by the logic
of the CVS merging algorithm and hence do not
require user involvement.

This approach appears to be a promising starting
point for tools working with structured, text-based
documents: TEX typesetting files can be edited
concurrently by multiple users [28] and merged by
configuration management or versioning tools.
Although TEX-based solutions hence fulfill the
requirement R1 they have some drawbacks such as
a lack of WYSIWYG editing (common require-
ment), assurance of structure and consistency by
editing tools (R2), and post processing by other
tools than the TEX processor itself (R3).

With the advent of XML [35] as structured for-
mat for data exchange, multiple tools have been
developed to edit and manage XML files (R2, R3).
The XML Spy toolsuite [30] is an example for
powerful XML editing and related tasks. Compared
to other XML editors, the user is not required to
edit the textual representation directly and can alter
the content using forms instead. However, these
forms need to be defined beforehand, which is a
drawback in case of modifications to the XML
structure. In this paper we describe 4everedit as an
alternative XML editor that provides the additional
flexibility needed – in this case the generic form
generation mechanism.

The exchange and consistent update of XML
files (R1, R2) is sometimes handled using XML
databases (cf. [32]). This appears to be a rather
sophisticated and error-prone solution; furthermore
the technique itself has not yet matured. The com-
bination of proven version management tools, such
as CVS [10], and XML editing failed – at least at
the time of evaluation – due to the inability of CVS
(and even its inofficial successor subversion) to
include effective comparison and merging tools for
this format. The approach in [11], for instance,
combines XML and CVS but requires a non-
standard file comparison solution. Therefore, the
evaluated approaches lacked flexibility for at least
one of the requirements integration with standard
CVS (R1), consistency checking (R2) and post-
processing (R3). The same arguments also hold true
for professional process modeling tools and power-
ful graphical and/or web-based tools such as
SPEARMINT [15] and the Rational Process Work-
bench [30].

Summing up, editing and processing structured
text-based documents is important. Although viable
solutions for the engineering specific requirements
R1 to R3 exist for integrated models and tool proc-
essed documents, they have not been successfully
and systematically transferred to editing and proc-
essing structured text-based documents. Such

documents are currently often edited with standard
text processing tools such as Microsoft Word™ or
Open Office, which support efficient single user
text editing and formatting but lack the ability to
fulfill the requirements R1 to R3 [21].

Because of these reasons, we developed new
concepts to support team-based editing of struc-
tured text-based documents with respect to the
specific needs of an engineering environment (R1
to R3). We realized these concepts in the form of
the tool 4everedit [24] after evaluating a variety of
alternatives. The 4everedit editor has been success-
fully applied within a large process modeling pro-
ject - a case study that is discussed in the next
section.

The subsequent content of this paper is organ-
ized as follows. The next section describes settings
of the project as well as the case study. Section 3
introduces the concepts and architecture of
4everedit. Hereby we focus on the technical chal-
lenges introduced by the desired editing and proc-
essing concept. Section 4 presents the results of
applying 4everedit in a context of creating and
editing a software development process model. We
show the advantages of our approach by giving
expressive statistics and further analysis. We par-
ticularly show where the proposed approach gives a
benefit compared to traditional ways of structured
text-based document editing and share our lessons
learned. Finally, a short conclusion and outlook in
Section 5 completes the paper.

The main contribution of this paper is to show a
successful real-world application of a tool for team-
based editing of structured, text-based documents
and in particular for process documentation man-
agement. We present our approach based on an
analysis of the requirements and report on experi-
ence of applying the tool in a project of significant
size in an industrial context. The project is repre-
sentative for many similar challenges of team-based
document editing. The reported experiences indi-
cate successful application and might inspire and
encourage similar solutions.

2. Project Case Study

The V-Modell® is the German standard model
for system development and lifecycle processes
conducted within engineering projects of federal
administration and defense. It is publicly available
and many companies have successfully adopted it
to their needs. The V-Modell regulates the system

development and maintenance process; it defines
binding sets of activities and artifacts, and accom-
panying processes such as quality assurance, con-
figuration management, and technical project man-
agement [7].

In 2002, the most recent update of this standard
dated back to 1997. Many innovations and best-
practices of software engineering were lacking and
the application, adaptation and extension of the V-
Modell were often reported to be cumbersome.

Consequently, a project was initiated [29] to
analyze the drawbacks of the V-Modell, to identify
potential for improvement, and finally to develop a
new redesigned version called V-Modell® XT – to
be established within the federal administration,
military and cooperating companies [8]. Key prop-
erties of the project – our case study – were [29]:

• Project duration: October 2002 to August
2004

• Team members: more than 35 individuals
• Team locations: 8 organizations
• QA: over 15 external reviewers
• Effort: over 30 person years
As the numbers illustrate, the project is consid-

ered a large process engineering project. Editing
and processing structured, text-based documents
was an important challenge during the course of the
project. Various structured text-based documents
had to be created, edited, post processed, and main-
tained. Naturally, the most important was the main
project result: the V-Modell XT process documen-
tation itself.

The initially estimated size of the printed version
of the V-Modell XT process documentation was
400 to 800 pages, containing strongly structured
and cross-referenced text, enriched by figures and
tables. Required deliverables included a printable
format (PDF) and versions in HTML and Microsoft
Word™. The process description was demanded to
support extraction and modification by tools for on-
site process tailoring and project support.

One of the most vital design decisions stems
from the initial analysis of the V-Modell’s draw-
backs and improvement potentials: a meta-model
was specified and documented to precisely define
and relate the fundamental concepts of the new
standard [5]. This is used as a process definition
language, such as the SPEM [27] or to the Product-
and Process-Language described in [14]. The meta-
model served both for the communication of the
various concepts and as a guideline for the process
design phase:

• Duration: July 2003 to August 2004
• Editors: 26 individuals
• Editors locations: 5 organizations
• QA: over 15 external reviewers
• Effort: over 20 person years
Because the process language was developed

from scratch and first of all used for the V-Modell,
we expected the language itself to improve over
time. Hence, besides the general requirements for
editing and processing structured text-based docu-
ments in an engineering environment (cf. require-
ment R1 to R3) we identified an additional, project
specific requirement:
• Modifiable document structure (R4): the an-

ticipation of changes to the process description
language (meta-model) requires that the struc-
ture of the process documentation needs to be
flexible and modifiable throughout the project.
Changes must be feasible in a consistent and
effective way. Tool support must reflect this
possibility of change.

The challenging project goals as well as the size
and distribution of the project team led to high level
project risks. One particular risk was that the edit-
ing team would not be able to produce a consistent
process document within the given time-frame,
because the team was large, inhomogeneous, spread
out over multiple locations and the work result was
expected to be of high complexity with sophisti-
cated internal cross-references and consistency
requirements.

To mitigate especially this high risk, we pro-
vided a reliable editing and processing tool for
structured text-based documents that establishes an
appropriate and powerful solution for the proposed
requirements R1 to R4. Furthermore, we defined an
operating procedure (a process) for concurrent
editing and integration that was applied by the
editing team.

The desired tool support strategy and the editing
process were similar to “continuous integration” as
proposed in agile software development processes
[1]. From the beginning of the project, all editors
were required to work with a central server-based
file repository and to integrate their local changes at
least once a day. We made sure that every user was
able to generate a printable version of the process
documentation using the same formatting to verify
any changes locally and instantaneously. In regular
intervals, a full export consisting of the process
model in all different output formats was created
automatically on the server and published for inter-

nal team review. Every eight weeks, the most recent
build in production quality and layout was submit-
ted to external reviewers as a release for quality
assurance. In this aspect, the development process
was quite similar to that of software: nightly build
and nightly tests correspond to checking the various
consistency constraints and creating a human read-
able output for peer review.

Project requirements and identified risks re-
quired an ambitious and innovative approach to
deliver a result in the given time-frame with the
expected quality; at the same time the project risks
had to be kept at an acceptable, controllable level.
Our solution after a thorough analysis of options
(for a selection, see Section 1) was the 4everedit
editor and platform that we developed and custom-
ized with respect to the specific needs of our pro-
ject. We developed 4everedit based on an existing
open source editor and XML framework that we
developed in a previous research project [25].

3. 4everedit architecture

The identified requirements (R1 to R4) demand
fully team-based editing of large, structured text-
based documents with intricate internal references
and dependencies. The tool 4everedit is a generic
XML based editor with a dynamic user interface,
team-support through integration with the version-
ing system CVS [10] and a mechanism for post-
processing the edited documents.

Structured document
repository (XML)

Check-out latest
version from server
Perform local editing
offline
Check-in after
consistency check,
merge changes into
the server repository

Generate different
output formats
Access and extract
data from other
applications

Figure 1: 4everedit usage scenario

Figure 1 shows the usage scenario of 4everedit.

Multiple users access a central structured data re-

pository to check out consistent versions of the
document of interest and to edit them independently
and locally. Users commit changes back to the
repository. Provided a set of consistency checks
passes, the changes are merged into the repository.
This mechanism enables users to concurrently edit
documents without any particular locking mecha-
nism.

In case of consistency violations or merge prob-
lems, the server responds with a descriptive error
message and requires the user to solve any prob-
lems first before continuing. Such errors neither
harm the consistency of the server based document
repository, nor block other users from editing their
versions of the document and checking them in
whenever they choose. The contents in the docu-
ment repository are thus always kept consistent and
up-to-date. Because the data within the repository is
structured and consistent, other applications can
query and extract it for visualization or further
processing.

The following sections explain in detail in which
way the four main requirements are met by our
solution and why our tool is well suited for process
modeling and subsequent process support and
simulation. We start with the project specific re-
quirement R4, because it allows us to introduce the
basic tool properties first.

3.1. Modifiable document structure (R4)

A very important requirement in our project set-
ting was the ability to modify the internal document
structure during the runtime of the project in order
to adjust it to a possibly changed process meta-
model. 4everedit is a customized generic XML
editor similar to the popular XML Spy [37], for
instance. For any edited file, it requires a document
structure definition in form of a XML schema. The
schema defines the structure of the work document,
all of its elements as well as their arrangement
within the file, and finally constraints with respect
to internal cross references between document
elements. Thus the schema determines the opera-
tions which are permitted on the document (e.g.
add, delete, link element etc).

The user interface is similarly flexible to support
a generic adaptability to different document struc-
tures. Figure 2 shows a screenshot of the tool’s
generic user interface. The left side depicts the
XML structure in form of a tree and lets the user
modify the structure by adding, moving or remov-
ing elements. The right side shows the detail view

of a particular element selected in the tree with
generic input fields of different types, such as plain
text, rich text (including images), references, choice
values and so on. 4everedit displays the document
structure and details and only permits valid changes
as defined by the schema. For instance, it only
offers to add or delete elements if the document
schema provides for it. The dynamic user interface
supports cross-references within the document.
They are declared in the schema and presented as
drop-down-boxes containing an on-the-spot com-
posed list of possible reference targets.

4everedit is also very robust in reading the XML
document. Any XML file that conforms to a
schema will be parsed, no matter what the current
formatting is or which comments are present (cf.
Section 3.2 for the XML file format). Additionally,
even missing and thus schema-violating XML ele-
ments and attributes are tolerated and communi-
cated to the user during the succeeding run of the
various consistency checks. This makes it very easy
and efficient to perform manual file edits, which are
sometimes necessary after a CVS merge conflict or
after an XML schema change.

3.2. Support team-based editing (R1)

Editing files and documents concurrently in a
team requires special workflows, data formats, and
tool functionality. We use XML [35] as persistence
format for our documents and benefit from its in-
herent structure and text based file format.

Intuitively, requirement R1 is fulfilled by using a
configuration management tool such as CVS for the
central repository. CVS is able to merge different
versions of the same text file to a new version if
there are no mutual changes of the same parts of the
file. CVS relies on the UNIX tool diff [18] to iden-
tify changes and merge documents.

However, there are several issues and problems
related to this solution; in the following we describe
the problems with comparing and merging XML
files and show our solution. A common difficulty
when processing XML documents as text files is
that one XML document can have different file
representations that are equal in meaning. There-
fore, 4everedit saves XML documents in a normal-
ized, unambiguous way. The output is fitted par-
ticularly to line based file comparison algorithms
like that of CVS. Content data format, element
attribute ordering and whitespace placement fol-
lows clear rules. The chosen format is also very
human legible to make testing and manual XML
manipulation easy.

A challenging problem when comparing XML
files line by line is the high ambiguity due to their
very regular build-up with a high number of often
consecutive repeating lines or elements; this is a
difference compared to source code files. It pre-
vents the standard file comparison algorithms as
used by CVS from working effectively. There exist
effective solutions for comparing two XML files
for differences (see e.g. [9], [11]). We cannot use
those, however, because we chose to use a standard

Figure 2: 4everedit generic user interface

CVS server as found and centrally operated in nu-
merous organizations; therefore we had to rely on
its built-in line based file comparison algorithm.
We illustrate the problem and our solution with the
following example:

<Process>
 <Products>
 <Product id="prod1">
 <Name>Project Handbook</Name>
 <Desc>Project goals</Desc>
 </Product>
 </Products>
</Process>

The XML file above represents a process in-

stance with a set of work products as defined by the
Product element. Each work product has a name,
an optional link to an activity that creates it (not
shown in the file above) and a description. A proc-
ess should be documented in a team in the form of
the above XML. Team member Alice is responsible
for a product called “Project Handbook” and Bob is
responsible for managing the associations between
products and activities. Both work in parallel and
independent of each other on the process model.
Alice changes the name of the work product result-
ing in the following locally changed XML frag-
ment:

 <Product id="prod1">
 <Name>Project Manual</Name>
 <Desc>Project goals</Desc>
 </Product>

Bob concurrently introduces a reference (or link)

from the product “Project Handbook” to an activity
that creates the product. He does so by adding a
4everedit reference element ActivityRef that re-
sults in the following XML fragment:

 <Product id="prod1">
 <Name>Project Handbook</Name>
 <ActivityRef link="act1"/>
 <Desc>Project goals</Desc>
 </Product>

Alice successfully commits her work to the CVS

server first. Meanwhile Bob has finished his work
and tries to commit his local changes. Because he is
second, he gets a message from the CVS server that
he has to merge the current version on the server
into his local version. The CVS client tries to per-
form the merge automatically. However, Bob gets
the following merge conflict:

 <Product id="prod1">
<<<<<<< process-model.xml
 <Name>Project Handbook</Name>
 <ActivityRef link="act1"/>
=======
 <Name>Project Manual</Name>
>>>>>>> 1.65
 <Desc>Project goals</Desc>
 </Product>

The line based comparison algorithm used by

CVS cannot separate the two changes. It treats file
differences as sequences of line deletes and inserts
[18]. To avoid ambiguities, 4everedit assists CVS
by annotating the XML structure with specific
comments containing element ids to make all lines
unique. This and similar mechanisms allow CVS to
isolate modifications from different sources and
track them down to specific elements, respectively
lines, in the XML. The following XML fragment
shows the annotated XML of the original docu-
ment, as saved by 4everedit:

 <!-- Products Start -->
 <Products>
 <!-- Product Start prod1 -->
 <Product id="prod1">
 <!-- Name Start prod1 -->
 <Name>Project Handbook</Name><!-- prod1
-->
 <!-- Name End prod1 -->
 <!-- ActivityRef Start prod1 -->
 <!-- ActivityRef End prod1 -->
 <!-- Desc Start prod1 -->
 <Desc>Project goals</Desc><!-- prod1 -->
 <!-- Desc End prod1 -->
 </Product><!-- prod1 -->
 <!-- Product End prod1 -->
 </Products>
 <!-- Products End -->

With the XML annotations, our example sce-

nario leads to a correct automatic merge for Bob
that he can now commit without problems and
without ever seeing XML markup. CVS keeps both
changes separate and automatically merges them
correctly, without a conflict. The resulting XML
fragment is shown below:

 <Product id="prod1">
 <!-- Name Start prod1 -->
 <Name>Project Manual</Name><!-- prod1-->
 <!-- Name End prod1 -->
 <!-- ActivityRef Start prod1 -->
 <ActivityRef link="act1"/><!-- prod1 -->
 <!-- ActivityRef End prod1 -->
 <!-- Desc Start prod1 -->
 <Desc>Project goals</Desc><!-- prod1 -->
 <!-- Desc End prod1 -->
 </Product><!-- prod1 -->

Without annotating the XML, similar problems
occur for many other team-based usage scenarios,
such as concurrently changing, deleting and moving
elements. By extending the XML file with the de-
scribed annotations, CVS can automatically merge
most of these concurrent changes correctly. Con-
current changes in the exact same location of an
XML file, however, always result in an inevitable
merge conflict, which must be corrected manually.
This can be kept to a minimum though, if users are
assigned (different) elements that they are allowed
to edit.

3.3. Assure structure and consistency (R2)

An integral part of working in a team on a cen-
tral data repository is to ensure the repository’s
internal structure and referential integrity. 4everedit
addresses both issues as follows. It guarantees the
internal document structure using XML schema
validation, which is a standard functionality of any
XML editor. 4everedit allows for structure altera-
tions only in accordance with the associated XML
schema. Additionally, 4everedit detects any schema
violations introduced by editing the document out-
side of the editor when the document is loaded. In
this case, the responsible user must correct all er-
rors before editing can continue.

Ensuring the document’s internal referential in-
tegrity requires mechanisms on a semantic level
that take the document’s contents and application
domain into account. A domain expert must provide
application-specific meanings to the document’s
contents. 4everedit supports the mechanism of
pluggable consistency checks for checking and
guaranteeing a document’s referential integrity and
semantic consistency. Currently, consistency
checks are plug-in modules implementing consis-
tency rules. They can access the document’s com-
plete data model using 4everedit’s standard data
access API to detect any violations of consistency
rules. This implementation was driven by simplic-
ity. For a discussion about shortcomings and alter-
natives, see Section 4.3.

Consistency checks, for instance, can detect
whether all document elements are referenced at
least once, or that a graph of dependent elements,
e.g. activities, contains no cycles and is fully con-
nected and reachable from a root element. In proc-
ess engineering, it is very important to keep the
process documentation in a consistent state and to
detect any violations immediately, so that depend-
ent tools, e.g. for process simulation, can operate on

a consistent model. The mere size of many process
documentations makes an effective automated con-
sistency assurance mechanism mandatory.

4everedit executes consistency checks on the cli-
ent and on the server. On the client, consistency
violations are checked for every time the document
is saved. They can be ignored by the user as long as
the XML document remains well-formed and all
internal references have valid targets. This enables
a much smoother editing process with intermediate
inconsistent states. On the server, however, consis-
tency is always enforced. 4everedit does not allow
inconsistent documents to be committed to the
server’s repository.

Besides consistency checks, 4everedit provides a
second important structure and consistency en-
forcement mechanism that is located on the reposi-
tory server. Chosen parts of the team-edited docu-
ment can be locked (“frozen”) and prevented from
modifications. Figure 3 depicts the entire document
checking workflow on the server, all triggered by a
CVS commitinfo script [10]. The mechanism is as
simple as powerful:

RepositoryUser
Attempt check-in

failed

(1) Check document consistency

(3) Compare filtering results (diff)

(2b) Filter current repository document

Report illegal modification

(2a) Filter document (using XSLT)

Report consistency error

(4) Check-in document to repository

different

Edited
Document Current

Document

Figure 3: Document checking workflow on

the repository server

After checking the document’s consistency (1),
the server performs a document modification check.
An XSL transformation filters out all non-locked
parts of the XML document. Thus, the transforma-
tion result contains only the locked parts, those that
shall remain unmodified.

This filtering step is applied to both the docu-
ment that is subject to check-in (2a) and the most
recent document in the CVS repository (2b). If both
transformation results are equal (3) – as compared
by the standard UNIX diff tool – no modifications
to any locked element did happen and the check-in
can proceed (4). Otherwise, the user will get an
error message pointing to the XML elements that
caused the conflict.

An authorized user (e.g. the document manager)
controls the locking (“freezing”) scheme by ma-
nipulating the XSLT script that performs the filter-
ing. Any client with access to the CVS and suffi-
cient authorization can change the script, because it
is also located in the CVS repository. The docu-
ment modification check can make use of all the
power and flexibility of XSL transformations. This
ranges from “freezing” individual elements (e.g. a
chapter named “Introduction”), all elements of a
certain type (e.g. all top level chapters of a docu-
ment), certain attributes of all elements (e.g. all
element names), relations to other elements and any
combination thereof to freezing the entire document
but for certain exceptions. Freezing can apply to
textual contents as well as to the XML structure
only; the latter is very helpful to keep a basic docu-
ment build-up intact and still permit modification of
the textual parts. Freezing could also distinguish
different users or editing roles for a fine-grained
modification authorization scheme – however, we
never implemented that. It is easy to create more
complex checks, such as freezing certain elements
but leaving the order in which they occur open,
fixing the number of elements of a certain type etc.
The XSLT language [36] with its Xpath expres-
sions provides very powerful means to quickly
implement such checks and transformations in
scripts of minimal length.

Thus, a document manager can gradually lock
the document or parts thereof and restrict the col-
laborative editing to parts that have not yet been
finished and reviewed.

3.4. Enable post processing (R3)

An advantage of working with rigidly structured
documents is the ability to further process them

with different tools for extracting and querying
data, and for rearranging and visualizing the con-
tents. 4everedit can post-process the work docu-
ment by integrating XSLT processors and docu-
ment creation tools. A three level post-processing
pipeline following a simple pipes-and-filters archi-
tecture [6] is controlled from a configuration file, as
depicted in Figure 4.

Figure 4: Post-processing pipeline

First, in the view generation phase, 4everedit

transforms the document into a presentation and
content independent, intermediate format. Second,
in the formatting phase, 4everedit transforms the
result of step one further into an output format,
such as HTML, XML-FO, LaTeX, docbook etc.
Finally, if needed, 4everedit invokes external post-
processors that transform the output of the second
step into the final result. Post-processors include
LaTeX compilers and XML-FO processors, such as
Apache FOP, XEP and JFOR, to generate PDF,
PostScript, RTF and many other output formats.

4everedit can use the post-processing pipeline,
for instance, to generate Electronic Process Guides
(EPGs, cf. [2]) in hypertext format to provide proc-

ess guidance for developers. For project manage-
ment, 4everedit can extract structural information
from the working document that shows the percent-
age of completion of the work in progress.
By using standardized intermediate formats in the
chain of post-processing, it is very easy to connect
external tools to generate all kinds of desired output
formats. It furthermore decouples the separate steps
in the chain and keeps them easy to develop, mod-
ify and test.

4. Experiences with applying 4everedit
to process documentation management

To edit, maintain and process the V-Modell XT
in the described project case, we implemented and
used 4everedit with respect to the engineering spe-
cific requirements R1 to R4. In this section we will
report our experiences with applying 4everedit. For
each discussed requirement and corresponding
solution, we present experiences and findings. The
following sections demonstrate how the four main
requirements are fulfilled by 4everedit. We cover
the requirements in the same order as in Section 3.

4.1. Modifiable document structure (R4)

When the team started editing, we expected that
the structure of the edited process documentation

would change over time. Figure 5 shows that struc-
tural changes indeed occurred during the entire
project, 72 times in total. The diagram shows the
changes (XML schema modifications) per week
and the number of different authors performing the
changes. Compared to the number of overall modi-
fications of the XML document (2,337), the number
of structural changes (72) could be kept rather low
and could be performed by a small group of experi-
enced engineers. This was the foundation for
document handling with both a modifiable structure
and short turn-around times. Because 4everedit is
generic in its user interface and XML schema, no
code changes were required when we changed the
document structure.

In those cases where we added details to the
document structure and thus simply refined it, we
could leave the document unchanged. In about a
third of all changes, we had to migrate the docu-
ment’s content according to the modified schema.
4everedit does not provide any built-in support for
automatic content migration; we had to migrate the
document manually. This was inevitable and re-
quired an exclusive lock of the document. Thus, we
tried to schedule it for weekends or nights. Mostly
the migration was simple and thus was carried out
quickly by hand. About ten times it was necessary
to write a simple XSL transformation script. The
largest of these scripts was about 110 lines of code,
including comments and empty lines. We consider

0

1

2

3

4

5

6

Relea
se

 1 (2
6.0

9.2
00

3)

Relea
se

 2 (2
1.1

1.2
00

3)

Relea
se

 3 30.0
1.2

00
4

Relea
se

 4 (2
6.0

3.2
00

4)

Relea
se

 5 (2
1.0

5.2
00

4)

Relea
se

 6 (1
6.0

7.2
00

4)

Fina
l V

ers
ion (

26
.07

.20
04

)

authors
updates

Figure 5: Document structure modifications

the effort spent to implement and test these scripts
very acceptable; none required more than two hours
of work and most often, parts of existing scripts
could be reused. The aforementioned robustness of
4everedit in parsing XML files combined with an
XML validator and consistency checker that pro-
vided us with telling error messages complemented
the ease of use in the content migration scenario.

To sum up, 4everedit provided sufficient and
very valuable support and flexibility for document
structure modifications – even for a project of con-
siderable size and with inevitable manual interac-
tions. This support eliminated a previously existing
concern in the team that this approach of robust
XML handling with sporadic manual interventions
but without defined automatic migration procedures
would not scale to our project size. Nevertheless,
we are interested in further research about automat-
ing migration steps in this scenario.

4.2. Support team-based editing (R1)

We had identified team-support as a crucial suc-
cess factor for the project. To support team-based
editing, we designed 4everedit to use a commented
XML file that is stored in a central CVS repository.
Because we could not find any experiences or rep-
resentative transferable test results, this seemed to

us to be the most critical part during the application
of 4everedit in the project.

However, the final evaluation results are very
telling, as shown in Figure 6: during the project, the
authors created 2,337 versions of the V-Modell XT
XML file. A number of 26 different authors con-
currently edited this XML file. The maximum
number of versions that were created in a day is 36
and the maximum number of different authors that
modified the document on a single day is 13. The
diagram shows the number of new versions each
week and the number of different authors creating
them.

These numbers show that the evaluated project
case serves as a load test environment for the pro-
posed solution for team-based editing. Neverthe-
less, 12 times a manual integration of the XML file
were required because of CVS conflicts. With a
percentage of 99.5, the update and merge mecha-
nisms of CVS were sufficient enough to integrate
the concurrent editors’ work. Hence, the presented
technique – a commented XML file – worked very
well to enable CVS to handle concurrent editing,
and even exceeded our initial expectations.

0

2

4

6

8

10

12

14

16

18

20

Rele
as

e 1
 (2

6.0
9.2

00
3)

Rele
as

e 2
 (2

1.1
1.2

00
3)

Rele
as

e 3
 (3

0.0
1.2

00
4)

Rele
as

e 4
 (2

6.0
3.2

00
4)

Rele
as

e 5
 (2

1.0
5.2

00
4)

Rele
as

e 6
 (1

6.0
7.2

00
4)

Fina
l V

ers
ion

 (2
7.0

8.2
00

4)

au
th

or
s

0

20

40

60

80

100

120

140

up
da

te
s

authors

updates

manual merge

Figure 6: Document versions and authors

4.3. Assure structure and consistency (R2)

The integrity of structure and consistency was
never jeopardized during the project – mostly en-
sured by over 70 consistency checks that we had
implemented at the end of the project. We could
keep the V-Modell XML file consistent throughout
the entire project and thus were always able to edit
and process the document. We always had confi-
dence in its inner structure, even after major rear-
rangements of the file’s build-up.

However, maintaining the implementation of the
consistency checks was a difficult task. Whenever
the structure of the document changed, the affected
consistency checks needed a rework. The reason
was mainly 4everedit’s interface for the plug-ins.
The interface to access the document’s contents
from the consistency checks was too close to the
actual XML structure. Moreover, the consistency
checks were imperatively implemented in Java
instead of, for instance, formulating them declara-
tively as consistency rules. In the next versions of
the editor, the consistency check plug-in mecha-
nism will be replaced by a rule engine, such as
JRule or xlinkit [26]. Combining this with a use of
XML metadata and the Resource Description
Framework (RDF) [31] that emerged in the context
of the Semantic Web, should give us enough flexi-
bility and a higher degree of decoupling of data,
schema and consistency rules.

We implemented the document “freezing”
mechanism in an effort to stabilize the contents of a
document of growing size and sophisticated struc-
ture. Even with an editing operating procedure in
place and a change control board restricting the
permitted edits to certain areas in the document, it
was not possible to control and trace all modifica-
tions – some just happened accidentally. The freez-
ing mechanism solved that problem. Due to its
technical simplicity and the use of standard tools,
we could implement it in less than a day. Modifica-
tions, extensions and temporary disable operations
of the XSLT “freezing” script were a matter of
minutes.

In retrospective, the mechanism proved invalu-
able in gradually stabilizing the document and its
key elements early on in the process till the end.
First, the team decided about the key elements and
their names (the architecture of the process docu-
mentation), so we could freeze this information.
Second, the responsible users could define the basic
attributes of these elements and their relations to or
dependencies on other elements. Consequently, we

fixed this information next. And third, the editing
users could finish the textual and graphical parts
successively, let them freeze and give them into
review, as planned in the release plan. These steps
happened at different times for elements of differ-
ent levels of detail and priority. Of course, several
times we also had to unfreeze certain elements
because a rework was requested by the reviewers or
decided by the change control board.

Thus, the freezing mechanism provided an effec-
tive means for our quality assurance process: we
could give frozen parts into review and be sure
about their status and quality from then on. The
percentage of frozen versus modifiable elements in
the document provided a telling metrics for project
management and indicated the degree of comple-
tion of the entire document.

Figure 7 summarizes our document editing and
quality assurance process. A document manage-
ment group planned in accordance with the editing
team the document’s architecture as well as its
release plan and decided on any structural changes.
A technical team performed the structural changes
consistently when requested and resolved the few
occurring CVS integration conflicts. The numerous
editing users could work collaboratively and inde-
pendently on their local workstations on an always
consistent central model.

Figure 7: Collaborative document editing

using 4everedit

A multi-tier review team performed reviews of
parts of the document and of the entire document in
fixed intervals. All this happened incrementally and
in a very agile way based on the strong support that
4everedit offered: assuring the document’s struc-
tural and referential consistency, enforcing the
semantic consistency, and stabilizing the work
results by freezing the document’s contents. The
described combination of strategies, procedures and
technologies made the timely delivery of the
V-Modell XT possible.

4.4. Enable post processing (R3)

4everedit provides a very flexible post process-
ing framework. Early in the project we generated a
146 page PDF file out of an 881 KB XML file. At
the end of the project we were able to generate the
following documents out of a four megabytes XML
file and more than 130 external GIF images:

• a fully cross-referenced, indexed and book-
marked PDF file with 635 pages and a size
of 34 MB

• the similar content split into nine separate
PDF files

• complete and separate Microsoft Word files
• an HTML-based version with over 1,250

files
• Word templates for 76 defined products
The look and feel of the output changed signifi-

cantly during the project. Starting out with a table-
and icon-based design, we finally delivered a
highly structured text-based document with a so-
phisticated and fine tuned design and a high num-
ber of internal hyperlinks and generated indices.

Generating the PDF results led us astray for a
while. A long time, we generated XML-FO and
post-processed this into PDF, using Apache FOP.
This produced fairly good results but not the envi-
sioned deliverable quality, with a powerful para-
graph control, for instance. Also, the generation
process with FOP used more than 5 GB of RAM
memory on a UNIX server for the full export. Thus,
we switched to the generation of LaTeX source
files and their compilation to PDF; we instantly
gained professional book-quality layout and almost
unlimited flexibility and scalability. This switch
required the development of a similar XSLT script
for LaTeX. A student implemented this within a
few weeks – fortunately he could make good use of
the extensive experiences manifested in the XML-
FO generation script. LaTeX also significantly

simplified the script because we got all heading
numbering and table-of-content handling for free.

At the end of the project we had created more
than 70 versions of the PDF generation script alone.
Furthermore, the maintenance of the intermediate
format generation scripts (step 1 in Figure 4) was
very complex and error prone. Whenever the struc-
ture of the document changed, these scripts had to
be checked and often adapted or reworked. The
first versions of the generation scripts lacked a
flexible architecture to support structural changes.
This improved significantly during the course of the
project; we used modularization and abstraction
whenever possible. In the most recent versions, we
even provided the flexibility for the process editors
to define the outline of the generated results in the
editor itself – and even supported different variants
(views) referencing the same source data. 4everedit
would pass user selected, configurable options to
the post-processing scripts that were flexible
enough to dynamically compose the data on the fly
as requested.

Currently, we are reworking the generation
scripts towards a more generic configurable pipes-
and-filters architecture. This will make maintenance
and improvement of the generation scripts even
easier in future.

5. Conclusion and Future work

Team-based editing of structured text-based
documents is an integral task in engineering pro-
jects. In particular, it is an essential task for manag-
ing process documentations. Existing tools, how-
ever, do not support the specific requirements for
team-based editing of many engineering docu-
ments. All evaluated tools failed to fulfill all our
requirements; mostly to support the requirement to
be stable against changes of the underlying struc-
ture (R4).

For that reason, we have developed and imple-
mented 4everedit and successfully applied it in a
large process engineering project. Over a year, 26
editors, from more than five companies, have con-
currently elaborated process documentation with
635 pages and 34 MB in size using 4everedit. This
impressively proves the applicability of 4everedit
for process modeling and process documentation
management and the fulfillment of the requirements
listed in Section 1. 4everedit has been published as
an open source project under the CPL license [24].

A particular elegance of the 4everedit approach
lies within its simplicity. Based upon proven solu-
tions such as CVS with its line-based diff and
merge utilities, a rather small modification in the
XML saving process led to a powerful solution,
which might serve as a viable basis for the applica-
tion of existing process support, enactment and
simulation tools, such as XCHIPS [15] or in-
Step [23].

In the meantime, 4everedit has been successfully
applied within other industrial projects. It has been
used to edit and process requirements documents,
project documentations, software architecture
documents, tool configurations and business proc-
ess definitions. This shows that the presented re-
sults from our process engineering project can be
transferred to other engineering disciplines.

Currently, we are integrating a rule engine to
ease creation and maintenance of the consistency
checks. In the future, the post processing frame-
work will be redesigned to provide a more flexible
and adaptable architecture. In the long term, more
research needs to be done in the area of model-
based editing of structured text-based documents
and in particular process documentations. Our pro-
ject shows that the size of information we have
produced and processed was approaching the man-
ageable maximum. For larger documents, more
sophisticated modeling techniques and methods
must be developed and implemented.

Acknowledgments

We are grateful to Christian Bartelt, Dirk Nie-
buhr, and Tim Schumann for comments on earlier
versions of this paper. We thank the anonymous
reviewers for helpful comments to improve this
paper. Moreover we thank the whole WEIT team
for the great and fun experience of working to-
gether.

References

[1] K. Beck, Extreme Programming Explained: Em-
brace Change, Addison-Wesley, 1999.
[2] U. Becker-Kornstaedt, “Der V-Modell Guide:
Webbasierte Unterstützung eines Prozeß-Standards”,
Workshop of the GI-Fachgruppe 5.1.1 Vorgehensmodelle
– Prozessverbesserung und Qualitätsmanagement, 1999.
[3] S. Beydeda, M. Book, and V. Gruhn (eds.), Model-
Driven Software Development, Springer, 2005.

[4] U. Borghoff, and J. Schlichter, Computer-Supported
Cooperative Work - Introduction to Distributed Applica-
tions, Springer 2000.
[5] M. Broy, M. Deubler, M. Gnatz, H. Hummel, W.
Kranz, M. Meisinger, D. Rauh, A. Rausch, and W.
Russwurm, Abschlussbericht WEIT Phase I,
http://www.v-modell-xt.de/ergebnisse1.html, 2003.
[6] F. Buschmann, R. Meunier, H. Rohnert, P.
Sommerlad, and M. Stal. A System of Patterns. Pattern-
Oriented Software Architecture. Wiley, 1996.
[7] BWB-IT I-5, AU 250, Entwicklungsstandard für IT-
Systeme des Bundes, Vorgehensmodell, 1997.
[8] BWB-IT I-5, Technische Aufgabenbeschreibung zur
Weiterentwicklung des Entwicklungsstandards für IT-
Systeme des Bundes auf Basis des V Modell 97, Sept.
2002.
[9] G. Cobena, S. Abiteboul, and A. Marian, „Detecting
Changes in XML Documents“, In Proceedings of the
18th International Conference on Data Engineering,
2002.
[10] Concurrent Versions System (CVS), website,
http://www.cvshome.org, 2004.
[11] B. Delinchant, L. Gerbaud, F. Wurtz, and E.
Atienza, “Concurrent design versioning system, based on
XML file”, In 28th Annual Conference of the Industrial
Electronics Society (IECON), IEEE, 2002.
[12] P. Dewan, and J. Riedl, “Towards computer-
supported concurrent software engineering”, IEEE Com-
puter, 26(1):17-27, January 1993.
[13] C. Ellis, S. Gibbs, and G. Rein, “Groupware: Some
issues and experiences”, Communications of the ACM,
34(1):39-58, 1991.
[14] M. Gnatz, M. Deubler, M. Meisinger, and A.
Rausch, “Towards an Integration of Process Modeling
and Project Planning”, Proceedings of the 5th Interna-
tional Workshop on Software Process Simulation and
Modeling (ProSim 2004) of ICSE 2004, 2004.
[15] I. Grützner, J. Münch, A. Fernandez, and B. Garzal-
deen, “Guided Support for Collaborative Modeling,
Enactment and Simulation of Software Development
Processes”, Proc. of the 4th Int. Workshop on Software
Process Simulation and Modeling (ProSim) of ICSE
2003, 2003.
[16] J.C. Grundy, and J.G. Hosking, “Software Tools”,
Wiley Encyclopedia of Software Engineering, 2nd Edi-
tion, Wiley Interscience, December 2001.
[17] J.C. Grundy, J.G. Hosking, and W.B. Mugridge,
“Coordinating distributed software development projects
with integrated process modelling and enactment envi-
ronments”, Proc. of the 7th IEEE Workshop on Enabling
Technologies, 1998.
[18] J.D. Hunt, and M.D. McIlroy, “An Algorithm for
Differential File Comparison”, Computer Science Tech-
nical Report #41, Bell Telephone Laboratories, 1976.

[19] I. Jacobson, G. Booch, and J. Rumbaugh, The Uni-
fied Software Development Process, Addison-Wesley,
1999.
[20] D.E. Knuth, The TEXbook, Addison-Wesley, 1984.
[21] P. B. Lowry, “Design requirements for collaborative
writing tools for distributed work over the Internet”, In
8th Annual Americas Conference on Information Systems
(AMCIS), 2002.
[22] M. Meisinger, A. Rausch, M. Deubler, M. Gnatz, U.
Hammerschall, I. Küffer, and S. Vogel, “Das V-Modell
XT - ein modulares Vorgehensmodell”, 11. Workshop
der Fachgruppe WI-VM der Gesellschaft für Informatik
e.V. (GI), Shaker Verlag, 2004.
[23] microTool: in-Step - The Workflow Management
System for IT projects. Available at
http://www.microtool.de/instep/en/
[24] 4everedit project homepage on sourceforge,
http://sourceforge.net/projects/fourever/, 2005.
[25] NOW project homepage, http://now.c-lab.de/
[26] B. Nuseibeh, J. Kramer, A. Finkelstein, “View-
Points: meaningful relationships are difficult!”, In Proc.
of the 25th International Conference on Software Engi-
neering, 2003.
[27] Object Management Group (OMG), Software Proc-
ess Engineering Metamodel (SPEM),
http://www.omg.org/technology/documents/formal/
spem.htm, 2002.
[28] N. Preguiça, J.L. Martins, H. Domingos, J.F. Simão,
“System Support for Large Scale Collaborative Applica-
tions”, Technical report TR-DI-UNL-01-98, Dep. de
Informática, FCT-UNL, Quinta da Torre, 1998.
[29] Projekt WEIT - Weiterentwicklung des
Entwicklungs-standards für IT-Systeme des Bundes auf
Basis des V-Modell-97, http://www.v-modell-xt.de,
2003.
[30] Rational Process Workbench, IBM website,
http://www.ibm.com/software/awdtools/rup/workbench/
[31] Resource Description Framework (RDF) specifica-
tion, website, http://www.w3.org/RDF/
[32] A. Salminen, and F.W. Tompa, “Requirements for
XML document database systems”, In Proc. of the ACM
Symposium on Document Engineering (DocEng '01),
ACM Press, 2001.
[33] F. Titze, „Improvement of a configuration manage-
ment system“, In Proceedings of the 22nd International
Conference on Software Engineering, pp. 618-625, 2000.
[34] M. Verlage, B. Dellen, F. Maurer, J. Münch, “A
Synthesis of Two Process Support Approaches”, In Proc.
of the 8th International Conference on Software Engi-
neering and Knowledge Engineering (SEKE’96), 1996.
[35] W3C consortium, Extensible Markup Language
(XML) 1.0 specification (third edition),
http://www.w3c.org/TR/ 2004/REC-xml-20040204,
2004.

[36] W3C consortium, XSL Transformations (XSLT) 1.0
specification, http://www.w3c.org/TR/xslt, 1999.
[37] XML Spy, Altova, website, Product information
available at http://www.altova.com/products_ide.html

