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Abstract

This reports motivates and explains concepts developed in the project MoDiS to
organize large virtual address spaces comprising �ne�grain concurrent computations
in parallel and distributed environments� The single distributed address space is
adaptively partitioned by a dynamic set of cooperating managers� The partitioning
scheme is decentralized and scales with growing system con�gurations� De�ciencies
as known from centralized or static organizations are prevented� In contrast to
common operating systems� thoughts have also been given to possible thread stack
and heap over�ows and collisions� Both stacks and heaps associated with a thread
are realized non�contiguously with linear stack and heap segments to enable the
desired exploitation of the possibly large virtual address space� Distribution of
data is coupled with garbage collection and based on objects instead of pages while
still making use of the hardware faulting mechanism� Implementation is based on
�o� the shelf� hardware components� Crucial for the e�ciency of this approach is a
thorough top�down oriented construction of all operating system entities comprising
the compiler and libraries as well as the kernel�
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Observations

��� Unsatisfying Operating System Technology

The acceptance of distributed and parallel� processing techniques in practice lacks
far behind the expectations associated with the tremendous computing power pro�
vided by ubiquitous high�speed interconnected workstations� This is mostly due to
a comparable rate of complexity coming along with it� Such platforms tend to either
burden the programmer with additional concepts and their e�ects� or demand load
and memory management tasks from the resource management system that are
hard to ful�ll� Hence� to correct this situation� development of distributed systems
has to be simpli�ed with amongst others adequate programming concepts� Addi�
tionally� new methods for automated yet e�cient application transparent resource
management have to be emerged�

De�nition	 � 
Purpose of an Operating System�
The purpose of an OS is to release the application level from di�cult� repetitive� or
� due to rights � impossible tasks which can be performed without signi�cant losses
transparently by the system�

History of operating systems �OS� shows that management tasks are handled at
the application level only as long� as powerful OS solutions are missing� For ex�
ample� early overlay techniques �Flo��� for computers with small main memories
have been replaced with OS and hardware support for large virtual address spaces
�VA� combined with paging� Similar OS shortcomings can nowadays be observed
in distributed and parallel environments re�ected in application�integrated resource
management decisions� In fact� on parallel or even distributed platforms OS tech�
nology drastically fails to comply with its objective target as stated in de�nition 	�
In such environments� applications still have to handle many resources by them�
selves e�g� perform load balancing or special handling of sharable memory regions
in case of distributed shared memory �DSM��
Undoubted� memory management as a fundamental task of an OS should be

performed completely transparent to the application level� This obvious statement
is often violated because of the cost to integrate functionality supporting parallelism
and distribution into all management instances including the compiler� runtime sys�
tem� and the kernel� Overcoming this de�cit is a milestone of major importance for
the transition form centralized and sequential to distributed and parallel processing�

Outline Section 	�� sketches the impact of several hot topics in OS technology
on memory management� In 	�
 the de�ciencies revealed are brie�y compared with
methods used in existing systems followed by a description of the system model
underlying the work presented in this paper in ��	� Fundamentals of the adaptive
distributed OS architecture and considerations concerning its implementation are
found in ��	�� � ��	�
� Sections ��
 and 
 detail the techniques developed for
e�cient single address space management while focusing on distributed partitioning
and changes in stack and heap organization� Information about the approach taken
to incorporate DSM and garbage collection functionality is given in �� This paper
concludes with information on the current state of the project and summarizing
results in section ��

�Throughout this paper concurrency and parallelism are used as synonyms
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��� New Features and New Flaws

Multi�tasking OS usually provide separate address spaces for processes� In order to
share data amongst processes� IPC interfaces such as shared mappings� signals� or
sockets along with error prone techniques like pointer swizzling have to be used� Of
course� tight coupling of processes needed for cooperative parallel algorithms can
not be achieved this way without considerable overhead�
By employing one large address space for all processes as supported by modern

�bit architectures this and other problems can be evaded� Each memory object is
identi�ed with its unique memory address instead of separately maintained object
identi�ers� Therefore� object accesses are uniform and can be performed e�ciently�
Using virtual addresses as globally unique identi�ers seems to be extremely

helpful especially in distributed environments because it simpli�es naming� sharing�
and migration� as well as it eases the enforcement of persistence for distributed
objects�

����� Multi�Threading and Over�ows
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Figure 	�	� Single and multi�threaded VA partitioning

Usually the VA is divided into partitions as sketched on the left hand side in �g�
ure 	�	� Besides static code segments� one stack and one heap grow and shrink in
opposite directions� A collision of stack and heap implies that no more free virtual
addresses are available and an irreparable error state has been reached� In reality�
exhausted physical memory or shared libraries mapped somewhere in between stack
and heap will cause faults in advance� This situation is usually accepted although
it decreases reliability� because only one computation is directly a�ected�
In parallel systems with multiple threads executing in one VA� each thread re�

ceives a dedicated stack� Unfortunately� multi�threading is a typical example for a
bottom�up constructed and weakly integrated concept� It is provided to the appli�
cation level with hardly any further support by the memory management system�
The right hand side of �gure 	�	 illustrates a new severe problem� Thread stacks
eventually collide� although the VA is not close to be exhausted� In single address
space systems� malfunctions of this kind might a�ect many independent applica�
tions making such approaches insu�cient reliable� As a matter of fact� this problem
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���� New Features and New Flaws

stays unsolved in all thread implementations known by the author� Some libraries
allow the de�nition of custom stack sizes if the default size �varying from 	k to 	M
depending on the implementation� does not seem to be su�cient� Of course� this
shifts the problem to the programmer contradicting the goal of simplicity and even
worse� is no solution in case of recursion or incremental extensibility� In general�
neither stack size demands nor the number of threads is statically predictable�

����� Extensible Systems

Currently� a broad spectrum of research activities e�g� �vDHT��� investigates meth�
ods to dynamically construct complex systems aiming at enhanced adaptability with
higher quality� less e�ort and better performance� Architectural changes in this di�
rection decrease the possibilities of static analyzes and therefore impose further
restrictions � also on memory management techniques� For example� as discussed
in newsgroups� static prediction of stack sizes becomes nearly impossible�

� Date� � Mar ���� �������� GMT

� Nice idea 			 but 			

�

� What about using function pointers where you don
t

� know where your function is �in this case I guess the

� max stack requirement for any function will do� or

� runtime linking where you can
t know the stack

� requirements for the code because it might not have

� even been written yet 			

Executable code must also be placed in dynamically growing and shrinking par�
titions preferably without programmer intervention� creating further sources for
over�ows and collisions�

����� Distributing the Virtual Address Space

Distributed systems developer tend to statically bind node information to virtual
address ranges� by using some high or low order bits as workstation identi�ers� Be�
sides the simpli�cation for locating objects this approach has several disadvantages�
For example� object migration requires costly pointer swizzling and the maximum
size for allocatable objects becomes unnecessarily restricted� Hence� binding loca�
tion information on this level of abstraction opposes the intentions of the single
address space concept�

����� Mapping Virtual Memory to Nodes

Mapping to nodes refers to the question how virtual addresses are assigned to work�
stations in the cluster if not already determined by hardware�related static parti�
tioning� Providing the abstraction of a distributed shared memory �DSM� �Li��
seems to be a promising approach to exploit distributed storage facilities with ex�
isting programming paradigms� In reality� DSM systems su�er from two drawbacks�

First� most DSM implementations do not provide the desired level of trans�
parency� Programmers have to cope with new concepts such as allocating and
freeing sharable segments� In addition to this� handling dynamic data structures
within shared segments is most times up to the programmer due to a lack of combi�
nation with dynamic storage allocation techniques� As a consequence� transparency
of access is missing and applicability is limited�

Second� DSM systems often only provide poor performance� Bottom�up con�
structed DSM systems are oriented on hardware properties usually employing a

�
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number of hardware as management unit� Pages are huge compared to the gran�
ularity of application�level objects� such as integers� This inadequacy leads to the
e�ect of false sharing � resulting in a strong performance degradation for a wide
range of applications� In contrast to this� object�based DSM systems allow individ�
ual handling of application objects but are often realized �all in software� producing
high constant costs for runtime management� As DSM is still a hot topic in dis�
tributed processing several important issues have not yet been investigated such as
advanced replication control �PT��� in DSM environments� or selective creation and
elimination of replicates to support long term running systems�

����� Requirements and Goals

The di�culties revealed and additional experiences such as with dangling pointers
are summarized in following incomplete� list of requirements�

	� Simple and safe application programming interface�

�a� Automatic collection of unused objects �garbage��

�b� Support for concurrent light�weight activities within one VA�

�c� Uniform and location transparent creation and access to objects�

�d� No distinct limitations on the amount and size of allocatable objects
besides the size of the VA and existing physical resources�

�� Time and space e�cient automatic management�

�a� No distinct constant performance deterioration�

�b� Scalability with growing con�gurations�

�c� Adaptive management of heap� stack and code�

�d� Exploitation of existing hardware features�

�e� Fast remote accesses to objects of any granularity�

Each item of this list has numerous consequences� For example� �a drives opti�
mization of local processing to avoid overhead relative to sequential systems� Be�
cause of �b� defacto improvements should be noticed if additional resources are
consumed� Furthermore� �b necessitates decentralization of shared data structures
and elimination of synchronization as far as possible which in turn requires sophis�
ticated protocols� partitioning algorithms� et cetera� Item �c addresses transparent
solutions for over�ows and collisions� support for extensibility as well as allowing
for thread migration including data and code� This explosion of limitations and
requirements points out� that respecting all of these items is probably only possible
in a top�down oriented approach�
The goal of the work presented in this paper� is to develop memory management

methods as part of a distributed OS guided by de�nition 	 and the requirements
listed above� This distinguishes it from equally important work where details such
as di�erent coherence protocols �TF��� are investigated�

��� Related Work

In fact� hardware supported paged segments as used in former OS like MULTICS
on Honeywell ��� machines �Tan��� would nowadays be helpful to e�ciently solve
some of the problems mentioned� Thread stacks� heaps and extensible code frag�
ments could be placed in separate segments without the danger of collisions� After

�Of course� items such as protection would have to be added�





���� Related Work

years of predominant sequential processes with private VA these features are miss�
ing�

Stacks Concurrent Oberon �ARD��� for example substitutes segments with com�
piler inlined stack checking code and a prede�ned limit of 	��k for the stack of
each �Active Object�� Over�ows below the limit are detected and corrected with
additional allocations� Linearity is preserved and consumption of physical memory
is adaptive� Unweakened linearity of stack spaces on the other hand� disables the
exploitation of the whole VA for larger stacks� In other words� OS supported stack
adaption is limited and demands may only vary within narrow boundaries�
Using restricted pages at the end of the stack for the detection of over�ows com�

bined with deferred mapping as for example in Solaris �Sun��� is fast� compatible�
and mostly independent from the compiler� While detection is cheap� correction
may be extremely di�cult� Over�ows stay undetected as long as objects located on
the restricted page are untouched� although other objects of the same frame or even
their addresses are used� At the time of detection� registers and objects may have to
be examined globally along with pointer swizzling in order to correct the over�ow�
Hence� avoidance or early detection should be preferred instead of late correction�
Compiler�based approaches as for example dynamic stack probing implemented in
gcc �Sta���� also su�er from late detection�
In �HL�
� problems of maintaining multiple stacks are described� The proposed

solution is to implement the conceptual cactus stack as a per processormeshed stack�
Although this technique is an improvement it also requires expensive garbage collec�
tion of activation records within the meshed stack and obstacles hardware enforced
protection�
The technique presented in this paper is based on dynamically extending and split�
ting stacks which provides similar space but superior time e�ciency�

Memory Allocators W�Gloger�s ptmalloc �Glo��� implements a parallel mem�
ory allocator based on POSIX threads �IEE���� Lock contention is reduced by em�
ploying multiple heaps with separate locks� Performance improvements of nearly
factor 
 on Solaris�Sparc are the bene�t� Unfortunately� application�speci�c prop�
erties are ignored� Objects are placed on the �rst currently unlocked heap� Hence�
consecutively allocated objects become scattered through the VA which has negative
e�ects on locality of reference and fragmentation�
The memory allocator Mmalloc �Hae� supports multiple dedicated heaps within

one VA� Each heap grows and shrinks separately using the system call mmap but
has to be linear� Similar to stacks� linearity restricts dynamic adaption and full
exploitation of the VA as only over�ows can be solved� Collisions are only detected�

Garbage Collection Extensive work has been performed in the context of
memory allocation strategies and garbage collection �GC� in uniprocessor envi�
ronments �Wil��� ea���� Furthermore� a comprehensive comparison of distributed
GC methods based on extensions of centralized algorithms such as weighted refer�
ences �Cor�	� as well as new distributed shared stores allowing for fault tolerance and
replication is given in �PS���� It leads to the conclusion� that integrated solutions
are superior to layering� hierarchical methods providing locality are mandatory� and
most of all� distributed GC is still unsatisfactory� For example the language�based
software DSM LEMMA �ML��� for ML �HMT��� uses global and local two�space
GC� Although it provides �useful speed�ups� it is also recognized� that �there is
considerable work to be done in a number of areas�� With a tight coupling of pro�
gramming model� GC� and object distribution� we expect the ability to reduce the
cumulative overhead for distributed memory management�

�
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DSM Li�s Ivy system �Li�� was the �rst implementation of a page�based DSM�
Since then� variations of this idea with weakened forms of consistency and
other improvements were developed in projects such as Quarks �SSC��� or Tread�
Marks �ea�b�� Although most of these projects provided technological progress�
they all su�er from being based on page sizes and using one uniform coherence
protocol at once for all managed objects� The consequences are false sharing and
ine�cient protocols for a large number of objects� These problems are partially cir�
cumvented in software�based DSM systems such as Midway �BZS�
�� CRL �JKW���
and Munin �Car���� But especially the latter fails to provide simplicity and trans�
parency� In �Car��� the situation of DSM systems after almost 	� years of research
is characterized as �very little real world impact�� It is stated� that the reasons
are either �pretty lousy� performance or inapplicability because of signi�cant user
input� Future DSM research will focus on support for distributed services and wide
area applications in less speci�c contexts� We argue� that this in turn prerequisites
seamless integration of DSM features into distributed OS architectures�

Single Address Spaces and Protection The question of how to de�ne and en�
force protection in a single address space has been investigated in numerous projects
such as Mungi and Opal �Elp�
� CLBHL�
�� An overview and comparison of these
approaches amongst others can be found in �ea�a�� Commercial processor designs
slowly start to incorporate support for advanced protection in a large address space�
For example� SUN provides TLB� supported clustering of pages to page contexts
with its V� architecture� Unfortunately� there are no means to hierarchically struc�
ture page contexts� yet�

�Table Lookaside Bu�er

�
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��� Basics of the Project MoDiS

In MoDiS �Model oriented Distributed Systems� �EW��b� EW��a� a top�down
driven and language�based approach is followed to systematically develop e�cient
yet simple to use concepts� Homogeneous and distribution transparent language
concepts allow the development of parallel algorithms with varying degrees of par�
allelism� granularity� and cooperation� Objects representing new functionality �es�
pecially applications� dynamically extend the running system� forming a globally
structured system encompassing applications and OS functionality�

����� Programming Model

INSEL �Win�� provides the grammar to the more formal MoDiS concepts� It is
a high�level� type�safe� imperative and object�based programming language with
explicit tasking parallelism� Encapsulated objects are dynamically created as in�
stances of class describing objects� called generators�� Generators can be nested
within other generators or instances and vice versa� Objects may either be active
�actors� or passive determined by the generator� Each actor de�nes a separate �ow
of control and performs its computation concurrently to its creator� Actors may
interact directly in a synchronous rendezvous �message passing� or mediately via
shared passive objects �shared memory��

Named objects are identi�ed by exactly one reference within a function or block
while anonymous objects are identi�ed by references which can be passed� dupli�
cated and deleted� No further pointer arithmetics are supported� All objects are
automatically deleted according to their conceptually de�ned lifetime �PE���� The
lifetime of an anonymous object depends on the lifetime of the generator for ref�
erences to this object� whereas named objects depend on the enclosing object or
method�

����� Scalable Operating System Architecture

To enforce transparent� scalable and adaptable distributed resource management�
we developed a re�ective management architecture �Gro�� GP���� Though orig�
inating in MoDiS� this architecture is also highly applicable in other parallel or
distributed systems� The key idea is to associate a manager with each �ow of
control on the conceptual level� In the context of INSEL� one actor and all its
termination dependent �PE��� passive objects are clustered to actor�contexts �AC��
Each AC is guided by exactly one manager� which has to satisfy all demands for
resources of its AC� Besides standard tasks such as allocating memory for the stack�
heap and code� a manager might also have to enforce coherence of replicates� initi�
ate migration� or enforce access restrictions� Con�icts� such as over�ows� concurrent
heap allocations� or processor allocation are solved by inter manager cooperation�
This management scheme is top�down oriented as it is constructed independently

from the physical hardware con�guration� Furthermore� it is scalable� because it
does not have a potential bottleneck and the number of managers corresponds to

�similar to type or class in common languages

�
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the number of actors� Adaption is assisted due to the close relation of management
with dynamically changing requirements of application�level objects�

����� Implementation Philosophy

Crucial for the e�ciency of this approach is a systematical realization of the concep�
tual managers� Prototypes on top of Mach �Win�� and HP�UX �Rad��� have shown�
that limiting the implementation to an adaption layer in an otherwise adopted en�
vironment does cause unacceptable disadvantages for the long term goal�
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local to nodes
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location transparent

manager implementation

non-privileged

decoupled 

dedicatedlinkercompiler

non-local

node-specific

(inlined)

(kernel)

(dist. libs)

(node libraries)

shared

Figure ��	� Instances used to implement managers

Based on these experiences� any software instance involved in resource manage�
ment is now regarded as implementing parts of managers� Figure ��	 illustrates typ�
ical di�erent possibilities� E�cient and �exible managers are constructed by tightly
integrating the capabilities of this framework by means of bidirectional information
interchange and coordination of actions� The distributed manager architecture with
this implementation concept leads to following rede�nition of the term �operating
system� in the context of MoDiS�

De�nition	 � 
Distributed Operating System�
The OS is the complete management of the distributed computing system� It consists
of cooperating process managers implemented by an integrated tool set�

The assignment of functionality to a certain instance e�g� dedicated �inlined� or
privileged �kernel� must be based on sound criteria� For example� realizing man�
ager functionality in the shared �functionality or data implementing more then one
manager� portion constructs �exible interpreting services while the utilization of de�
coupled techniques leads to more static production characteristics� Transition from
interpretation to compilation is soft without a strict separation between statics and
dynamics and management is regarded as continuous regulation�

��� Memory Management Subsystem

����� Architecture

Figure ��� provides an overview of the memory management subsystem� Note�
that the abstractions shown� represent conceptual levels in contrast to layers which
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would already imply a certain style of implementation� A horizontal marker sepa�
rates the distributed � location transparent � portion from the storage subsystem
on each workstation� The former splits up vertically into stack and heap down to
the level of segments� As sketched in this �gure� two orthogonal levels of distribu�
tion� First is the distribution coarse grain memory regions while the second is an
object�based DSM� migrating and replicating individual heap objects� This separa�
tion of distribution functionality instead of a uniform low level page transportation
layer is a prerequisite to develop mostly independent and in turn powerful strategies
for object sharing and VA partitioning� Each object placed on heap is a sharable
object per de�nition� If named objects are to be shared among distributed entities
they are transparently transformed into anonymous objects by the compiler� While
anonymous objects are mapped onto chunks and the object DSM� named objects
are mapped onto activation frames or registers� Similarly� memory regions are either
bound to node virtual memory or become dynamically distributed� These shortcuts
represent �exibility which is exploited by the OS to improve performance�

����� Node and Shared Partitions

Although the goal is to provide a single distributed address space it proofs to be
helpful to preserve some addresses for node�speci�c purposes� Objects only locally
referenced or low level data structures re�ecting the local state of a node� such
as kernel code� communication bu�ers� etc� are placed in the node partition� In�
terpretation of addresses in this range is node dependent� Among the advantages
are�

� No need for coordination� migration� or replication

� Fast address translation and object location

� Simpli�ed enforcement of protection

� Exploitation of hardware features �TLB lock� etc��

The major part of the address space is shared amongst all nodes with addresses
uniquely identifying objects� Figure ��
 indicates that the internal organization of
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� Memory layout

the system�wide shared and the local partition is identical� Both consist of ranges
used as stack or heap segments for actors performing concurrent computations�
Collisions or over�ows are transparently solved� In fact� each actor may allocate
memory in both partitions� The manager attribute node allocation� inherited
from the creator� determines the kind of allocation and can be changed with a
privileged system call� Usually� this feature is only used to satisfy management
requirements and is transparent to the application level�

Current state of the project still requires a UNIX host system� The dynamic
loader of the chosen host system Sparc�Solaris does not support initialization be�
fore shared library initialization� Therefore� some partitions of the address space
are preserved for the UNIX process environment� Start addresses and sizes of all
partitions are �x�

Based on this partitioning� the memory subsystem bootstraps as follows� First�
runtime data structures of boot AC managers are created and initialized within the
UNIX data section on all nodes� Afterwards� the boot ACs themselves and other
node�speci�c actors such as network communication handlers are created within the
node partition� Finally one boot AC becomes elected as the boot master� switches
to global allocation� and starts with the creation of distributed ACs�

��� Memory Regions

Virtual addresses are dynamically spread to ACs� Fur this purpose� both� the node
and the shared partition are internally structured into disjunct memory regions�

De�nition	 � 
virtual memory region�
A virtual memory region is a complete interval of virtual
addresses starting and ending on page boundaries�

Because the region concept mainly aims at overcoming the physical distribution
of workstations� this section will concentrate on the shared partition� Most of
the explanations also hold for the node partition� with the di�erence that network
communication has no impact�
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region�t region�get �pref�addr�min�size�direction�

void region�put �addr �size �

bool region�split�addr �size �

bool region�merge�addr� �addr��

Figure ���� Region interface

The dedicated runtime portion of an AC manager calls get and put of its shared
portion to dynamically allocate and free regions� The arguments of get specify
a preferred starting address� the minimum required size� and positive or negative
orientation to pass information about the intended usage of regions as heap or stack
space for a certain AC� Split and coalescence �merge� of regions are prerequisites
to keep fragmentation under control� Internal versus external fragmentation is
dynamically tunable� First� the preferred address and the minimum size are only
guidelines instead of accurate values� And second� preferred continuous allocations
as a consequence of stack and heap growth are anticipated�

����� Distribution Concept

Distribution of the VA has to be scalable to support growing hardware con�gura�
tions as well as dynamic software systems consisting of parallel computations with
varying quantity and granularity� Scalability in general� is based on decentralization
to circumvent bottlenecks and the reduction of synchronization� An eligible method
should also meet diverging requirements of applications by exploiting application�
level knowledge as far as possible� Furthermore� ancillary conditions resulting from
the requirements listed in 	���� must be respected� For example� addresses of shared
objects should not be used to code e�g� workstation identi�ers�
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Figure ���� Distribution Strategy

According to the general top�down orientation� the management model intro�
duced in section ��	�� with its structure of termination dependent actors is used to
split the task of VA distribution among the AC managers as shown in �gure ���� At
�rst� the complete range of addresses is assigned to manager a of the root AC A� In
the path of computation� new ACs are created� Each AC is provided with regions
for autonomous use by its creator� If this initial provision proofs to be insu�cient
at a certain point of execution� additional regions are dynamically requested by
either asking the father within the termination dependency ��� i�e the creator� or
reclaiming regions formerly delegated to children� At the time of termination� each
AC returns its regions back to its creator�
Obviously� this high�level strategy provides scalability and adaptability� It also

allows to exploit the complete VA with little external fragmentation because the
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recursive style of cooperation allows to retrieve available regions globally� For ex�
ample� requests of c are satis�ed with regions retrieved from f if necessary�

����� Implementation Based on Resource Pools

The main characteristics of this high�level scheme are intense and cascading coop�
eration among managers whereas their number is large compared to workstations�
Straight�forward implementations with chains of signals or even network messages
would deliver unacceptable performance� The strategy to forward regions to sons
has to cope with large numbers of small regions� if many light�weight actors are
forked� as well as just a few but extremely large regions in case of recursion� But in
general� neither source analyzes nor runtime monitoring could provide the informa�
tion needed to steer a suitable policy with little tolerance considering limited local
resources� Though� the resource competed for � unallocated virtual address inter�
vals� is available in abundance �considering � bits� � somewhere in the system�
Analogical to strategy and mechanism� these problems are solved by thoroughly

separating levels of abstraction and connecting methods on di�erent levels via sound
mappings�
The characteristics depicted indicate� that region distribution belongs to a typ�

ical management task class where reducing low�level communication by means of
group communication is crucial� Because dynamic grouping based on the node of
execution provides a natural way to reduce network messages� manager tasks of
this class are mapped onto node resource pools � Notice� cooperation is in no way
limited to exchanging messages� E�g� shared data is a technique to implement high
bandwidth cooperation�
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Figure ��� Regions implemented with node pools

As shown in �gure ��� each node maintains an own dynamic pool of regions
encapsulated in the region allocator � Each pool is provided at system startup by
the boot master� The region allocator is tailored to the speci�c properties of regions
such as page aligned� just a few di�erent sizes� and double�ended stack alike han�
dling� Each AC gets�returns regions directly from�to the region allocator where it is
executing� To further avoid communication� regions may be allocated and returned
on di�erent nodes in case of migration �e�g� A allocated on node � and returns on

�� These may lead to a certain degree of additional external fragmentation� Idle
cycles or region shortages trigger a region pool reorganization which is hierarchically
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coordinated by cluster masters and a designated system master node� This lazy or
optimistic strategy is eligible� because it can be supposed that region shortages
occur infrequently�

� This subsection also demonstrated the importance of the ability to systematically
map abstract concepts to generalized management methods� Unfortunately� it seems
as if there was hardly any support for systematic top�down derivations of this kind
in the context of operating systems� The reasons are mainly missing abstraction
and categorization of existing successful techniques�
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Segmented Stacks and Heaps

Each manager has to provide heap and stack space for its AC� Obviously� due to
multiple ACs within one address space� heap and stack growth either has to be
limited or classical management has to be rethought� We decided for the latter�

De�nition	 � 
virtual memory segment�
A virtual memory segment is a complete interval of virtual addresses consisting of
at least one virtual memory region�

De�nition	 � 
segment stack�
A segment stack contains individual segments which are dynamically pushed and
popped� Additionally� the top most segment may dynamically grow and shrink�

Notice� virtual addresses within a segment stack are in general neither monotonous
nor linear�
With its regions each manager autonomously maintains two segment stacks �see
def� ���� to implement stack and heap of its AC� Every segment has a header speci�
fying its size and a link� For performance reasons� segments of a segment stack are
chained in a circular list through the link �eld� The header itself is placed at the
highest address in case of stack� respectively the lowest address in case of heap to
enable linear segment extensions for downward growing stacks and upward growing
heaps�

In case of an over�ow of the top segment� it is �rst tried to extend the top
segment by requesting a connecting region from the region allocator� If the region
returned complies to this preference it is simply added to the top segment as a linear
extension� Otherwise� a non�linear extension is performed by pushing the region re�
ceived as the new top segment onto the corresponding segment stack� An under�ow
occurs� if the stack pointer or the heap limit drop below the start address of the
stack respectively heap top segment� Analogously to extensions� reductions trig�
gered by under�ows can as well be linear �shrinking the top segment� or non�linear
�top segment is popped�� In either case� regions formerly contained in segments are
returned to the node region pool�

Figure 
�	 illustrates stack and heap space based on segment stacks� Each
thread� implementing the �ow of control of an AC� is guided by a thread control
block �TCB� representing the dedicated data portion of the manager� Fields within
the TCB provide access to the bottom elements of both segment stacks� Unlike
all other segments� the link �eld of bottom elements references the top segment�
Management objects usually kept in a static data part� e�g� global heap library
variables� are placed in the information part of the bottom heap or stack segment�
The �gure also shows an overall non�monotonous stack space for this AC� The
current �top� stack segment starts and ends above its preceding segment�

Notice� that all kind of memory in this system is mmap�ed� Abandoning sbrk

and kernel stack handling has several consequences which are elaborated in the
following paragraphs� It is also evident� that fast access to the TCB is crucial� For
this purpose� we modi�ed GNU gcc to amongst others use a �x hardware register
to reference the TCB of the current AC �Piz���� For example� on Sparc V� �g� is
used as the TCB designator�
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Figure 
�	� Per thread segment stacks for stack and heap space

��� Unlimited Stacks

Segment stacks allow to lazily adapt memory consumption without a rigid limit�
Each thread is started with a single stack segment whose size is determined at
compile time� At runtime� segment crossings are monitored and the usually linear
stack space becomes eventually split to �t on separate segments�

Knowing the code generator� only three possibilities of segment crossings must be
considered� First� when a call level is entered the stack pointer �SP� is decremented�

to allocate the new activation frame� Second� dynamic stack objects� such as �elds
with statically unknown range� are allocated by decrementing SP� While these two
operations may cause over�ows� leaving a call level is the source for under�ows�

Stack objects are bundled within activation frames for faster �de��allocation� A
sound possibility to split the stack is between activation frames� Dynamic stack
objects could as well be separated with the e�ect of an awkward heap alike man�
agement within stack� causing strong internal fragmentation� As placing dynamic
stack objects on stack is not essential� we decided to transparently place such ob�
jects in heap space� This� in turn has the advantageous e�ect that at most each call
level entry and exit must be monitored�

�Assuming downward growing stacks�
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����� Decoupled � Compiler Modi	cation
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��� Non�linear stack extension

A hardware integrated compare logic checking SP against segment limits would be
desirable but is not available� Hence� monitoring must be prepared by the compiler
by generating inlined code� This code could be placed around calls or integrated
into prologue and epilogue of subprograms� Latter was chosen because it reduces
code size and most of all� is eligible to support extensible systems where a caller
might have no knowledge about the callee�

Stack addressing had to be changed� Usually� a single frame pointer �FP� points
in between two frames� Negative o�sets reference local objects� while arguments
are found via positive o�sets� Now� frames are eventually separated as shown in
�gure 
��� The size of the possible gap between arguments and locals is statically
unknown� Besides the FP addressing locals� this also requires an explicit argument
pointer �AP�� On Sparc V�� we utilize register �l� as FP and changed the semantics
of �fp to AP instead of solely using a new register for the AP� This approach provides
compatibility �debugger� libraries� etc�� and better performance�

The activation frame layout was extended with a �ag determining whether the
frame has caused a non�linear extension� While over�ows are checked against the
current stack limit recorded in the TCB� under�ows are detected with help of this
extension �ag� Due to alignment more than one bit must be allocated� This property
is exploited for faster segment deallocation by storing the address of the allocated
segment instead of just a boolean value with the extension �ag�

All of these modi�cations were made to the low�level back�end of the GNU gcc
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compiler� Among the bene�ts are support for many languages �C� C��� INSEL�
etc�� at once and compatibility with all compiler optimizations such as function
inlining or leaf functions�

����� Coupled � Runtime Management

In addition to the linkage of segment stacks� stack segments are also doubly linked
through the AP �backward� and extension �ag �forward� of frames causing non�
linear extensions �see �gure 
���� This eliminates searching within lists in order to
correct under�ows and speeds�up stack evolution across segment boundaries� Two
more values must be remembered and reset in case of under�ows� the SP and the
stack limit at the time of over�ow� Instead of wasting two words in every frame�
inlined code writes these values directly underneath the header of stack segments�

save �sp������sp

�� clr ��fp��

�� mov �fp��l�

�� ld ��g�������l�

�� cmp �sp��l�

�� bgeu 	prolog�end

nop

�� clr ��g�����

�� mov �����o�

�� mov �sp��l�

�� call OVERFLOW

��� add �fp������sp

��� cmp �o���g�

��� bne 	non�linear

nop

��� b 	prolog�end

��� mov �l���sp

	non�linear�

��� st �l����o����

��� st �sp���o����

��� st �o����fp��

��� add �o�����l�

��� add �l�������sp

�� ld ��fp����o�

�� cmp �g���o�

�� be 	epilog�end

nop

�� ld ��o������l�

�� clr ��g�����

�� call UNDERFLOW

�� ld ��o������sp

�� st �l����g�����

Figure 
�
� Sparc stack check prologue and epilogue

Correcting an over�ow requires calls of subprograms consuming further stack
space� This is accomplished by maintaining a reserved area at the end of the
current stack segment� The technique implemented ensures� that at least the size of
the reserved portion �currently �k� minus the minimal frame �currently 	�� bytes�
is available for the over�ow handler� It can easily be proofed� that over�ows are
always handled within this space� In case of non�linear extensions� the reserved area
is temporarily lost� Linear extensions simply move the reserved area to the new end
of the segment without losses�

� Figure 
�
 lists the stack checking code used on Sparc V� for the interested
reader� In this example� the frame size is 
�� bytes� Line �	� of the prologue clears
the extension �ag� FP is assigned the value of AP ���� and the e�ectual limit is
fetched from the TCB �
�� If the SP is below the limit� nothing is left to do ������
Otherwise� the stack limit is cleared �� maximum� to avoid recursion �� and the
over�ow handler is called ��� after shrinking to the minimal frame �	��� The handler
returns zero in case of linear extensions which is checked in �		�� If linear� then only
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the SP is reset to the value before the handler was called �	����� If non�linear� the
stack limit and SP are written to the new segment �	��	� and the segment address
is written to the extension �ag �	��� before the frame space is moved to the new
segment by setting FP and SP �	��	��� Lines 	�
 of the epilogue check whether the
current frame caused a non�linear extension by comparing the extension �ag with
zero� If yes� then the current limit is set ine�ective ���� and SP is reset ���� before
the under�ow handler is called ��� and the stack limit becomes reset ����

����� Distributed Display Handling

In turn of modifying stack addressing within the compiler� we also modi�ed dis�
play �ASU�� handling to better support nested functions� The usually used static
chain technique is unacceptable in a distributed environment� because tracing each
link of the chain could cause network communication� Displays� on the other hand�
are often implemented by copying data from the static predecessor� As this may
still cause network communication although a local function is called� it is also
unacceptable� The new technique integrated into the compiler copies the display
either form the dynamic predecessor on the same node or prefetches it� if a potential
remote function call is to be performed�

����� Performance Considerations

The computational costs for dynamic stack checking are comparably small� In the
average case of no extension� � � 
 additional instructions incur� The e�ect on
real programs is debatable� Tests with a simple parallel prime generator indicate
an insigni�cant overhead ����
 versus ���� seconds�� Widening the scope of checks
could further reduce this overhead� E�g� checks are actually only needed at points
of recursion� Other checks can be combined according to the statically predictable
deepest call level�
Internal fragmentation only occurs in case of non�linear extensions� Let f be

the average frame size� r the size of the reserved area� and s the average segment
size� Following formula is an approximation of the internal stack fragmentation� if
every extension was non�linear�

Favg �
r � ��s� r� mod f�

s
� �k � 	�� � r � �k

If f � ��� r � �	��� and s � 
�k internal fragmentation would be �� � Non�
linear extensions are problematical in two ways� First� they may cause noticeable
fragmentation� which can be optimized by choosing adequate segment sizes� Second�
in contrast to linear extensions� non�linearly extended segments become freed as
soon as the call�level causing the extension is left and might already be reallocated
with the next call leading to unfavorable thrashing � This situation is avoided by
exploiting the region allocator to provide regions at preferred addresses�

��� Heaps

Throughout this paper� the term �heap� refers to a pool of memory available for
allocation and deallocation in arbitrary order� To eliminate synchronization and
communication as far as possible� each AC �de��allocates objects on its own dedi�
cated heap�
We investigated existing libraries concerning their eligibility to serve as a starting

point for the implementation of the heap segment stack� Because of its excellent
performance �DDZ��� and its both� short and understandable source code� D� Lea�s
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Figure 
��� Heap extension

freely available memory allocator G		 malloc �Lea�� was selected� It structures
heap space into free and allocated chunks� A special free chunk� called top chunk
�TC�� is used to grow and shrink the heap� It is split and coalesced as chunks are
�de��allocated at the top end of the heap while being increased and decreased at
the upper end with the system call sbrk�

In contrast to stacks� the separate management of each application�level object
in a chunk allows to easily spread a heap across segments� because splitting can be
performed between arbitrary chunks� Obviously� linear extensions and reductions
simply increase and decrease TC�s upper limit� identically to sbrk without requiring
changes to the library�

Several modi�cations were made to support positive or negative holes caused by
non�linear extensions �see �gure 
���� If TC is non�linearly extended� the e�ectual
TC is converted into an ordinary free chunk� which can be used to satisfy subsequent
allocations� Its chunk information �size� etc�� is placed at the highest address of the
old top segment� Above the segment header of the new segment� a special hole chunk
is installed and the allocation causing the over�ow is performed� The remainder of
the segment is used as the new TC� The hole chunk serves two purposes� First� it
stores the information about the old TC� Second� it has a �ag set� that prevents
this chunk from being coalesced with other chunks than the TC� Heap trimming
operations� succeeding deallocations with coalescences� decrease TC�s upper limit
if its size exceeds a certain limit� Each time TC is trimmed� it is also checked�
whether TC could be coalesced with the hole chunk� which would mean that no
chunks are allocated within this segment� If this is the case� a non�linear reduction
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is performed instead of just linearly reducing the segment size� Before returning
regions to the node region pool� the old TC is re�established based on information
stored in the hole chunk and at the end of the previous segment�
The computational overhead introduced with the segmented heap organization

is neglectable� Similarly to stack space� fragmentation increases with the amount of
non�linear extensions which can be controlled with the region allocator� In contrast
to stack space� there is no reserved area in heap space being wasted� Furthermore�
lazy reduction can be employed by deferring heap trimming which nearly eliminates
the thrashing e�ect explained in 
�	���
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Object�Distribution and Garbage

Collection

Current work is focusing on the transparent incorporation of garbage collection
�GC� and DSM capabilities into heap management� In a long term running dis�
tributed single address space system� GC and DSM have strong interactions� A joint
approach will be superior to individually optimized solutions� For example� indi�
rections needed for hardware�supported distribution of individual objects �GPR���
can at the same time be exploited by the collector to move objects� The approach
taken� is to widen the scope of GC to include management objects as well as appli�
cation level objects in a collection hierarchy� References to objects and replicates
of remote objects are locally monitored� Locally unreachable replicates become
deleted� Proxy pages only mapped to hold replicates and migrated objects become
further unmapped by the local collector if they do not contain any reachable repre�
sentants of remote objects� �Original objects� are deleted if neither replicates nor
local references exist�
A �rst prototype of the MoDiS DSM� providing distributed shared stack objects�

is explained in detail in �GPR���� The techniques developed� are currently adapted
to provide e�cient remote access to heap objects� The basic idea is to access ob�
jects mediately via indirection pointers in order to move shared objects between
di�erent memory regions� These regions represent per node read�write� read�only
and no rights� which are checked in hardware because regions are page aligned�
Accesses with insu�cient rights trigger faults� Software handlers retrieve the re�
quested object� enforce per object consistency with a dynamically chosen coherence
protocol� and adjust the indirection� Pointer swizzling at fault time between dif�
ferent memory regions delivers the ability to exploit the page fault mechanism of
�o� the shelf hardware�� Thus� the DSM management only has to handle accesses
to locally unavailable objects� Performance penalties as known from all�in software
implementations are avoided while individual objects are still e�ciently handled
without false�sharing�
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Conclusion

The reader might have noticed� that although this approach is introduced as being
top�down oriented� concepts are explained rather in the opposite direction starting
from coarse partitions and regions� In fact� concepts were elaborated top�down with
the bottom in mind� Pure top�down construction seems to be at least as unsatisfac�
tory as bottom�up driven methods� Where the latter fails to match application�level
requirements� the former tends to miss real world possibilities�
The memory management techniques presented� aim to support parallelism and

distribution as an integral part of a new distributed OS architecture� The moti�
vation is to free the application level from repetitive and error prone management
tasks� Although the context of this work is a language�based approach� most of the
concepts elaborated are also applicable in other parallel or distributed environments�
Besides distinguishing stack and heap� memory management is invisible at the

application level� The programmer is not burdened with object locations� net�
work messages� special sharable regions� or stack size requirements� Instead� the
OS performs adaptive segmentation to fully exploit the address space for concur�
rent computations dynamically varying in size and number� Memory consumption
approximates application�level requirements� Furthermore� any application level
object is shared across nodes with automatic migration or replication as necessary�
It is also stated clearly� that these features do not induce signi�cant constant over�
head� This is a prerequisite to not solely provide speed�ups with the consumption
of additional resources but also the possibility of defacto advantages compared to
conventional systems�
Implementation is based on a tight coupling of tools and kernel into an inte�

grated OS� Instead of constructing layers� all instances involved in management
are considered as possibilities to implement management functionality� To reduce
the e�ort needed to construct these instances from scratch and at the same time
avoid reinventions of the wheel� existing software is modi�ed to meet changed re�
quirements� In turn� compatibility is limited� Existing binaries can be integrated
into the system but to fully pro�t from these new features� applications at least
have to be recompiled� Another important step is the introduction of new lan�
guages as brie�y presented in this paper� supporting e�g� high level speci�cation of
concurrency�
The platform used for the implementation of these concepts consists of 	� SUN

Ultra 	 workstations running Solaris ����	 interconnected with a 	��Mbit�s Fast
Ethernet� Implementation and evaluation of segmented stacks as well as modi�ca�
tions of the malloc library is �nished�
Partitioning into shared and node partitions� region distribution and the region

allocator are realized to a great extend� Besides the object�based DSM for heap
space� current implementation work concentrates on dynamic region redistribution
and visualization tools� Conceptual work is focusing on the interaction between
DSM and distributed garbage collection�

�Using this line of thought in this paper would probably not lead to a better understanding for

the techniques�
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