BOPS - Balancing Objects and Pages in a Shared Space

Technische Universitat Miinchen
Institut fir Informatik
Germany, 80290 Miinchen
C. Rehn, M. Pizka
{rehn,pizka}@in.tum.de

Abstract

Distributed Shared Memory (DSM) systems usually employ
a number of hardware pages as management units. The gap
between the size of application objects and coherence units
leads to the undesirable effect of false sharing, resulting in
a significant performance degradation for a wide range of
applications. To prevent false sharing and reduce the scope
of consistency actions some systems introduce objects as the
unit of sharing. The size of shared objects is deduced from
application objects and may not change during program ex-
ecution which has usually a negative influence on DSM per-
formance.

We present a distributed memory management which
is neither oriented to application objects nor to page size.
Object granularity may vary during program execution to
adapt the unit of sharing to application requirements which
usually change over the time. This leads to a prefetch-
ing of the working set of activities and thereby improved
performance by reducing the number of messages sent in
the distributed system. Our memory management is inte-
grated into a language-based approach to construct struc-
tured object-based distributed systems taking advantage of
the implicit structural relationships between passive and ac-
tive objects to further improve the performance.

1 Introduction

The relevancy of distributed computing in practice is still far
behind the potentialities of nowadays available distributed
computing power, provided by powerful workstations and
high-speed interconnection networks. Obviously the rea-
son is tremendous complexity. Distributed computing either
burdens the programmer with additional concepts and their
effects or it demands tasks from the resource management
system that are hard to fulfill. Somehow contradictory to
the requirement of simplicity, execution performance has to
be convincing. Distributed execution must not only provide
scalability but also low overall management overhead. Per-
formance has to be reasonable compared to sequential and
centralized software solutions, as well as it should provide

speed-ups if additional computing resources are available.

Peak performance on distributed hardware platforms can
be reached by using explicit message passing [GBD 194, BL92].
We argue, that writing parallel or even distributed programs
with explicit message passing is a cumbersome and difficult
task. The shared memory paradigm obviously provides an
easier to use abstraction, since it moves the task of com-
munication from the application-level to the system-level.
The idea of a resource management system, that enforces
the abstraction of a shared memory in a distributed envi-
ronment (Distributed Shared Memory) is not very new, but
since the first DSM implementation by Li [Li86] in 1986,
the performance of most DSM systems is still unsatisfac-
tory [Lu95]. Performance problems of DSM implementa-
tions mainly arise from false sharing, diff accumulation, miss-
ing hardware support to detect access violations on a fine-
grained basis and communication overheads originating in
additional messages in contrast to PVM [LDCZ97].

The negative effects of false sharing can be reduced by
allowing multiple-writers. The number of messages sent in
the distributed system can be decreased in several ways.
Objects may be grouped dynamically into larger units of
transportation [BS93] and the consistency semantics can be
weakened. An implementation of a DSM concept has to con-
sider mechanisms provided by the hardware. The common
existing page-fault mechanism should be exploited to detect
accesses to locally unavailable objects efficiently.

In this paper we present the concept and implementation
of a decentralized distributed virtual memory management
that provides simplicity as well as efficiency. The distributed
memory management uses hardware properties to identify
accesses to locally unmapped objects. Efficiency is gained by
combining the advantages of page-based and object-based
DSMs introducing the concept of object clusters to allow
dynamic and flexible determination and modification of the
size of shared units while still making use of the page-fault
mechanism to provide an application-oriented resource man-
agement. In addition we introduce our language-based ap-
proach to construct structured object-based distributed sys-
tems. This allows the recording of well-defined structural de-
pendencies among all objects of the system which are used
by the memory management to improve performance.

The rest of the paper is organized as follows. In the
next section we will briefly discuss related work. Section 3
presents our programming model and in section 4 the struc-
tural dependencies implied by this programming model are
described. In Sections 5 and 6 we will elaborate on the con-
cepts and the implementation of BOPS, before the perfor-
mance of BOPS is analyzed in section 7. Section 8 summa-

rizes the main features of our approach and gives an outlook
on future work.

2 Related Work

Most software realizations of Distributed Shared Memory
are using conventional virtual memory management hard-
ware and local area networks. Li’s Ivy system [Li86] was
the first implementation of a page-based DSM. Newer imple-
mentations are Mirage+ [FHJ94], TreadMarks [ACD96] or
Odin [Pea96]. All of these implementations have one thing
in common: the size of management blocks of the DSM is
bottom-up oriented, equal to hardware page sizes ignoring
the needs of applications.

Other implementations try to avoid these problems. The
implementation of Midway [BZS93] is an example for a DSM
which is not bound to hardware pages. All store operations
are done by the Midway library. The coherence protocol
runs without triggering a hardware page-fault. This neces-
sitates the execution of additional operations even if the
accessed object is locally available and leads to performance
disadvantages. BOPS uses objects while still exploiting the
advantage of hardware support. In Midway the library has
to be entered each time a write operation is necessary, in
BOPS writes can be done without additional management,
if the object is locally mapped. In addition, object-based
DSMs burden the programmer with an object-based syn-
chronization model. The granularity of the unit of sharing
in object based systems is usually determined by applica-
tion objects which may lead to performance losses if two
different processes try to access different parts of an appli-
cation object. BOPS allows objects of varying granularity
which is not determined by application objects but by the
dynamically changing application needs.

The Shadow DSM [GPR97] also tries to exploit the page
fault mechanism for an object based memory at the expense
of an additional indirection for memory accesses.

The performance advantage of TreadMarks compared
with the region-based protocol as described in [BK98] stems
from reduced message traffic because of the prefetching ef-
fect and the spatial locality of many applications motivated
the introduction of object clusters in BOPS. Finding the
working sets of activities, this prefetching effect can be ex-
ploited by the system management and reduce the DSM
page fault rate and network traffic.

Just as in Orca [Bal94], BOPS is interwoven with a dis-
tributed object-based programming language. Compiler and
runtime system are used to enable static and dynamic anal-
ysis supporting resource management.

3 Programming Model

The idea of BOPS is based on a distributed system architec-
ture [PE97], which is featured by an object-based, top-down
driven and language-based approach combined with struc-
turing facilities to efficiently bridge the gap between appli-
cation programmers and hardware. The structural depen-
dencies between the objects are exploited by the memory
management to gain efficiency. This section gives a brief
overview about the main concepts of the distributed system
architecture as far as they are relevant.

We distinguish between named objects which are known
at compile time and anonymous objects which are dynam-
ically created in the path of execution. Pointers to anony-
mous objects can be duplicated and passed between objects

in the system whereas the creation of references to named
objects is not supported.

Objects can be either passive or active and can be cre-
ated dynamically at run time. Active objects serve for the
explicit specification of parallelism on a high level of ab-
straction and are called actors. The creation of an actor
establishes a new, concurrent flow of control. Actors may
execute subprograms as in other procedural programming
languages.

As opposed to many other object-based languages, dele-
tion of objects is automatically handled by the runtime sys-
tem rather than explicitly by the programmer. Termination
dependencies guarantee that an object exists as long as it is
accessible by other objects.

Waiting for the termination of the forked actors (join
operation) is implicitly performed by the runtime system,
since an activity is not allowed to be deleted prior to the
termination of all its forked child-actors. Passive objects
are deleted with the termination of the associated actor,
method or subprogram.

We call the collection of passive objects together with the
actor they depend on with respect to its existence an actor
sphere. Each actor sphere is assigned to exactly one node in
the distributed system. If an actor tries to access a passive
object belonging to a different actor sphere located on a
remote host it gets a copy of the page(s) the passive object
is mapped to. Figure 1 illustrates termination dependencies
by showing a snapshot of a program in execution.

O actor
A subprogram

] passive object
— lifetime dependency

| | actor sphere

Figure 1: Termination dependencies of an example program

Each object is created as an instance of a class describ-
ing component, called generator and has a declaration and a
possibly empty statement part. The declaration part might
contain declarations of local objects, methods or nested gen-
erators. The statement part can be compared with a con-
structor in common objectoriented languages. An object
can only be used through one of its methods.

Another important feature is the principle of nesting
which is well known from languages such as Ada or Pas-
cal. Nesting enables the programmer to specify wellstruc-
tured applications which is advantageous especially for big
applications. Based on the nesting of classes different de-
pendencies between objects are implicitly established.

Actors may cooperate in a client-server style by syn-

chronous method invocations or by using shared passive ob-
jects. Hence, we support message passing as well as shared
memory paradigm. The invocation of an actor method is
handled in the same way as a method invocation of a passive
object except that the caller and callee synchronize using op-
eration oriented rendezvous semantics. The caller is blocked
and has to wait for the callee to accept the request. When
the method returns both the caller and the callee continue
their computation in parallel.

The operation oriented rendezvous concept is the only
explicit synchronization mechanism available in our approach
since other low-level mechanisms like semaphores or bar-
riers are error prone and aggravate distributed program-
ming. Implicit start-synchronization takes place between
the generating actor and a newly generated actor. At start-
synchronization a coherence event happens to asserts that a
newly created actor has the same view on memory as its cre-
ator at the time of creation. Stop-synchronization is also an
implicit synchronization and occurs between a terminated
actor and its creator. The coherence event connected to
stop-synchronization asserts that all memory modifications
done by an actor are visible by its creator after termina-
tion. Between synchronization points two actors sharing a
passive object cannot make any assumptions about the or-
der of operations performed on the object. This allows the
delay of write operations and update of existing copies to
synchronization events and changes the semantics of update
operations since they do not have immediate effect.

4 System Structures

In this section we describe the system structures which de-
scribe dependencies between active and passive objects that
are implicitly determined by the programmer. These de-
pendencies can be exploited as described in later sections to
make memory management more efficient.

The nesting of generators and objects implies a relation
between objects called definition dependency. An object O
is definition dependent on object P — §(O, P) < the gener-
ator for O is contained in the declaration part of P.

Along with the creation of a new actor B by an actor
A, a new flow of control is established that executes the
statement part of B in parallel to the computation of A.
This relationship is recorded in the 7 relation. An object B
operates in parallel to object A — w(B, A) & B is an actor
and was created by A.

To describe the communication dependencies between
actors that synchronize with rendezvous semantics as de-
scribed in section 3 we introduce the k relation. An actor
A communicates with an actor B — k(A, B) < A requests a
service from B, B has accepted the service and both, A and
B are synchronized to perform the requested service.

We call an object O local to an object P — A(O, P) < O
is a named object and is declared in the declaration part of
P.

The dependency between an anonymous object and the
location of its generator is expressed by the <y relation. An
object O is v — dependent on object P — v(0, P) < O is an
anonymous object and P is the location where the generator
that is needed to create pointers to O is declared.

Combining the A and v relation we can define the termi-
nation dependency already described in section 3. An object
O is called termination dependent on object P — ¢(O, P) <
A(O, P) and O is a named object or v(O, P) and O is an
anonymous object.

5 BOPS Concepts and Design

To provide distributed memory management functionality
for units of flexible and dynamic granularity the concept of
object clusters is introduced. An object cluster comprises
the working set of an actor. All objects accessed while exe-
cuting the statement part of an actor or subprograms called
by this actor must be within its object cluster at the time of
access. In this paper the word object denotes a compound of
virtual addresses. Objects are oriented to application needs
and may vary over the time. Programmer defined encap-
sulated data structures are called application objects. Each
path of execution i.e. each actor has its own object cluster.
As shown in figure 2 virtual addresses are bound to a set
of objects O by a function vo; : VA — 2°. The function
oct : O — OC, binds objects to object clusters where OC is
the set of object clusters. All these function are dependent

virtual addresses (VA)

voy

objects (O)

ocy

object clusters (OC)

11 i1

actors O O

Figure 2: Building of object clusters

on time and are specific to a single actor. The clustering is
achieved by the integrated management of the distributed
system through static analysis done by the compiler and dy-
namic analysis done by the runtime system which observes
memory access to enrich the information used for future
management decisions. The assignment of virtual addresses
to objects to object clusters may change dynamically during
program execution according to changing access patterns. A
virtual address can be bound to one or more objects at a
given time whereas an object belongs to exactly one object
cluster. An object clusters is a possibly empty set of objects.

Object clusters are introduced to reduce communication
in the distributed system. On object cluster fault, which
is triggered whenever an actor tries to access an object O
not available on the local node IV;, the memory management
locates the node N; running the actor belonging to the same
actor sphere as O. BOPS asserts that all objects belonging
to an actor sphere are available on the node running the
connected actor. This node sends not only the object that
caused the object cluster fault but the values of all virtual
addresses belonging to the object cluster that are available
on N; but not on N;. In addition to reducing the number
of messages the prefetching characteristics will decrease the
number of object cluster faults.

To obtain a maximum degree of concurrency and reduce
communication we allow multiple copies of objects with read
and write access. All modifications to objects within an

object cluster are recorded and propagated on object cluster
release events.

This raises the question, when are object clusters re-
leased. It can be answered by looking at the implicit and
explicit synchronization concepts as described in section 3.
The memory management has to assert the coherence events
linked with start-, stop- and rendezvous-synchronization.
Thus all pending modifications done by an actor must be
propagated when a new actor is forked or when an actor
terminates. Likewise all pending modifications done by the
caller have to be propagated on rendezvous-synchronization
and the modifications of the callee when the called method
returns. Because transitive dependencies may exist between
different callers it is not enough to propagate pending caller
modifications to the callee. By the return from the syn-
chronizing method the modifications of both, the caller and
the callee must also be distributed among the other nodes
in the distributed system. The propagation of modifications
can be delayed for start- and stop-synchronization if the cre-
ating and created resp. terminating and joining actor run on
the same node. Only if an actor is forked on a remote host
the changes done by its m predecessors running on the local
host in the 7 predecessor chain down to the the first one
not running locally need to be distributed. This delay has
no impact on the semantics of start-synchronization. Like-
wise the propagation triggered by stop-synchronization can
be delayed if the joining 7 predecessor and the terminating
actor are located on the same host.

Changing application requirements force the adaption of
the functions vo; and oc;. To enlarge object clusters by
adding objects or objects by adding virtual addresses noth-
ing special has to be done except the adaption of the func-
tions vo and oc. In contrast to the extension the reduction of
an object cluster resp. object is more complicated. Both the
functions vo and oc are changed and the memory manage-
ment has to remember modified removed objects resp. vir-
tual addresses until the next object cluster release. The
termination of an actor is combined with the reduction of
its object cluster to the empty set.

6 Implementation

In this section some implementation issues of the BOPS con-
cepts are discussed. The hardware configuration chosen for
the implementation consists of 14 SUN UltraSparc 1 work-
stations, that are interconnected via a 100MBit/s Fast Eth-
ernet and run Linux (UltraPenguin-1.1.9 distribution). The
use of Linux allows us to modify the kernel where necessary
and even implement the kernel related parts of BOPS as a
module.

The implementation of BOPS is based on the impera-
tive, object-based and type-save programming language IN-
SEL (Integration and Separation Language) [Win96] which
is derived form the concepts described in section 3. An IN-
SEL compiler called gic has been implemented by adapting
the GNU C compiler gcc [Piz97]. The structural relation-
ships between INSEL objects are automatically managed
by gic generated code as part of the runtime system. For
example displays, which are normally used for compiling
programming languages that allow the nesting of functions,
have been expanded by host-identifiers. This additional field
makes it possible to find the hosts running the ¢ predeces-
sors. To implement BOPS the compiler analysis and code
generation is enhanced by object cluster management. In
addition code to call functions executing object cluster re-
leases and the maintenance of pending write accesses is gen-

erated.

For network communication between the hosts of the dis-
tributed system we use the TCP/IP protocol stack since it
is reliable and available.

To gain efficient memory management the hardware sup-
port provided by the page fault mechanism is exploited by
BOPS. The functions vo; and oc; as described in section
5 imply an assignment between object clusters and virtual
memory pages. If a virtual address v € VA belongs to an
object o € O which belongs to an object cluster ¢ € OC' the
virtual memory page p € V P, v belongs to, is assigned to ¢
by the function pc; : VP — OC. This is shown in figure 3.

virtual memory pages (VP)

virtual addresses (VA)
|
Vi
f’t
0Ct
|
object clusters (OC)

Figure 3: Object clusters and memory pages

Associated with each host is a pending write queue which
keeps track of pages altered by local actors. The queue is
needed on object cluster synchronization events. All mod-
ifications to pages listed in both, the queue and the object
cluster of the releasing actor are propagated to nodes hold-
ing a copy and deleted from the pending write queue.

To find the owner of a page the concept of home nodes
is introduced. If a host needs a copy of a page it always
applies to the home node. At each point in time a virtual
memory page has exactly one home node which owns that
page and keeps track of nodes holding copies. To assert the
uniqueness of the node owning a page some restrictions to
the memory layout must be taken into account. These are
described for named and anonymous objects below. The
home node is not only useful to get a copy of a page but
also consulted by an actor when releasing an object cluster
to find hosts holding a copy.

The home node of pages containing named objects is the
node running the actor this object is termination dependent
on. To ensure the uniqueness of home nodes, named objects
belonging to different actor spheres may not share the same
memory pages. This is not a hard restriction and can easily
be satisfied by assigning each actor its own amount of mem-
ory pages. All objects which are termination dependent on
this actor are realized using those pages. To find the ac-
tor sphere and thus the home node of the pages a named
object O belongs to, the A and ¢ relations as described in
section 4 are used. Assuming an actor A tries to access a
named object O, O must be either a local object of A or
a non-local object belonging to one of the § predecessors of
A. If O would be not local to A and not local to any of A’s
predecessors, O would not be in the scope of A. If O is local
to A it must be present on the node running A since this

would be the home node of O’s virtual memory page(s). If
O is not local to A we can find the owner by following the
¢ relation chain to find the youngest incarnation of an actor
A" with €(O,A") = X\(0O, A"). The node running A’ must be
the home node of the page(s) belonging to O.

The home node of pages containing anonymous objects
can be determined using the v relation. The uniqueness of
the home node of virtual memory pages belonging to anony-
mous or named objects requires that anonymous and named
objects are never mixed on the same pages. This is no severe
restriction since anonymous objects are located on the heap
and named object on the stack. Thus we only have to claim
that anonymous objects which are instances of generators
belonging to different actor spheres must not be located on
the same pages. This can easily be enforced by the memory
management since it is responsible for the allocation and
mapping of memory for anonymous objects. The method to
find the node running the actor an anonymous object P be-
longs to is analogous to the one described above for named
objects. P is only usable for an actor A if the generator for
P islocal to an actor A’ and A’ is a § predecessor of A. So A
only has to follow the chain of § relations down to the actor
A" with y(P, A"). The host running A’ is the home node of
P.

To obtain a maximum degree of concurrency and reduce
communication we allow multiple copies of pages with read
and write access. Initially shared memory pages are write-
protected. When an actor tries a write access to an object
located on a protected page, write-protection is removed,
a local copy(twin) is made and an entry is added to the
pending write queue. This twin is later used to create a
diff, which describes the local modifications of that page.
This is forced when an object cluster is released and the
distribution of modification cannot be delayed (cf. section
5). BOPS performs a word-by-word comparison of all pages
entered in both, the pending write queue and the object
cluster and their twins. Using the diffs, other hosts are
able to reproduce the local changes and update their pages
accordingly.

The existing page-fault mechanism is used to trigger an
object cluster fault when a hardware page belonging to that
cluster is missing. The page-fault is handled by the kernel
and not handed on to a user level signal handler. It resolves
the problem by locating the home node of the page and
demanding a copy of that page resp. all locally not avail-
able pages belonging to the object cluster according to the
function pc;. The home node adds entries to the copysets
of the locally owned pages and sends their contents to the
demanding host. In addition to reducing the number of
messages the prefetching characteristics induced by object
clusters will decrease the number of object cluster faults.

The multiple writer protocol has the disadvantage of
needing twice the amount of memory for modified pages.
If there is no more local RAM for creating a twin, the oper-
ating system may force the release of pages recorded in the
pending write queue to free the space needed by copies of
pages participating in these clusters.

7 Performance Analysis

This section compares BOPS to page-based and object-based
systems. Since the implementation is not yet finished we are
not able to present any measurements.

As described in [LDCZ97] low performance of DSM sys-
tems compared to PVM is mainly caused by additional com-
munication costs. More messages and more data are sent be-

cause of the separation of synchronization and data transfer,
extra messages to handle access misses caused by invalida-
tions, false sharing and diff accumulation.

To reduce the number of messages and improve perfor-
mance, BOPS does not only transfer a single page at a time
but all available pages belonging to the working set of an
actor. This enlargement of messages has hardly any nega-
tive effects on performance, because in typical networks of
workstations, sending large data packages is not much more
expensive then sending small ones [LH89] mainly due to the
software protocols. As a side effect future page-faults are
prevented. In contrast to the idea of transferring more than
one adjacent pages at a time we analyze the applications
access patterns and aggregate the pages accordingly.

Experiments with software DSMs releasing the consis-
tency model and modifying coherence granularity [ZIST97]
show that two combinations generally do a good job. The
sequential consistency protocol and fine granularity units of
sharing or the multiple writer protocol with coarse grain co-
herence units perform good for most applications. Because
commodity workstations offer no hardware access control on
a fine-grained basis we decided to choose the multiple writer
approach.

In contrast to object-based DSMs we use the page-fault
mechanism and therefore have no additional overhead when
locally mapped memory is accessed. Object granularity is
not oriented on application objects but on current appli-
cation needs and adapts continuously over the time. For
example, if the application object is a matrix A and every
thread of a distributed algorithm works on a single line, each
A;e can be made up in one object cluster ¢;.

If we modify our approach to have exactly one page
bound to an object cluster for each point in time, BOPS
would correspond to a page-based DSM resulting in a loss
of the prefetching characteristic usually achieved by the clus-
tering.

BOPS exploits structural dependencies to find the owner
of a memory page very efficiently in contrast to alternative
approaches. For example doing a broadcast interrupts each
processor, using a centralized-server has the effect of serial-
izing queries, reducing parallelism and being a single point
of failure. The probable owner algorithm may send n — 1
messages in the worst case if there are altogether n nodes in
the distributed system.

The programming model proposed in section 5 allows
to defer a huge amount of object cluster releases to further
reduce the amount of messages.

8 Conclusion

In this paper we presented the distributed memory man-
agement BOPS based on a distributed system architecture
featured by an object-based, top-down driven and language-
based approach combined with structuring facilities. The
desired efficiency is attained with BOPS by dynamic and
alterable determination of memory management units ac-
cording to the working set of activities. Although BOPS
manages clusters of any size, efficiency is reached by ex-
ploiting the page-based faulting mechanism provided by the
hardware instead of choosing an all in software implemen-
tation. Implicit structural dependencies resulting from our
language-based approach are exploited for an efficient local-
ization of page owners.

According to [ZIS197] the multiple writer protocol does
not work well when synchronization frequency of applica-
tions is high. Thus we intend to enlarge the flexibility pro-

vided by BOPS. In addition to the dynamic and flexible de-
termination of object clusters we will enable dynamic choos-
ing of coherence protocols conform with application needs.
Beside the multiple writer, a single writer protocol will be
implemented and the compiler will be enhance to decide be-
tween an invalidate or update strategy.

In a second project we are investigating distributed load
balancing techniques. The impacts of load management on
memory management and vice versa will influence further
development of BOPS.

References

[ACD"96] Cristiana Amza, Alan L. Cox, Sandhya
Dwarkadas, Pete Keleher, Honghui Lu, Ra-
makrishnan Rajamony, Weimin Yu, and Willy
Zwaenepoel. TreadMarks: shared memory com-
puting on networks of workstations. Computer,
29(2):18-28, February 1996.

Bal94 Henri E. Bal. Report on the programming lan-
g g

guage Orca. Technical report, Dept. of Mathe-

matics and Computer Science, Vrije Universiteit

Amsterdam, 1994.

B. Buck and P. Keleher. Locality and perfor-
mance of page- and object-based DSMs. In Proc.
of the First Merged Symp. IPPS/SPDP 1998),
pages 687-693, March 1998.

[BKOS]

[BL92] Ralph M. Butler and Ewing L. Lusk. Moni-
tors, Messages, and Clusters: the p4 Parallel
Programming System. Technical report, Mathe-
matics and Computer Science division, Argonne

National Laboratory, Argonne, Illinnois, 1992.

[BS93] W. J. Bolosky and Michael L. Scott. False shar-
ing and its effect on shared memory performance.
Proc., Fourth Symp. on Ezperiences with Dis-
tributed and Multiprocessor Systems (SEDMS),

September 1993.

[BZS93] Brian N. Bershad, Matthew J. Zekauskas, and
Wayne A. Sawdon. The Midway Distributed
Shared Memory System. In Proceedings of the

IEEE CompCon Conference, 1993.

[FHJ94] B. D. Fleisch, R. L. Hyde, and N. C. Juul.
MIRAGE+: A Kernel Implementation of Dis-
tributed Shared Memory on a Network of Per-
sonal Computers. Software—Practice and Ezpe-

rience, 24(10):887-909, October 1994.

[GBD"94] Al Geist, Adam Beguelin, Jack Dongarra, We-
icheng Jiang, Robert Manchek, and Vaidy Sun-
deram. PVM 3 user’s guide and reference man-
ual. Technical report, Engineering Physics and
Mathematics Division, Oak Ridge Laboratory,
Oak Ridge, Tennessee, September 1994.

[GPR97] S. Groh, M. Pizka, and J. Rudolph. Shadow-
stacks — a hardware-supported dsm for objects of
any granularity. In A. Goscinski, M. Hobbs, and
W. Zhou, editors, 1997 8rd International Confer-
ence on Algorithms And Architectures for Paral-
lel Processing (ICA3PP’97), pages 225-238, dec

97.

[LDCZ97] H. Lu,

[LHS9)

[Li86]

[Lu95]

[PE97]

[Pead6]

[Piz97]

[Win96]

[ZIS197]

S. Dwarkadas, A. L. Cox, and
W. Zwaenepoel. Quantifying the performance
differences between pvm and treadmarks. Jour-
nal of Parallel and Distributed Computing,
43(2):65-78, June 1997.

Kai Li and Paul Hudak. Memory Coherence
in Shared Virtual Memory Systems. ACM
Transactions on Computer Systems, 7(4):321-
359, November 1989.

Kai Li. Shared Virtual Memory on Loosely
Coupled Multiprocessors. Dissertation, Depart-
ment of Computer Science, Yale University, New
Haven, CT, October 1986.

H. Lu. Message-Passing vs. Distributed Shared
Memory on Networks of Workstations. Master’s
thesis, Department of Computer Science, Rice
University, May 1995.

M. Pizka and C. Eckert. A language-based
approach to construct structured and efficient
object-based distributed systems. In Proc. of
the 30th Hawaii Int. Conf. on System Sciences,
volume 1, pages 130-139, Maui, Hawai, January
1997. IEEE CS Press.

A. N. Pears. Odin: Implications and Perfor-
mance of a Novel DSM Design. In 11th Int’l
Conf. on Systems Engineering (ICSE’96), Jan-
uary 1996.

Markus Pizka. Design and implementation of the
gnu insel-compiler gic. Technical Report TUM-
19713, Institut fiir Informatik Technische Univer-
sitdt Miinchen, April 1997.

H.-M. Windisch. The Distributed Programming
Language INSEL - Concepts and Implementa-
tion. In High-Level Programming Models and
Supportive Environments HIPS’96, 1996.

Yuanyuan Zhou, Liviu Iftode, Jaswinder Pal
Singh, Kal Li, Brian R. Toonen, Ioannis
Schoinas, Mark D. Hill, and David A. Wood.
Relaxed consistency and coherence granularity
in DSM systems: A performance evaluation.
In Proceedings of the ACM SIGPLAN Sympo-
stum on Principles and Practice od Parallel Pro-
gramming (PPOPP-97), volume 32, 7 of ACM
SIGPLAN Notices, pages 193-205, New York,
June 18-21 1997. ACM Press.

