
Distributed Virtual Address Space

Management in the MoDiS�OS

Markus Pizka
Technische Universit�at M�unchen
Department of Computer Science

����� Munich �Germany�
pizka�in�tum�de

Keywords� operating systems	 distributed systems	 parallel systems	
memory management

Abstract

This reports motivates and explains concepts developed in the project MoDiS to
organize large virtual address spaces comprising �ne�grain concurrent computations
in parallel and distributed environments� The single distributed address space is
adaptively partitioned by a dynamic set of cooperating managers� The partitioning
scheme is decentralized and scales with growing system con�gurations� De�ciencies
as known from centralized or static organizations are prevented� In contrast to
common operating systems� thoughts have also been given to possible thread stack
and heap over�ows and collisions� Both stacks and heaps associated with a thread
are realized non�contiguously with linear stack and heap segments to enable the
desired exploitation of the possibly large virtual address space� Distribution of
data is coupled with garbage collection and based on objects instead of pages while
still making use of the hardware faulting mechanism� Implementation is based on
�o� the shelf� hardware components� Crucial for the e�ciency of this approach is a
thorough top�down oriented construction of all operating system entities comprising
the compiler and libraries as well as the kernel�

Contents

� Observations �
	�	 Unsatisfying Operating System Technology � � � � � � � � � � � � � � � �

	�� New Features and New Flaws �
	�
 Related Work �

� Address Space Structuring �
��	 Basics of the Project MoDiS �
��� Memory Management Subsystem � 	�
��
 Memory Regions � 	�

� Segmented Stacks and Heaps ��

�	 Unlimited Stacks � 	�

�� Heaps ��

� Object�Distribution and Garbage Collection ��

� Conclusion ��

�

Observations

��� Unsatisfying Operating System Technology

The acceptance of distributed and parallel� processing techniques in practice lacks
far behind the expectations associated with the tremendous computing power pro�
vided by ubiquitous high�speed interconnected workstations� This is mostly due to
a comparable rate of complexity coming along with it� Such platforms tend to either
burden the programmer with additional concepts and their e�ects� or demand load
and memory management tasks from the resource management system that are
hard to ful�ll� Hence� to correct this situation� development of distributed systems
has to be simpli�ed with amongst others adequate programming concepts� Addi�
tionally� new methods for automated yet e�cient application transparent resource
management have to be emerged�

De�nition	 �
Purpose of an Operating System�
The purpose of an OS is to release the application level from di�cult� repetitive� or
� due to rights � impossible tasks which can be performed without signi�cant losses
transparently by the system�

History of operating systems �OS� shows that management tasks are handled at
the application level only as long� as powerful OS solutions are missing� For ex�
ample� early overlay techniques �Flo��� for computers with small main memories
have been replaced with OS and hardware support for large virtual address spaces
�VA� combined with paging� Similar OS shortcomings can nowadays be observed
in distributed and parallel environments re�ected in application�integrated resource
management decisions� In fact� on parallel or even distributed platforms OS tech�
nology drastically fails to comply with its objective target as stated in de�nition 	�
In such environments� applications still have to handle many resources by them�
selves e�g� perform load balancing or special handling of sharable memory regions
in case of distributed shared memory �DSM��
Undoubted� memory management as a fundamental task of an OS should be

performed completely transparent to the application level� This obvious statement
is often violated because of the cost to integrate functionality supporting parallelism
and distribution into all management instances including the compiler� runtime sys�
tem� and the kernel� Overcoming this de�cit is a milestone of major importance for
the transition form centralized and sequential to distributed and parallel processing�

Outline Section 	�� sketches the impact of several hot topics in OS technology
on memory management� In 	�
 the de�ciencies revealed are brie�y compared with
methods used in existing systems followed by a description of the system model
underlying the work presented in this paper in ��	� Fundamentals of the adaptive
distributed OS architecture and considerations concerning its implementation are
found in ��	�� � ��	�
� Sections ��
 and
 detail the techniques developed for
e�cient single address space management while focusing on distributed partitioning
and changes in stack and heap organization� Information about the approach taken
to incorporate DSM and garbage collection functionality is given in �� This paper
concludes with information on the current state of the project and summarizing
results in section ��

�Throughout this paper concurrency and parallelism are used as synonyms

�� Observations

��� New Features and New Flaws

Multi�tasking OS usually provide separate address spaces for processes� In order to
share data amongst processes� IPC interfaces such as shared mappings� signals� or
sockets along with error prone techniques like pointer swizzling have to be used� Of
course� tight coupling of processes needed for cooperative parallel algorithms can
not be achieved this way without considerable overhead�
By employing one large address space for all processes as supported by modern

�bit architectures this and other problems can be evaded� Each memory object is
identi�ed with its unique memory address instead of separately maintained object
identi�ers� Therefore� object accesses are uniform and can be performed e�ciently�
Using virtual addresses as globally unique identi�ers seems to be extremely

helpful especially in distributed environments because it simpli�es naming� sharing�
and migration� as well as it eases the enforcement of persistence for distributed
objects�

����� Multi�Threading and Over�ows

�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������

stack thread 2

heap

stack

heap

stack thread 1

code code

A) Process B) Multi-Threading

Figure 	�	� Single and multi�threaded VA partitioning

Usually the VA is divided into partitions as sketched on the left hand side in �g�
ure 	�	� Besides static code segments� one stack and one heap grow and shrink in
opposite directions� A collision of stack and heap implies that no more free virtual
addresses are available and an irreparable error state has been reached� In reality�
exhausted physical memory or shared libraries mapped somewhere in between stack
and heap will cause faults in advance� This situation is usually accepted although
it decreases reliability� because only one computation is directly a�ected�
In parallel systems with multiple threads executing in one VA� each thread re�

ceives a dedicated stack� Unfortunately� multi�threading is a typical example for a
bottom�up constructed and weakly integrated concept� It is provided to the appli�
cation level with hardly any further support by the memory management system�
The right hand side of �gure 	�	 illustrates a new severe problem� Thread stacks
eventually collide� although the VA is not close to be exhausted� In single address
space systems� malfunctions of this kind might a�ect many independent applica�
tions making such approaches insu�cient reliable� As a matter of fact� this problem

�

���� New Features and New Flaws

stays unsolved in all thread implementations known by the author� Some libraries
allow the de�nition of custom stack sizes if the default size �varying from 	k to 	M
depending on the implementation� does not seem to be su�cient� Of course� this
shifts the problem to the programmer contradicting the goal of simplicity and even
worse� is no solution in case of recursion or incremental extensibility� In general�
neither stack size demands nor the number of threads is statically predictable�

����� Extensible Systems

Currently� a broad spectrum of research activities e�g� �vDHT��� investigates meth�
ods to dynamically construct complex systems aiming at enhanced adaptability with
higher quality� less e�ort and better performance� Architectural changes in this di�
rection decrease the possibilities of static analyzes and therefore impose further
restrictions � also on memory management techniques� For example� as discussed
in newsgroups� static prediction of stack sizes becomes nearly impossible�

� Date� � Mar ���� �������� GMT

� Nice idea 			 but 			

�

� What about using function pointers where you don
t

� know where your function is �in this case I guess the

� max stack requirement for any function will do� or

� runtime linking where you can
t know the stack

� requirements for the code because it might not have

� even been written yet 			

Executable code must also be placed in dynamically growing and shrinking par�
titions preferably without programmer intervention� creating further sources for
over�ows and collisions�

����� Distributing the Virtual Address Space

Distributed systems developer tend to statically bind node information to virtual
address ranges� by using some high or low order bits as workstation identi�ers� Be�
sides the simpli�cation for locating objects this approach has several disadvantages�
For example� object migration requires costly pointer swizzling and the maximum
size for allocatable objects becomes unnecessarily restricted� Hence� binding loca�
tion information on this level of abstraction opposes the intentions of the single
address space concept�

����� Mapping Virtual Memory to Nodes

Mapping to nodes refers to the question how virtual addresses are assigned to work�
stations in the cluster if not already determined by hardware�related static parti�
tioning� Providing the abstraction of a distributed shared memory �DSM� �Li��
seems to be a promising approach to exploit distributed storage facilities with ex�
isting programming paradigms� In reality� DSM systems su�er from two drawbacks�

First� most DSM implementations do not provide the desired level of trans�
parency� Programmers have to cope with new concepts such as allocating and
freeing sharable segments� In addition to this� handling dynamic data structures
within shared segments is most times up to the programmer due to a lack of combi�
nation with dynamic storage allocation techniques� As a consequence� transparency
of access is missing and applicability is limited�

Second� DSM systems often only provide poor performance� Bottom�up con�
structed DSM systems are oriented on hardware properties usually employing a

�

�� Observations

number of hardware as management unit� Pages are huge compared to the gran�
ularity of application�level objects� such as integers� This inadequacy leads to the
e�ect of false sharing � resulting in a strong performance degradation for a wide
range of applications� In contrast to this� object�based DSM systems allow individ�
ual handling of application objects but are often realized �all in software� producing
high constant costs for runtime management� As DSM is still a hot topic in dis�
tributed processing several important issues have not yet been investigated such as
advanced replication control �PT��� in DSM environments� or selective creation and
elimination of replicates to support long term running systems�

����� Requirements and Goals

The di�culties revealed and additional experiences such as with dangling pointers
are summarized in following incomplete� list of requirements�

	� Simple and safe application programming interface�

�a� Automatic collection of unused objects �garbage��

�b� Support for concurrent light�weight activities within one VA�

�c� Uniform and location transparent creation and access to objects�

�d� No distinct limitations on the amount and size of allocatable objects
besides the size of the VA and existing physical resources�

�� Time and space e�cient automatic management�

�a� No distinct constant performance deterioration�

�b� Scalability with growing con�gurations�

�c� Adaptive management of heap� stack and code�

�d� Exploitation of existing hardware features�

�e� Fast remote accesses to objects of any granularity�

Each item of this list has numerous consequences� For example� �a drives opti�
mization of local processing to avoid overhead relative to sequential systems� Be�
cause of �b� defacto improvements should be noticed if additional resources are
consumed� Furthermore� �b necessitates decentralization of shared data structures
and elimination of synchronization as far as possible which in turn requires sophis�
ticated protocols� partitioning algorithms� et cetera� Item �c addresses transparent
solutions for over�ows and collisions� support for extensibility as well as allowing
for thread migration including data and code� This explosion of limitations and
requirements points out� that respecting all of these items is probably only possible
in a top�down oriented approach�
The goal of the work presented in this paper� is to develop memory management

methods as part of a distributed OS guided by de�nition 	 and the requirements
listed above� This distinguishes it from equally important work where details such
as di�erent coherence protocols �TF��� are investigated�

��� Related Work

In fact� hardware supported paged segments as used in former OS like MULTICS
on Honeywell ��� machines �Tan��� would nowadays be helpful to e�ciently solve
some of the problems mentioned� Thread stacks� heaps and extensible code frag�
ments could be placed in separate segments without the danger of collisions� After

�Of course� items such as protection would have to be added�

���� Related Work

years of predominant sequential processes with private VA these features are miss�
ing�

Stacks Concurrent Oberon �ARD��� for example substitutes segments with com�
piler inlined stack checking code and a prede�ned limit of 	��k for the stack of
each �Active Object�� Over�ows below the limit are detected and corrected with
additional allocations� Linearity is preserved and consumption of physical memory
is adaptive� Unweakened linearity of stack spaces on the other hand� disables the
exploitation of the whole VA for larger stacks� In other words� OS supported stack
adaption is limited and demands may only vary within narrow boundaries�
Using restricted pages at the end of the stack for the detection of over�ows com�

bined with deferred mapping as for example in Solaris �Sun��� is fast� compatible�
and mostly independent from the compiler� While detection is cheap� correction
may be extremely di�cult� Over�ows stay undetected as long as objects located on
the restricted page are untouched� although other objects of the same frame or even
their addresses are used� At the time of detection� registers and objects may have to
be examined globally along with pointer swizzling in order to correct the over�ow�
Hence� avoidance or early detection should be preferred instead of late correction�
Compiler�based approaches as for example dynamic stack probing implemented in
gcc �Sta���� also su�er from late detection�
In �HL�
� problems of maintaining multiple stacks are described� The proposed

solution is to implement the conceptual cactus stack as a per processormeshed stack�
Although this technique is an improvement it also requires expensive garbage collec�
tion of activation records within the meshed stack and obstacles hardware enforced
protection�
The technique presented in this paper is based on dynamically extending and split�
ting stacks which provides similar space but superior time e�ciency�

Memory Allocators W�Gloger�s ptmalloc �Glo��� implements a parallel mem�
ory allocator based on POSIX threads �IEE���� Lock contention is reduced by em�
ploying multiple heaps with separate locks� Performance improvements of nearly
factor
 on Solaris�Sparc are the bene�t� Unfortunately� application�speci�c prop�
erties are ignored� Objects are placed on the �rst currently unlocked heap� Hence�
consecutively allocated objects become scattered through the VA which has negative
e�ects on locality of reference and fragmentation�
The memory allocator Mmalloc �Hae� supports multiple dedicated heaps within

one VA� Each heap grows and shrinks separately using the system call mmap but
has to be linear� Similar to stacks� linearity restricts dynamic adaption and full
exploitation of the VA as only over�ows can be solved� Collisions are only detected�

Garbage Collection Extensive work has been performed in the context of
memory allocation strategies and garbage collection �GC� in uniprocessor envi�
ronments �Wil��� ea���� Furthermore� a comprehensive comparison of distributed
GC methods based on extensions of centralized algorithms such as weighted refer�
ences �Cor�	� as well as new distributed shared stores allowing for fault tolerance and
replication is given in �PS���� It leads to the conclusion� that integrated solutions
are superior to layering� hierarchical methods providing locality are mandatory� and
most of all� distributed GC is still unsatisfactory� For example the language�based
software DSM LEMMA �ML��� for ML �HMT��� uses global and local two�space
GC� Although it provides �useful speed�ups� it is also recognized� that �there is
considerable work to be done in a number of areas�� With a tight coupling of pro�
gramming model� GC� and object distribution� we expect the ability to reduce the
cumulative overhead for distributed memory management�

�

�� Observations

DSM Li�s Ivy system �Li�� was the �rst implementation of a page�based DSM�
Since then� variations of this idea with weakened forms of consistency and
other improvements were developed in projects such as Quarks �SSC��� or Tread�
Marks �ea�b�� Although most of these projects provided technological progress�
they all su�er from being based on page sizes and using one uniform coherence
protocol at once for all managed objects� The consequences are false sharing and
ine�cient protocols for a large number of objects� These problems are partially cir�
cumvented in software�based DSM systems such as Midway �BZS�
�� CRL �JKW���
and Munin �Car���� But especially the latter fails to provide simplicity and trans�
parency� In �Car��� the situation of DSM systems after almost 	� years of research
is characterized as �very little real world impact�� It is stated� that the reasons
are either �pretty lousy� performance or inapplicability because of signi�cant user
input� Future DSM research will focus on support for distributed services and wide
area applications in less speci�c contexts� We argue� that this in turn prerequisites
seamless integration of DSM features into distributed OS architectures�

Single Address Spaces and Protection The question of how to de�ne and en�
force protection in a single address space has been investigated in numerous projects
such as Mungi and Opal �Elp�
� CLBHL�
�� An overview and comparison of these
approaches amongst others can be found in �ea�a�� Commercial processor designs
slowly start to incorporate support for advanced protection in a large address space�
For example� SUN provides TLB� supported clustering of pages to page contexts
with its V� architecture� Unfortunately� there are no means to hierarchically struc�
ture page contexts� yet�

�Table Lookaside Bu�er

�

Address Space Structuring

��� Basics of the Project MoDiS

In MoDiS �Model oriented Distributed Systems� �EW��b� EW��a� a top�down
driven and language�based approach is followed to systematically develop e�cient
yet simple to use concepts� Homogeneous and distribution transparent language
concepts allow the development of parallel algorithms with varying degrees of par�
allelism� granularity� and cooperation� Objects representing new functionality �es�
pecially applications� dynamically extend the running system� forming a globally
structured system encompassing applications and OS functionality�

����� Programming Model

INSEL �Win�� provides the grammar to the more formal MoDiS concepts� It is
a high�level� type�safe� imperative and object�based programming language with
explicit tasking parallelism� Encapsulated objects are dynamically created as in�
stances of class describing objects� called generators�� Generators can be nested
within other generators or instances and vice versa� Objects may either be active
�actors� or passive determined by the generator� Each actor de�nes a separate �ow
of control and performs its computation concurrently to its creator� Actors may
interact directly in a synchronous rendezvous �message passing� or mediately via
shared passive objects �shared memory��

Named objects are identi�ed by exactly one reference within a function or block
while anonymous objects are identi�ed by references which can be passed� dupli�
cated and deleted� No further pointer arithmetics are supported� All objects are
automatically deleted according to their conceptually de�ned lifetime �PE���� The
lifetime of an anonymous object depends on the lifetime of the generator for ref�
erences to this object� whereas named objects depend on the enclosing object or
method�

����� Scalable Operating System Architecture

To enforce transparent� scalable and adaptable distributed resource management�
we developed a re�ective management architecture �Gro�� GP���� Though orig�
inating in MoDiS� this architecture is also highly applicable in other parallel or
distributed systems� The key idea is to associate a manager with each �ow of
control on the conceptual level� In the context of INSEL� one actor and all its
termination dependent �PE��� passive objects are clustered to actor�contexts �AC��
Each AC is guided by exactly one manager� which has to satisfy all demands for
resources of its AC� Besides standard tasks such as allocating memory for the stack�
heap and code� a manager might also have to enforce coherence of replicates� initi�
ate migration� or enforce access restrictions� Con�icts� such as over�ows� concurrent
heap allocations� or processor allocation are solved by inter manager cooperation�
This management scheme is top�down oriented as it is constructed independently

from the physical hardware con�guration� Furthermore� it is scalable� because it
does not have a potential bottleneck and the number of managers corresponds to

�similar to type or class in common languages

�

�� Address Space Structuring

the number of actors� Adaption is assisted due to the close relation of management
with dynamically changing requirements of application�level objects�

����� Implementation Philosophy

Crucial for the e�ciency of this approach is a systematical realization of the concep�
tual managers� Prototypes on top of Mach �Win�� and HP�UX �Rad��� have shown�
that limiting the implementation to an adaption layer in an otherwise adopted en�
vironment does cause unacceptable disadvantages for the long term goal�

interchange
information

coupled

local to nodes

privileged

location transparent

manager implementation

non-privileged

decoupled

dedicatedlinkercompiler

non-local

node-specific

(inlined)

(kernel)

(dist. libs)

(node libraries)

shared

Figure ��	� Instances used to implement managers

Based on these experiences� any software instance involved in resource manage�
ment is now regarded as implementing parts of managers� Figure ��	 illustrates typ�
ical di�erent possibilities� E�cient and �exible managers are constructed by tightly
integrating the capabilities of this framework by means of bidirectional information
interchange and coordination of actions� The distributed manager architecture with
this implementation concept leads to following rede�nition of the term �operating
system� in the context of MoDiS�

De�nition	 �
Distributed Operating System�
The OS is the complete management of the distributed computing system� It consists
of cooperating process managers implemented by an integrated tool set�

The assignment of functionality to a certain instance e�g� dedicated �inlined� or
privileged �kernel� must be based on sound criteria� For example� realizing man�
ager functionality in the shared �functionality or data implementing more then one
manager� portion constructs �exible interpreting services while the utilization of de�
coupled techniques leads to more static production characteristics� Transition from
interpretation to compilation is soft without a strict separation between statics and
dynamics and management is regarded as continuous regulation�

��� Memory Management Subsystem

����� Architecture

Figure ��� provides an overview of the memory management subsystem� Note�
that the abstractions shown� represent conceptual levels in contrast to layers which

	�

���� Memory Management Subsystem

di
st

rib
ut

ed
 s

to
re

INSEL passive objects

anonymous objects

regions

object
DSM

registers, main, and secondary memory

segments

stacks heaps

no
de

 s
to

re
region distribution

network communication

frames chunks

named objects

virtual memory partitions

Figure ���� Memory management levels

would already imply a certain style of implementation� A horizontal marker sepa�
rates the distributed � location transparent � portion from the storage subsystem
on each workstation� The former splits up vertically into stack and heap down to
the level of segments� As sketched in this �gure� two orthogonal levels of distribu�
tion� First is the distribution coarse grain memory regions while the second is an
object�based DSM� migrating and replicating individual heap objects� This separa�
tion of distribution functionality instead of a uniform low level page transportation
layer is a prerequisite to develop mostly independent and in turn powerful strategies
for object sharing and VA partitioning� Each object placed on heap is a sharable
object per de�nition� If named objects are to be shared among distributed entities
they are transparently transformed into anonymous objects by the compiler� While
anonymous objects are mapped onto chunks and the object DSM� named objects
are mapped onto activation frames or registers� Similarly� memory regions are either
bound to node virtual memory or become dynamically distributed� These shortcuts
represent �exibility which is exploited by the OS to improve performance�

����� Node and Shared Partitions

Although the goal is to provide a single distributed address space it proofs to be
helpful to preserve some addresses for node�speci�c purposes� Objects only locally
referenced or low level data structures re�ecting the local state of a node� such
as kernel code� communication bu�ers� etc� are placed in the node partition� In�
terpretation of addresses in this range is node dependent� Among the advantages
are�

� No need for coordination� migration� or replication

� Fast address translation and object location

� Simpli�ed enforcement of protection

� Exploitation of hardware features �TLB lock� etc��

The major part of the address space is shared amongst all nodes with addresses
uniquely identifying objects� Figure ��
 indicates that the internal organization of

		

�� Address Space Structuring

������������
������������
������������
������������

������������
������������
������������
������������

������������
������������
������������
������������
������������

������������
������������
������������
������������
������������

������������
������������
������������
������������

������������
������������
������������
������������

stack thread x/2

heap thread x

stack thread y

heap thread y/1

heap thread y/2

stack thread x/1

high

low

invalid

UNIX process data

UNIX process code

UNIX process stack

UNIX process sh. libs

code

code

system-wide shared

node partition

partition

Figure ��
� Memory layout

the system�wide shared and the local partition is identical� Both consist of ranges
used as stack or heap segments for actors performing concurrent computations�
Collisions or over�ows are transparently solved� In fact� each actor may allocate
memory in both partitions� The manager attribute node allocation� inherited
from the creator� determines the kind of allocation and can be changed with a
privileged system call� Usually� this feature is only used to satisfy management
requirements and is transparent to the application level�

Current state of the project still requires a UNIX host system� The dynamic
loader of the chosen host system Sparc�Solaris does not support initialization be�
fore shared library initialization� Therefore� some partitions of the address space
are preserved for the UNIX process environment� Start addresses and sizes of all
partitions are �x�

Based on this partitioning� the memory subsystem bootstraps as follows� First�
runtime data structures of boot AC managers are created and initialized within the
UNIX data section on all nodes� Afterwards� the boot ACs themselves and other
node�speci�c actors such as network communication handlers are created within the
node partition� Finally one boot AC becomes elected as the boot master� switches
to global allocation� and starts with the creation of distributed ACs�

��� Memory Regions

Virtual addresses are dynamically spread to ACs� Fur this purpose� both� the node
and the shared partition are internally structured into disjunct memory regions�

De�nition	 �
virtual memory region�
A virtual memory region is a complete interval of virtual
addresses starting and ending on page boundaries�

Because the region concept mainly aims at overcoming the physical distribution
of workstations� this section will concentrate on the shared partition� Most of
the explanations also hold for the node partition� with the di�erence that network
communication has no impact�

	�

���� Memory Regions

region�t region�get �pref�addr�min�size�direction�

void region�put �addr �size �

bool region�split�addr �size �

bool region�merge�addr� �addr��

Figure ���� Region interface

The dedicated runtime portion of an AC manager calls get and put of its shared
portion to dynamically allocate and free regions� The arguments of get specify
a preferred starting address� the minimum required size� and positive or negative
orientation to pass information about the intended usage of regions as heap or stack
space for a certain AC� Split and coalescence �merge� of regions are prerequisites
to keep fragmentation under control� Internal versus external fragmentation is
dynamically tunable� First� the preferred address and the minimum size are only
guidelines instead of accurate values� And second� preferred continuous allocations
as a consequence of stack and heap growth are anticipated�

����� Distribution Concept

Distribution of the VA has to be scalable to support growing hardware con�gura�
tions as well as dynamic software systems consisting of parallel computations with
varying quantity and granularity� Scalability in general� is based on decentralization
to circumvent bottlenecks and the reduction of synchronization� An eligible method
should also meet diverging requirements of applications by exploiting application�
level knowledge as far as possible� Furthermore� ancillary conditions resulting from
the requirements listed in 	���� must be respected� For example� addresses of shared
objects should not be used to code e�g� workstation identi�ers�

C D

B

ε

εεε

ε

E

F

a

b

c d f

e

A

Figure ���� Distribution Strategy

According to the general top�down orientation� the management model intro�
duced in section ��	�� with its structure of termination dependent actors is used to
split the task of VA distribution among the AC managers as shown in �gure ���� At
�rst� the complete range of addresses is assigned to manager a of the root AC A� In
the path of computation� new ACs are created� Each AC is provided with regions
for autonomous use by its creator� If this initial provision proofs to be insu�cient
at a certain point of execution� additional regions are dynamically requested by
either asking the father within the termination dependency ��� i�e the creator� or
reclaiming regions formerly delegated to children� At the time of termination� each
AC returns its regions back to its creator�
Obviously� this high�level strategy provides scalability and adaptability� It also

allows to exploit the complete VA with little external fragmentation because the

	

�� Address Space Structuring

recursive style of cooperation allows to retrieve available regions globally� For ex�
ample� requests of c are satis�ed with regions retrieved from f if necessary�

����� Implementation Based on Resource Pools

The main characteristics of this high�level scheme are intense and cascading coop�
eration among managers whereas their number is large compared to workstations�
Straight�forward implementations with chains of signals or even network messages
would deliver unacceptable performance� The strategy to forward regions to sons
has to cope with large numbers of small regions� if many light�weight actors are
forked� as well as just a few but extremely large regions in case of recursion� But in
general� neither source analyzes nor runtime monitoring could provide the informa�
tion needed to steer a suitable policy with little tolerance considering limited local
resources� Though� the resource competed for � unallocated virtual address inter�
vals� is available in abundance �considering � bits� � somewhere in the system�
Analogical to strategy and mechanism� these problems are solved by thoroughly

separating levels of abstraction and connecting methods on di�erent levels via sound
mappings�
The characteristics depicted indicate� that region distribution belongs to a typ�

ical management task class where reducing low�level communication by means of
group communication is crucial� Because dynamic grouping based on the node of
execution provides a natural way to reduce network messages� manager tasks of
this class are mapped onto node resource pools � Notice� cooperation is in no way
limited to exchanging messages� E�g� shared data is a technique to implement high
bandwidth cooperation�

21 3

C D

B

ε

εεε

ε

E

F

A

Figure ��� Regions implemented with node pools

As shown in �gure ��� each node maintains an own dynamic pool of regions
encapsulated in the region allocator � Each pool is provided at system startup by
the boot master� The region allocator is tailored to the speci�c properties of regions
such as page aligned� just a few di�erent sizes� and double�ended stack alike han�
dling� Each AC gets�returns regions directly from�to the region allocator where it is
executing� To further avoid communication� regions may be allocated and returned
on di�erent nodes in case of migration �e�g� A allocated on node � and returns on

�� These may lead to a certain degree of additional external fragmentation� Idle
cycles or region shortages trigger a region pool reorganization which is hierarchically

	�

���� Memory Regions

coordinated by cluster masters and a designated system master node� This lazy or
optimistic strategy is eligible� because it can be supposed that region shortages
occur infrequently�

� This subsection also demonstrated the importance of the ability to systematically
map abstract concepts to generalized management methods� Unfortunately� it seems
as if there was hardly any support for systematic top�down derivations of this kind
in the context of operating systems� The reasons are mainly missing abstraction
and categorization of existing successful techniques�

	�

Segmented Stacks and Heaps

Each manager has to provide heap and stack space for its AC� Obviously� due to
multiple ACs within one address space� heap and stack growth either has to be
limited or classical management has to be rethought� We decided for the latter�

De�nition	 �
virtual memory segment�
A virtual memory segment is a complete interval of virtual addresses consisting of
at least one virtual memory region�

De�nition	 �
segment stack�
A segment stack contains individual segments which are dynamically pushed and
popped� Additionally� the top most segment may dynamically grow and shrink�

Notice� virtual addresses within a segment stack are in general neither monotonous
nor linear�
With its regions each manager autonomously maintains two segment stacks �see
def� ���� to implement stack and heap of its AC� Every segment has a header speci�
fying its size and a link� For performance reasons� segments of a segment stack are
chained in a circular list through the link �eld� The header itself is placed at the
highest address in case of stack� respectively the lowest address in case of heap to
enable linear segment extensions for downward growing stacks and upward growing
heaps�

In case of an over�ow of the top segment� it is �rst tried to extend the top
segment by requesting a connecting region from the region allocator� If the region
returned complies to this preference it is simply added to the top segment as a linear
extension� Otherwise� a non�linear extension is performed by pushing the region re�
ceived as the new top segment onto the corresponding segment stack� An under�ow
occurs� if the stack pointer or the heap limit drop below the start address of the
stack respectively heap top segment� Analogously to extensions� reductions trig�
gered by under�ows can as well be linear �shrinking the top segment� or non�linear
�top segment is popped�� In either case� regions formerly contained in segments are
returned to the node region pool�

Figure
�	 illustrates stack and heap space based on segment stacks� Each
thread� implementing the �ow of control of an AC� is guided by a thread control
block �TCB� representing the dedicated data portion of the manager� Fields within
the TCB provide access to the bottom elements of both segment stacks� Unlike
all other segments� the link �eld of bottom elements references the top segment�
Management objects usually kept in a static data part� e�g� global heap library
variables� are placed in the information part of the bottom heap or stack segment�
The �gure also shows an overall non�monotonous stack space for this AC� The
current �top� stack segment starts and ends above its preceding segment�

Notice� that all kind of memory in this system is mmap�ed� Abandoning sbrk

and kernel stack handling has several consequences which are elaborated in the
following paragraphs� It is also evident� that fast access to the TCB is crucial� For
this purpose� we modi�ed GNU gcc to amongst others use a �x hardware register
to reference the TCB of the current AC �Piz���� For example� on Sparc V� �g� is
used as the TCB designator�

	

���� Unlimited Stacks

LOW ADDRESS

HIGH ADDRESS

previous
size

heap info
size

previous
size

size

previous
size

last seg

last seg bottom
stack
segment

bottom heap
segment

TCB

1st heap seg

1st stack seg

2nd stack seg

top stack seg

top heap seg

stack info

stack link

stack link

heap link

Figure
�	� Per thread segment stacks for stack and heap space

��� Unlimited Stacks

Segment stacks allow to lazily adapt memory consumption without a rigid limit�
Each thread is started with a single stack segment whose size is determined at
compile time� At runtime� segment crossings are monitored and the usually linear
stack space becomes eventually split to �t on separate segments�

Knowing the code generator� only three possibilities of segment crossings must be
considered� First� when a call level is entered the stack pointer �SP� is decremented�

to allocate the new activation frame� Second� dynamic stack objects� such as �elds
with statically unknown range� are allocated by decrementing SP� While these two
operations may cause over�ows� leaving a call level is the source for under�ows�

Stack objects are bundled within activation frames for faster �de��allocation� A
sound possibility to split the stack is between activation frames� Dynamic stack
objects could as well be separated with the e�ect of an awkward heap alike man�
agement within stack� causing strong internal fragmentation� As placing dynamic
stack objects on stack is not essential� we decided to transparently place such ob�
jects in heap space� This� in turn has the advantageous e�ect that at most each call
level entry and exit must be monitored�

�Assuming downward growing stacks�

	�

�� Segmented Stacks and Heaps

����� Decoupled � Compiler Modi	cation

�������������
�������������
�������������

�������������
�������������
�������������

�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������

extd. frame (part 1)

extd. frame (part 2)

%sp overflow

%l0-24

-16

-8

-4

top - 0

-24 (64bit aligned)

next frame

%fp
reg save area

%fp+92

%fp+64

arguments on stack

addr of allocated segment

old stack limit

old stack pointer

reserved

reserved

-12

on frame of caller
addressable fields

%l0

%sp

end of new segment.

size = 120 bytes

8k-120 < size < 8k

%fp-8

addr of previous seg hdr

size of this segment

float move area

display, local variables

reg save, call args, etc.
SP

FP

AP

contd. callee fram
e

Figure
��� Non�linear stack extension

A hardware integrated compare logic checking SP against segment limits would be
desirable but is not available� Hence� monitoring must be prepared by the compiler
by generating inlined code� This code could be placed around calls or integrated
into prologue and epilogue of subprograms� Latter was chosen because it reduces
code size and most of all� is eligible to support extensible systems where a caller
might have no knowledge about the callee�

Stack addressing had to be changed� Usually� a single frame pointer �FP� points
in between two frames� Negative o�sets reference local objects� while arguments
are found via positive o�sets� Now� frames are eventually separated as shown in
�gure
��� The size of the possible gap between arguments and locals is statically
unknown� Besides the FP addressing locals� this also requires an explicit argument
pointer �AP�� On Sparc V�� we utilize register �l� as FP and changed the semantics
of �fp to AP instead of solely using a new register for the AP� This approach provides
compatibility �debugger� libraries� etc�� and better performance�

The activation frame layout was extended with a �ag determining whether the
frame has caused a non�linear extension� While over�ows are checked against the
current stack limit recorded in the TCB� under�ows are detected with help of this
extension �ag� Due to alignment more than one bit must be allocated� This property
is exploited for faster segment deallocation by storing the address of the allocated
segment instead of just a boolean value with the extension �ag�

All of these modi�cations were made to the low�level back�end of the GNU gcc

	�

���� Unlimited Stacks

compiler� Among the bene�ts are support for many languages �C� C��� INSEL�
etc�� at once and compatibility with all compiler optimizations such as function
inlining or leaf functions�

����� Coupled � Runtime Management

In addition to the linkage of segment stacks� stack segments are also doubly linked
through the AP �backward� and extension �ag �forward� of frames causing non�
linear extensions �see �gure
���� This eliminates searching within lists in order to
correct under�ows and speeds�up stack evolution across segment boundaries� Two
more values must be remembered and reset in case of under�ows� the SP and the
stack limit at the time of over�ow� Instead of wasting two words in every frame�
inlined code writes these values directly underneath the header of stack segments�

save �sp������sp

�� clr ��fp��

�� mov �fp��l�

�� ld ��g�������l�

�� cmp �sp��l�

�� bgeu 	prolog�end

nop

�� clr ��g�����

�� mov �����o�

�� mov �sp��l�

�� call OVERFLOW

��� add �fp������sp

��� cmp �o���g�

��� bne 	non�linear

nop

��� b 	prolog�end

��� mov �l���sp

	non�linear�

��� st �l����o����

��� st �sp���o����

��� st �o����fp��

��� add �o�����l�

��� add �l�������sp

�� ld ��fp����o�

�� cmp �g���o�

�� be 	epilog�end

nop

�� ld ��o������l�

�� clr ��g�����

�� call UNDERFLOW

�� ld ��o������sp

�� st �l����g�����

Figure
�
� Sparc stack check prologue and epilogue

Correcting an over�ow requires calls of subprograms consuming further stack
space� This is accomplished by maintaining a reserved area at the end of the
current stack segment� The technique implemented ensures� that at least the size of
the reserved portion �currently �k� minus the minimal frame �currently 	�� bytes�
is available for the over�ow handler� It can easily be proofed� that over�ows are
always handled within this space� In case of non�linear extensions� the reserved area
is temporarily lost� Linear extensions simply move the reserved area to the new end
of the segment without losses�

� Figure
�
 lists the stack checking code used on Sparc V� for the interested
reader� In this example� the frame size is
�� bytes� Line �	� of the prologue clears
the extension �ag� FP is assigned the value of AP ���� and the e�ectual limit is
fetched from the TCB �
�� If the SP is below the limit� nothing is left to do ������
Otherwise� the stack limit is cleared �� maximum� to avoid recursion �� and the
over�ow handler is called ��� after shrinking to the minimal frame �	��� The handler
returns zero in case of linear extensions which is checked in �		�� If linear� then only

	�

�� Segmented Stacks and Heaps

the SP is reset to the value before the handler was called �	����� If non�linear� the
stack limit and SP are written to the new segment �	��	� and the segment address
is written to the extension �ag �	��� before the frame space is moved to the new
segment by setting FP and SP �	��	��� Lines 	�
 of the epilogue check whether the
current frame caused a non�linear extension by comparing the extension �ag with
zero� If yes� then the current limit is set ine�ective ���� and SP is reset ���� before
the under�ow handler is called ��� and the stack limit becomes reset ����

����� Distributed Display Handling

In turn of modifying stack addressing within the compiler� we also modi�ed dis�
play �ASU�� handling to better support nested functions� The usually used static
chain technique is unacceptable in a distributed environment� because tracing each
link of the chain could cause network communication� Displays� on the other hand�
are often implemented by copying data from the static predecessor� As this may
still cause network communication although a local function is called� it is also
unacceptable� The new technique integrated into the compiler copies the display
either form the dynamic predecessor on the same node or prefetches it� if a potential
remote function call is to be performed�

����� Performance Considerations

The computational costs for dynamic stack checking are comparably small� In the
average case of no extension� � �
 additional instructions incur� The e�ect on
real programs is debatable� Tests with a simple parallel prime generator indicate
an insigni�cant overhead ����
 versus ���� seconds�� Widening the scope of checks
could further reduce this overhead� E�g� checks are actually only needed at points
of recursion� Other checks can be combined according to the statically predictable
deepest call level�
Internal fragmentation only occurs in case of non�linear extensions� Let f be

the average frame size� r the size of the reserved area� and s the average segment
size� Following formula is an approximation of the internal stack fragmentation� if
every extension was non�linear�

Favg �
r � ��s� r� mod f�

s
� �k � 	�� � r � �k

If f � ��� r � �	��� and s �
�k internal fragmentation would be �� � Non�
linear extensions are problematical in two ways� First� they may cause noticeable
fragmentation� which can be optimized by choosing adequate segment sizes� Second�
in contrast to linear extensions� non�linearly extended segments become freed as
soon as the call�level causing the extension is left and might already be reallocated
with the next call leading to unfavorable thrashing � This situation is avoided by
exploiting the region allocator to provide regions at preferred addresses�

��� Heaps

Throughout this paper� the term �heap� refers to a pool of memory available for
allocation and deallocation in arbitrary order� To eliminate synchronization and
communication as far as possible� each AC �de��allocates objects on its own dedi�
cated heap�
We investigated existing libraries concerning their eligibility to serve as a starting

point for the implementation of the heap segment stack� Because of its excellent
performance �DDZ��� and its both� short and understandable source code� D� Lea�s

��

���� Heaps

discontinous
top extension

addr of previous seg hdr

size of this segment

addr of previous seg hdr

size of this segment

segtop - 8

contd. heap arena

+8

+8

segtop

(user data + management info)

used and unused chunks

+16

info about last chunk in segment (size, etc)

heap (arena) information

causing the overflow
chunk of the object

+ ~1k

hole chunk (hole flag, addrress of old top)

new top chunk

Figure
��� Heap extension

freely available memory allocator G		 malloc �Lea�� was selected� It structures
heap space into free and allocated chunks� A special free chunk� called top chunk
�TC�� is used to grow and shrink the heap� It is split and coalesced as chunks are
�de��allocated at the top end of the heap while being increased and decreased at
the upper end with the system call sbrk�

In contrast to stacks� the separate management of each application�level object
in a chunk allows to easily spread a heap across segments� because splitting can be
performed between arbitrary chunks� Obviously� linear extensions and reductions
simply increase and decrease TC�s upper limit� identically to sbrk without requiring
changes to the library�

Several modi�cations were made to support positive or negative holes caused by
non�linear extensions �see �gure
���� If TC is non�linearly extended� the e�ectual
TC is converted into an ordinary free chunk� which can be used to satisfy subsequent
allocations� Its chunk information �size� etc�� is placed at the highest address of the
old top segment� Above the segment header of the new segment� a special hole chunk
is installed and the allocation causing the over�ow is performed� The remainder of
the segment is used as the new TC� The hole chunk serves two purposes� First� it
stores the information about the old TC� Second� it has a �ag set� that prevents
this chunk from being coalesced with other chunks than the TC� Heap trimming
operations� succeeding deallocations with coalescences� decrease TC�s upper limit
if its size exceeds a certain limit� Each time TC is trimmed� it is also checked�
whether TC could be coalesced with the hole chunk� which would mean that no
chunks are allocated within this segment� If this is the case� a non�linear reduction

�	

�� Segmented Stacks and Heaps

is performed instead of just linearly reducing the segment size� Before returning
regions to the node region pool� the old TC is re�established based on information
stored in the hole chunk and at the end of the previous segment�
The computational overhead introduced with the segmented heap organization

is neglectable� Similarly to stack space� fragmentation increases with the amount of
non�linear extensions which can be controlled with the region allocator� In contrast
to stack space� there is no reserved area in heap space being wasted� Furthermore�
lazy reduction can be employed by deferring heap trimming which nearly eliminates
the thrashing e�ect explained in
�	���

��

Object�Distribution and Garbage

Collection

Current work is focusing on the transparent incorporation of garbage collection
�GC� and DSM capabilities into heap management� In a long term running dis�
tributed single address space system� GC and DSM have strong interactions� A joint
approach will be superior to individually optimized solutions� For example� indi�
rections needed for hardware�supported distribution of individual objects �GPR���
can at the same time be exploited by the collector to move objects� The approach
taken� is to widen the scope of GC to include management objects as well as appli�
cation level objects in a collection hierarchy� References to objects and replicates
of remote objects are locally monitored� Locally unreachable replicates become
deleted� Proxy pages only mapped to hold replicates and migrated objects become
further unmapped by the local collector if they do not contain any reachable repre�
sentants of remote objects� �Original objects� are deleted if neither replicates nor
local references exist�
A �rst prototype of the MoDiS DSM� providing distributed shared stack objects�

is explained in detail in �GPR���� The techniques developed� are currently adapted
to provide e�cient remote access to heap objects� The basic idea is to access ob�
jects mediately via indirection pointers in order to move shared objects between
di�erent memory regions� These regions represent per node read�write� read�only
and no rights� which are checked in hardware because regions are page aligned�
Accesses with insu�cient rights trigger faults� Software handlers retrieve the re�
quested object� enforce per object consistency with a dynamically chosen coherence
protocol� and adjust the indirection� Pointer swizzling at fault time between dif�
ferent memory regions delivers the ability to exploit the page fault mechanism of
�o� the shelf hardware�� Thus� the DSM management only has to handle accesses
to locally unavailable objects� Performance penalties as known from all�in software
implementations are avoided while individual objects are still e�ciently handled
without false�sharing�

�

Conclusion

The reader might have noticed� that although this approach is introduced as being
top�down oriented� concepts are explained rather in the opposite direction starting
from coarse partitions and regions� In fact� concepts were elaborated top�down with
the bottom in mind� Pure top�down construction seems to be at least as unsatisfac�
tory as bottom�up driven methods� Where the latter fails to match application�level
requirements� the former tends to miss real world possibilities�
The memory management techniques presented� aim to support parallelism and

distribution as an integral part of a new distributed OS architecture� The moti�
vation is to free the application level from repetitive and error prone management
tasks� Although the context of this work is a language�based approach� most of the
concepts elaborated are also applicable in other parallel or distributed environments�
Besides distinguishing stack and heap� memory management is invisible at the

application level� The programmer is not burdened with object locations� net�
work messages� special sharable regions� or stack size requirements� Instead� the
OS performs adaptive segmentation to fully exploit the address space for concur�
rent computations dynamically varying in size and number� Memory consumption
approximates application�level requirements� Furthermore� any application level
object is shared across nodes with automatic migration or replication as necessary�
It is also stated clearly� that these features do not induce signi�cant constant over�
head� This is a prerequisite to not solely provide speed�ups with the consumption
of additional resources but also the possibility of defacto advantages compared to
conventional systems�
Implementation is based on a tight coupling of tools and kernel into an inte�

grated OS� Instead of constructing layers� all instances involved in management
are considered as possibilities to implement management functionality� To reduce
the e�ort needed to construct these instances from scratch and at the same time
avoid reinventions of the wheel� existing software is modi�ed to meet changed re�
quirements� In turn� compatibility is limited� Existing binaries can be integrated
into the system but to fully pro�t from these new features� applications at least
have to be recompiled� Another important step is the introduction of new lan�
guages as brie�y presented in this paper� supporting e�g� high level speci�cation of
concurrency�
The platform used for the implementation of these concepts consists of 	� SUN

Ultra 	 workstations running Solaris ����	 interconnected with a 	��Mbit�s Fast
Ethernet� Implementation and evaluation of segmented stacks as well as modi�ca�
tions of the malloc library is �nished�
Partitioning into shared and node partitions� region distribution and the region

allocator are realized to a great extend� Besides the object�based DSM for heap
space� current implementation work concentrates on dynamic region redistribution
and visualization tools� Conceptual work is focusing on the interaction between
DSM and distributed garbage collection�

�Using this line of thought in this paper would probably not lead to a better understanding for

the techniques�

��

Bibliography

�ARD��� Patrik Reali Andreas R� Disteli� Combining Oberon with active objects�
In Proc� of Joint Modular Languages Conf� �JMLC�� LNCS �	
�� Linz�
Austria� March 	���� Springer Verlag�

�ASU�� A� V� Aho� R� Sethi� and J� D� Ullman� Compilers� principles� tech�
niques� tools� Addison�Wesley� 	���

�BZS�
� Brian N� Bershad� Matthew J� Zekauskas� and Wayne A� Sawdon� The
Midway Distributed Shared Memory System� In Proc� of the IEEE
CompCon Conf�� 	��
�

�Car��� J� B� Carter� Design of the Munin Distributed Shared Memory Sys�
tem� Journal of Parallel and Distributed Computing� �������	������
September 	����

�Car��� John B� Carter� Distributed shared memory� Past� present� and future�
slides of tutorial�
rd Int�l Workshop on High�Level Parallel Program�
ming Models and Supportive Environments� March 	����

�CLBHL�
� Je� Chase� Hank Levy� Miche Baker�Harvey� and Ed Lazowska� Opal�
A single address space system for ��bit architectures� In Proc� of
the Fourth Workshop on Workstation Operating Systems� pages ������
	��
�

�Cor�	� H� Corporall� Distributed heapmanagement using reference weights�
In Arndt Bode� editor� Distributed Memory Computing� number ���
in LNCS� pages
���

� �nd European Conf�� EDMCC�� Springer�
Verlag� April 	��	�

�DDZ��� David Detlefs� Al Dosser� and Benjamin G� Zorn� Memory allocation
costs in large C and C�� programs� Software Practice and Experience�
������������� June 	����

�ea��� Paul R� Wilson et al� Dynamic storage allocation� A survey and critical
review� In Henry Baker� editor� Proc� of Intl Workshop on Memory
Management� volume �� of LNCS� Kinross� Scotland� September 	����
Springer�Verlag�

�ea�a� A� D� Skousen et al� The Sombrero operating system for a distributed
single very large address space� Technical Report TR������� Arizona
State University� April 	���

�ea�b� Cristiana Amza et al� TreadMarks� shared memory computing on
networks of workstations� Computer� ������	����� February 	���

�Elp�
� Kevin Elphinstone� Address space management issues in the Mungi
operating system� Technical Report SCS�E Report �
	�� University
of New South Wales� Australia� November 	��
�

�EW��a� C� Eckert and H��M� Windisch� A new approach to match operating
systems to application needs� In Proc� of the �th Intl Conf� on Parallel
and Distributed Computing and Systems �ISMM�� Washington� DC�
October 	����

��

BIBLIOGRAPHY

�EW��b� C� Eckert and H��M� Windisch� A top�down driven� object�based
approach to application�speci�c operating system design� In Proc�
of the Intl Workshop on Object�orientation in Operating Systems
�IWOOOS�� pages 	�
�	�� Lund� Sweden� August 	����

�Flo��� Michael A� Floyd� Turbo Pascal with objects� Dr� Dobbs Journal of
Software Tools� 	�������
� ������ July 	����

�Glo��� Wolfram Gloger� ptmalloc � a multi�threaded malloc im�
plementation� FTP� April 	���� ftp���ftp�dent�med�uni�
muenchen�de�pub�wmglo�ptmalloc�tar�gz�

�GP��� Sascha Groh and Markus Pizka� A di�erent approach to resource man�
agement for distributed systems� In Proc� of Intl Conf� on Paral�
lel and Distributed Processing Techniques and Applications �PDPTA��
July 	����

�GPR��� S� Groh� M� Pizka� and J� Rudolph� Shadow stacks � a hardware�
supported DSM for objects of any granularity� In Proc� of the �rd
Intl Conf� on Algorithms and Architectures for Parallel Processing
�ICA�PP�� December 	����

�Gro�� Sascha Groh� Designing an e�cient resource management for parallel
distributed systems by the use of a graph replacement system� In Proc�
of the Intl Conf� on Parallel and Distributed Processing Techniques
and Applications �PDPTA�� pages �	������ August 	���

�Hae� Mike Haertel� Mmalloc� WWW�
http���www�sdsu�edu�doc�texi�mmalloc toc�html�

�HL�
� Guido Hogen and Rita Loogen� A new stack technique for the man�
agement of runtime structures in distributed environments� Technical
Report �
��
� RWTH Aachen� 	��
�

�HMT��� Robert Harper� Robin Milner� and Mads Tofte� The De�nition of Stan�
dard ML� Version
� Technical Report ECS�LFCS�����	� Laboratory
for the Foundations of Computer Science� University of Edinburgh�
May 	����

�IEE��� IEEE� IEEE �		���c������ Information Technology � Portable Op�
erating System Interface �POSIX� � System Application Program In�
terface �API� Amendment
� Threads Extension �C Language�� IEEE
Computer Society Press� 		�� Spring Street� Suite
��� Silver Spring�
MD ���	�� USA� 	����

�JKW��� Kirk L� Johnson� M� Frans Kaashoek� and Deborah A� Wallach� CRL�
high�performance all�software distributed shared memory� In Proc� of
the ��th ACM Symposium on Operating Systems Principles �SOSP��
volume ����� 	����

�Lea�� Doug Lea� A memory allocator� WWW� December 	���
http���g�oswego�edu�dl�html�malloc�html�

�Li�� Kai Li� Shared Virtual Memory on Loosely Coupled Multiprocessors�
PhD thesis� Department of Computer Science� Yale University� New
Haven� CT� October 	���

�

�ML��� D� C� J� Matthews and T� Le Sergent� LEMMA� A distributed shared
memory with global and local garbage collection� In Proc� of the Intl
Workshop on Memory Management �IWMM�� pages ����
		� Septem�
ber 	����

�PE��� M� Pizka and C� Eckert� A language�based approach to construct struc�
tured and e�cient object�based distributed systems� In Proc� of the
�	th Hawaii Int� Conf� on System Sciences� volume 	� pages 	
��	
��
Maui� Hawai� January 	���� IEEE CS Press�

�Piz��� Markus Pizka� Design and implementation of the GNU INSEL�compiler
gic� Technical Report TUM�I��	
� Technische Universit!at M!unchen�
Dept� of CS� 	����

�PS��� David Plainfoss"e and Marc Shapiro� A survey of distributed garbage
collection techniques� In Henry Baker� editor� Proc� of Intl Work�
shop on Memory Management� volume �� of LNCS� ILOG� Gentilly�
France� and INRIA� Le Chesnay� France� September 	���� Springer�
Verlag�

�PT��� H� Pagnia and O� Theel� Sacri�cing true distribution for gaining access
e�ciency of replicated shared objects� In Proc� of the ��st Hawaii Intl
Conf� on System Sciences �HICSS�� volume VII� January 	����

�Rad��� Ralph Radermacher� EVA� A Runtime Environment with Integrated
Load Balancing for Distributed and Parallel Systems� PhD thesis� TU
M!unchen� 	���� german only�

�SSC��� M� Swanson� L� Stroller� and J� B� Carter� Making distributed shared
memory simple� yet e�cient� In Proc� of the �rd Intl Workshop
on High�Level Parallel Programming Models and Supportive Environ�
ments� pages ��	
� March 	����

�Sta��� Richard M� Stallman� Using and Porting GNU CC� Free Software
Foundation� November 	����

�Sun��� SunSoft� Mountain View� CA� Solaris Multithreaded Programming
Guide� 	����

�Tan��� Andrew S� Tanenbaum� Modern Operating Systems� Prentice Hall�
New Jersey� 	����

�TF��� O� E� Theel and B� D� Fleisch� Design and analysis of highly available
and scalable coherence protocols for distributed shared memory sys�
tems using stochastic modeling� In Intl Conf� on Parallel Processing�
Vol��� Architecture� pages 	��	
�� Boca Raton� USA� August 	����
CRC Press�

�vDHT��� L� van Doorn� P� Homburg� and A� S� Tanenbaum� Paramecium� An
extensible object�based kernel� In Proc� of the �th Workshop on Hot
Topics on Operating Systems �HotOS�� Orcas Island� WA� May 	����

�Wil��� Paul R� Wilson� Uniprocessor garbage collection techniques� Technical
report� University of Texas� January 	���� Expanded version of the
IWMM�� paper�

�Win�� H��M� Windisch� The Distributed Programming Language INSEL �
Concepts and Implementation� In High�Level Programming Models and
Supportive Environments HIPS��� 	���

��

SFB
��� Methoden und Werkzeuge f�ur die Nutzung paralleler
Rechnerarchitekturen

bisher erschienen �

Reihe A

Liste aller erschienenen Berichte von ���������
auf besondere Anforderung

����	��� A Hans�Joachim Bungartz� Higher Order Finite Elements on Sparse Grids

�������� A Tao Zhang� Seonglim Kang� Lester R� Lipsky� The Performance of Parallel

Computers� Order Statistics and Amdahl�s Law

����
��� A Lester R� Lipsky� Appie van de Liefvoort� Transformation of the Kronecker

Product of Identical Servers to a Reduced Product Space

�������� A Pierre Fiorini� Lester R� Lipsky� Wen�Jung Hsin� Appie van de Liefvoort� Auto�

Correlation of Lag�k For Customers Departing From Semi�Markov Processes

�������� A Sascha Hilgenfeldt� Robert Balder� Christoph Zenger� Sparse Grids� Applica�

tions to Multi�dimensional Schr!odinger Problems

������� A Maximilian Fuchs� Formal Design of a Model�N Counter

�������� A Hans�Joachim Bungartz� Stefan Schulte� Coupled Problems in Microsystem

Technology

�������� A Alexander Pfa�nger� Parallel Communication on Workstation Networks with

Complex Topologies

�������� A Ketil St#len� Assumption�Commitment Rules for Data��ow Networks � with

an Emphasis on Completeness

���	���� A Ketil St#len� Max Fuchs� A Formal Method for Hardware�Software Co�Design

���		��� A Thomas Schnekenburger� The ALDY Load Distribution System

���	���� A Javier Esparza� Stefan R!omer� Walter Vogler� An Improvement of McMillan�s

Unfolding Algorithm

���	
��� A Stephan Melzer� Javier Esparza� Checking System Properties via Integer

Programming

���	���� A Radu Grosu� Ketil St#len� A Denotational Model for Mobile Point�to�Point

Data�ow Networks

���	���� A Andrei Kovalyov� Javier Esparza� A Polynomial Algorithm to Compute the

Concurrency Relation of Free�Choice Signal Transition Graphs

���	��� A Bernhard Sch!atz� Katharina Spies� Formale Syntax zur logischen Kernsprache

der Focus�Entwicklungsmethodik

���	���� A Georg Stellner� Using CoCheck on a Network of Workstations

���	���� A Arndt Bode� Thomas Ludwig� Vaidy Sunderam� Roland Wism!uller� Workshop

on PVM� MPI� Tools and Applications

���	���� A Thomas Schnekenburger� Integration of Load Distribution into ParMod�C

�������� A Ketil St#len� Re�nement Principles Supporting the Transition from Asyn�

chronous to Synchronous Communication

����	��� A Andreas Listl� Giannis Bozas� Performance Gains Using Subpages for Cache

Coherency Control

�������� A Volker Heun� Ernst W� Mayr� Embedding Graphs with Bounded Treewidth

into Optimal Hypercubes

��

Reihe A

����
��� A Petr Jan$car� Javier Esparza� Deciding Finiteness of Petri Nets up to
Bisimulation

�������� A M� Jung� U� R!ude� Implicit Extrapolation Methods for Variable Coe�cient
Problems

����	�� A Michael Griebel� Tilman Neunhoe�er� Hans Regler� Algebraic Multigrid Meth�
ods for the Solution of the Navier�Stokes Equations in Complicated Geometries

������� A Thomas Grauschopf� Michael Griebel� Hans Regler� Additive Multilevel�
Preconditioners based on Bilinear Interpolation� Matrix Dependent Geomet�
ric Coarsening and Algebraic�Multigrid Coarsening for Second Order Elliptic
PDEs

����
�� A Volker Heun� Ernst W� Mayr� Optimal Dynamic Edge�Disjoint Embeddings of
Complete Binary Trees into Hypercubes

������� A Thomas Huckle� E�cient Computation of Sparse Approximate Inverses

������� A Thomas Ludwig� Roland Wism!uller� Vaidy Sunderam� Arndt Bode� OMIS �

On�line Monitoring Interface Speci�cation

������ A Ekkart Kindler� A Compositional Partial Order Semantics for Petri Net

Components

������� A Richard Mayr� Some Results on Basic Parallel Processes

������� A Ralph Radermacher� Frank Weimer� INSEL Syntax�Bericht

������� A P�P� Spies� C� Eckert� M� Lange� D� Marek� R� Radermacher� F� Weimer� H��M�

Windisch� Sprachkonzepte zur Konstruktion verteilter Systeme

���	��� A Stefan Lamberts� Thomas Ludwig� Christian R!oder� Arndt Bode� PFSLib � A

File System for Parallel Programming Environments

���		�� A Manfred Broy� Gheorghe S%tef&anescu� The Algebra of Stream Processing

Functions

���	��� A Javier Esparza� Reachability in Live and Safe Free�Choice Petri Nets is NP�

complete

���	
�� A Radu Grosu� Ketil St#len� A Denotational Model for Mobile Many�to�Many

Data��ow Networks

���	��� A Giannis Bozas� Michael Jaedicke� Andreas Listl� Bernhard Mitschang� Angelika

Reiser� Stephan Zimmermann� On Transforming a Sequential SQL�DBMS into
a Parallel One� First Results and Experiences of the MIDAS Project

���	��� A Richard Mayr� A Tableau System for Model Checking Petri Nets with a Frag�
ment of the Linear Time � �Calculus

���	�� A Ursula Hinkel� Katharina Spies� Anleitung zur Spezi�kation von mobilen� dy�
namischen Focus�Netzen

���	��� A Richard Mayr� Model Checking PA�Processes

���	��� A Michaela Huhn� Peter Niebert� Frank Wallner� Put your Model Checker on

Diet� Veri�cation on Local States

����	��� A Tobias M!uller� Stefan Lamberts� Ursula Maier� Georg Stellner� Evaluierung der

Leistungsf�ahigkeit eines ATM�Netzes mit parallelen Programmierbibliotheken

�������� A Hans�Joachim Bungartz and Thomas Dornseifer� Sparse Grids� Recent Devel�

opments for Elliptic Partial Di�erential Equations

����
��� A Bernhard Mitschang� Technologie f�ur Parallele Datenbanken � Bericht zum

Workshop

�������� A nicht erschienen

�������� A Hans�Joachim Bungartz� Ralf Ebner� Stefan Schulte� Hierarchische Basen zur

e�zienten Kopplung substrukturierter Probleme der Strukturmechanik

��

Reihe A

������� A Hans�Joachim Bungartz� Anton Frank� Florian Meier� Tilman Neunhoe�er�
Stefan Schulte� Fluid Structure Interaction�
D Numerical Simulation and
Visualization of a Micropump

�������� A Javier Esparza� Stephan Melzer� Model Checking LTL using Constraint
Programming

�������� A Niels Reimer� Untersuchung von Strategien f!ur verteiltes Last� und
Ressourcenmanagement

�������� A Markus Pizka� Design and Implementation of the GNU INSEL�Compiler gic

���	���� A Manfred Broy� Franz Regensburger� Bernhard Sch!atz� Katharina Spies� The

Steamboiler Speci�cation � A Case Study in Focus

���		��� A Christine R!ockl� How to Make Substitution Preserve Strong Bisimilarity

���	���� A Christian B� Czech� Architektur und Konzept des Dycos�Kerns

���	
��� A Jan Philipps� Alexander Schmidt� Tra�c Flow by Data Flow

���	���� A Norbert Fr!ohlich� Rolf Schlagenhaft� Josef Fleischmann� Partitioning VLSI�

Circuits for Parallel Simulation on Transistor Level

���	���� A Frank Weimer� DaViT� Ein System zur interaktiven Ausf!uhrung und zur Vi�

sualisierung von INSEL�Programmen

���	��� A Niels Reimer� J!urgen Rudolph� Katharina Spies� Von FOCUS nach INSEL �

Eine Aufzugssteuerung

���	���� A Radu Grosu� Ketil St#len� Manfred Broy� A Denotational Model for Mobile

Point�to�Point Data��ow Networks with Channel Sharing

���	���� A Christian R!oder� Georg Stellner� Design of Load Management for Parallel Ap�

plications in Networks of Heterogenous Workstations

���	���� A Frank Wallner� Model Checking LTL Using Net Unfoldings

�������� A Andreas Wolf� Andreas Kmoch� Einsatz eines automatischen Theorembeweis�

ers in einer taktikgesteuerten Beweisumgebung zur L!osung eines Beispiels aus
der Hardware�Veri�kation � Fallstudie �

����	��� A Andreas Wolf� Marc Fuchs� Cooperative Parallel Automated Theorem Proving

�������� A T� Ludwig� R� Wism!uller� V� Sunderam� A� Bode� OMIS � On�line Monitoring

Interface Speci�cation �Version ����

����
��� A Stephan Merkel� Veri�cation of Fault Tolerant Algorithms Using PEP

�������� A Manfred Broy� Max Breitling� Bernhard Sch!atz� Katharina Spies� Summary of

Case Studies in Focus � Part II

�������� A Michael Jaedicke� Bernhard Mitschang� A Framework for Parallel Processing

of Aggregat and Scalar Functions in Object�Relational DBMS

������� A Marc Fuchs� Similarity�Based Lemma Generation with Lemma�Delaying

Tableau Enumeration

�������� A Max Breitling� Formalizing and Verifying TimeWarp with FOCUS

�������� A Peter Jakobi� Andreas Wolf� DBFW� A Simple DataBase FrameWork for

the Evaluation and Maintenance of Automated Theorem Prover Data �incl�
Documentation�

�������� A Radu Grosu� Ketil St#len� Compositional Speci�cation of Mobile Systems

����	��� A A� Bode� A� Ganz� C� Gold� S� Petri� N� Reimer� B� Schiemann� T� Schneken�

burger �Herausgeber�� �'Anwendungsbezogene Lastverteilung��� ALV���

�������� A Ursula Hinkel� Home Shopping � Die Spezi�kation einer Kommunikationsan�

wendung in Focus

����
��� A Katharina Spies� Eine Methode zur formalen Modellierung von

Betriebssystemkonzepten

�

Reihe A

�������� A Stefan Bischof� Ernst�W� Mayr� On�Line Scheduling of Parallel Jobs with Run�
time Restrictions

�������� A St� Bischof� R� Ebner� Th� Erlebach� Load Balancing for Problems with Good
Bisectors and Applications in Finite Element Simulations� Worst�case Analysis

and Practical Results

������� A Giannis Bozas� Susanne Kober� Logging and Crash Recovery in Shared�Disk
Database Systems

�������� A Markus Pizka� Distributed Virtual Address Space Management in the MoDiS�
OS

	

SFB
�� � Methoden und Werkzeuge f�ur die Nutzung paralleler
Rechnerarchitekturen

Reihe B

���	��� B Wolfgang Reisig� Petri Nets and Algebraic Speci�cations

������� B J!org Desel� On Abstraction of Nets

���
��� B J!org Desel� Reduction and Design of Well�behaved Free�choice Systems

������� B Franz Abstreiter� Michael Friedrich� Hans�J!urgen Plewan� Das Werkzeug run�

time zur Beobachtung verteilter und paralleler Programme

���	��	 B Barbara Paech	� Concurrency as a Modality

������	 B Birgit Kandler� Markus Pawlowski� SAM� Eine Sortier� Toolbox �

Anwenderbeschreibung

���
��	 B Erwin Loibl� Hans Obermaier� Markus Pawlowski� �� Workshop !uber Paral�

lelisierung von Datenbanksystemen

������	 B Werner Pohlmann� A Limitation of Distributed Simulation Methods

������	 B Dominik Gomm� Ekkart Kindler� A Weakly Coherent Virtually Shared Mem�

ory Scheme� Formal Speci�cation and Analysis

�����	 B Dominik Gomm� Ekkart Kindler� Causality Based Speci�cation and Correct�

ness Proof of a Virtually Shared Memory Scheme

������	 B W� Reisig� Concurrent Temporal Logic

���	��� B Malte Grosse� Christian B� Suttner� A Parallel Algorithm for Set�of�Support

Christian B� Suttner� Parallel Computation of Multiple Sets�of�Support

������� B Arndt Bode� Hartmut Wedekind� Parallelrechner� Theorie� Hardware� Soft�

ware� Anwendungen

���	��
 B Max Fuchs� Funktionale Spezi�kation einer Geschwindigkeitsregelung

������
 B Ekkart Kindler� Sicherheits� und Lebendigkeitseigenschaften� Ein Liter�

atur!uberblick

���	��� B Andreas Listl� Thomas Schnekenburger� Michael Friedrich� Zum Entwurf eines

Prototypen f!ur MIDAS

�

