
Evolving Software Tools for New Distributed

Computing Environments �

Markus Pizka� Claudia Eckert� Sascha Groh
Munich University of Technology
Department of Computer Science

����� Munich �Germany�

Abstract In future� parallel and distributed com�

puting paradigms will replace nowadays predomi�

nant sequential and centralized ones� Facing the

challenge to support the construction of complex

but high�quality distributed applications� appropri�

ate software environments have to be provided� Ex�

perience has shown� that these new paradigms re�

quire support by the resource management system�

comprising compiler� linker and operating system

to name only a few of the tools involved� As the

implementation of new and high�quality tools de�

mands tremendous e�orts� modi�cation but basi�

cally reusage of existing tools as far as possible is

desirable�

This paper presents an approach to develop a re�

source management system supporting parallel and

distributed computing� As an example of our imple�

mentation strategy we elaborate on the utilization

and customization of the well�known GNU compiler

gcc to compile the distributed and parallel program�

ming language used in the approach�

Keywords� distributed systems� languages� tools�

compiler� gcc

� Introduction

Currently� a broad spectrum of research activ�
ities is focusing on the transition from sequen�
tial and centralized processing to distributed�
parallel and cooperative computing� To sup�
port the construction of high�quality and ef�
�cient complex distributed systems� appropri�

�This project is sponsored by the DFG �German Re�
search Council� as part of the SFB ���� � Tools and

methods for the utilization of parallel architectures�

ate software environments have to be provided�
These environments have to ful�ll at least two
somehow contradictory goals� On the one
hand� they should signi�cantly ease distributed
programming by hiding as many details of the
distributed nature of the hardware con�gura�
tion as possible� On the other hand� they have
to enhance performance by providing adapt�
ability and scalability without introducing an
distinct management overhead�
New resource management systems� com�

prising software such as compiler� linker and
operating system �OS� kernels are required to
meet these requirements� We argue that the
implementation of theses tools does not have
to start from scratch� Existing software can be
modi�ed to meet the demands of distributed
computing�
Developing appropriate software tools� we

are facing two major problems� First� their
implementation demands tremendous e�orts�
Second� the quality of the tools determines
the success of the system� This paper demon�
strates� that by modifying but basically reusing
existing tools both aspects can be addressed to
develop high�quality tools with acceptable ef�
fort� As an example for our implementation
strategy� we will explain modi�cations of the
well�known GNU compiler gcc to match the
requirements of a new distributed computing
environment�

The rest of the paper is organized as follows�
Section � will brie�y present the key principles
of our approach� The object�model and struc�
turing concepts provided by the language IN�

SEL are introduced in section ��	 and ���� In
��
 we present our general model of an adaptive
and scalable distributed resource management
system� The implementation of this model re�
quires a systematic construction of the software
tools needed� as sketched in
� As an example
for our strategy� we will describe the adaption
of the GNU compiler gcc to our requirements
in section ��

� The MoDiS Approach

In the project MoDiS �Model oriented
Distributed Systems� �	� � we follow a top�
down driven� language�based approach to pro�
vide the desired comfortable programming en�
vironment as well as to ensure e�cient execu�
tion� A single homogeneous and transparent
set of concepts is given to construct operat�
ing system functionality as well as user level
applications� Objects representing new func�
tionality �especially applications� dynamically
extend the system� forming a system where ap�
plications and operating system functionality
are systematically and dynamically integrated�

The properties of the abstract concepts elab�
orated in the MoDiS project de�ne require�
ments at a high level of abstraction� It is the
responsibility of the resource management sys�
tem to map these requirements to available dis�
tributed hardware resources� This mapping is
achieved by top�down oriented stepwise re�ne�
ment of the abstract requirements� Some of
the transition steps have to be performed at
compile�time while others have to be executed
at runtime�

To implement the MoDiS model of a dis�
tributed system� we designed the programming
language INSEL� that o�ers language concepts
that are well�adapted to our abstract model�

��� Programming Language INSEL

INSEL �
 provides language concepts to pro�
gram distributed applications without any
knowledge about details of the underlying
distributed hardware con�guration� It is a

high�level� type�safe� imperative and object�
based programming language� supporting ex�
plicit task parallelism�

INSEL objects support encapsulation and
can dynamically be created during program
execution as instances of class describing ob�
jects� called generators� To prevent dangling
pointers� objects are automatically deleted ac�
cording to a conceptually de�ned life�time ���
In contrast to class concepts known� as for in�
stance in C�� ��� generators are integrated
into the system in the same way as other ob�
jects and can be nested within other generators
or instances and vice versa�

Determined by the associated generator� IN�
SEL objects may either be active� called actors

or passive ones� An actor de�nes a separate
�ow of control and executes concurrently to its
creator�

INSEL objects may communicate directly
in a client�server style �message passing
paradigm� as well as indirectly by access�
ing shared passive objects �shared memory
paradigm�� All requests to objects are served
synchronously�

��� Structural Dependencies

Based on the speci�c properties of the language
concepts� especially nesting of instances and
generators� dependencies between the objects
of an INSEL system are established� This kind
of structuring information has several bene�ts�
First� it is important to notice� that structural
dependencies �� re�ect application�level prop�
erties and can therefore be exploited to enforce
automated application�speci�c resource man�
agement� Second� they are implicitly deter�
mined by the programmer by employing our
language concepts� He is not burdened with
having to specify hints to the resource man�
agement system in addition to writing his ap�
plication� And third� since most of these de�
pendencies are based on class properties� they
are easy to predetermine by software tools such
as the compiler� Most important of these sys�
tem structures is the termination dependency�
which de�nes a partial order on the termina�

tion and deletion of objects� The lifetime of
each INSEL�object depends conceptually on
exactly one other object in a way that ensures
that no object is deleted as long as it is acces�
sible�

��� Resource Management Model

To enforce transparent� scalable and adaptable
distributed resource management� we devel�
oped a model of a re�ective management archi�
tecture ��� �� Based on the termination depen�
dency� INSEL objects are clustered to actor�
contexts �ACs� forming essential units of re�
source management� An AC comprises exactly
one actor and all its termination dependent
passive objects� With each AC� exactly one ab�
stract manager is associated� which is respon�
sible for performing AC�speci�c resource man�
agement� that is to ful�ll all requirements of
the actor�context� Besides fundamental tasks
such as allocating memory for the stack� heap
and code of the objects within the AC the
manager might also have to provide facilities
to maintain consistency of replicated objects�
enforce access restrictions or perform load bal�
ancing� Con�icts� such as stack over�ows� aris�
ing from di�erent managers performing their
tasks in parallel are solved by communica�
tion and cooperation between managers ac�
cording to application�level structural depen�
dencies between the ACs� This management
scheme is scalable as it does not have a poten�
tial central bottleneck and is adaptable since
resource management is performed based on
the requirements of application�level objects�
For instance� the resource management system
implements actors in a non�uniform manner�
There is no single mapping of actors to for ex�
ample UNIX processes or threads with a �xed
size stack portion�

� Systematic Construction of

Software Tools

Software tools are the means to implement
the model presented in section ��
� resulting

in a scalable and adaptive resource manage�
ment system� Furthermore� they have to per�
form the transition steps mentioned in section
�� The model of associated abstract managers
has to be implemented by systematically incor�
porating management functionalities into the
software tools involved� We do not employ a
uniform manager implementation� An imple�
mented manager might solely consist of stack
managing code produced by the compiler or
it may itself be a complex object comprising
further activities� The functionality and gran�
ularity of the manager is tailored to the re�
quirements of its AC� Figure 	 illustrates basi�
cally di�erent alternatives to implement man�
agement facilities as well as it emphasizes the
tight integration of all transition steps taken�
Most important among these implementation
alternatives are naturally the compiler and the
OS kernel�
The goal of the resource management system

is to improve the execution speed and to reduce
the size of the target representation� Hence�
the implementation strategy is to incorporate
management functionalities into the compiler
or the OS kernel instead of employing inlining
techniques or runtime libraries�

manager implementation

dynamic (code)static (compiler)

inline shared

kernelruntime lib

inform
ation interchange

Figure 	� Implementation of AC Managers

A main issue of the MoDiS approach is to ex�

ploit information concerning overall system be�
havior as well as application�speci�c informa�
tion gained from static and dynamic analysis
to achieve an adaptive resource management�
Information is systematically interchanged be�
tween all components involved in the manage�
ment task�

It is important to notice that at this point
of view� the operating system is the manage�
ment of the computing system� comprising
tools and kernel� Hence� according to the ap�
proach followed for high level distributed pro�
cessing all management units have to modi�ed
if not redesigned� The management splits up
into two dimensions� First the architecture of
AC speci�c managers and second� their com�
ponents� Cooperation among all management
units needed to achieve holistic distributed
management is provided by information inter�
change as described above and explained in ���

� Compiler

As a base for the implementation of the INSEL
compiler we chose the freely available GNU
compiler gcc� Besides of its well�known prop�
erties such as portability �� or abilities to per�
form extensive optimizations its modularized
structure allows to add new languages by im�
plementing a language�speci�c front�end that
translates source code into gcc�s AST �abstract
syntax tree� representation or to the lower RTL
�register transfer language� level �	�� Exam�
ples for this technique are the GNU Ada com�
piler gnat �		 and g��� the front�end for For�
tran�

By extending and modifying gcc to our re�
quirements� we are able to circumvent the ef�
fort to reinvent an optimizing code�generator
and avoid the necessity to implement layers
of adaption and work�arounds� that would in�
troduce run�time overhead� The tight integra�
tion of special aspects of distributed comput�
ing into the code�generator also allows us to
control interactions with existing optimization
techniques� As a pro�table side�e�ect� adapt�
ing gcc also enables us to use the GNU de�

bugger gdb for source�level debugging of the
distributed system and other tools such as the
GNU pro�ler�

��� Front�End vs� Back�End

The GNU compiler gcc is roughly structured
into front�ends and the generic back�end� A
front�end has to be written for each supported
language� It is responsible for syntactical and
semantical analysis and calls functions of the
generic back�end for code generation� The code
of each front�end is statically linked with the
code of the back�end forming a complete source
to assembler compiler� The front�end also has
to provide some standard functions called by
the back�end for language speci�c processing�
such as handling of addressable objects� The
back�end was originally developed for the lan�
guage C but extended with support for C���
Pascal and others� Hence� implementing a lan�
guage based on the gcc back�end delivers even
a higher degree of freedom than mapping new
language concepts to for example C�

��� Structure of the Compilation

Process

Figure � illustrates the internal structure
of the GNU INSEL compiler gic� The IN�
SEL front�end parses the input �le using com�
mon parser generator techniques� Instead of
managing a symbol table and performing all
static analysis on the parse tree� we use the
tree transformation and attribute evaluation
tool MAX �	� to transform the parse tree into
an attributed MAX tree �MT� representation�
The MT representation is decorated with at�
tributes that represent compile�time as well
as run�time properties of the application� It
serves as an intermediate representation to en�
force dynamic recompilation as well as to im�
plement dynamic extensibility of the running
system� For example� if run�time monitoring
indicates the necessity to dynamically replace
management functionality implemented by the
compiler� the compiler is automatically called�
It rereads the MT representation and fetches

RTL

((())((())()))

(INSEL AST)

-

represent.
term abstract

syntax-tree

transform.
concrete

abstract
syntaxtokens

stream of
characters
stream of

- attributed, abstract
INSEL syntax-tree

input file

INSEL

synthesis 1

static analyzes

synthesis 2 - target code generation (GCC back-end)

tree transformation

INSEL abstract syntax

GCC abstract syntax

(GCC trees)
in RTL in RTL

AST
to

RTL

RTL-RTL

Opt, usw.
to

Assembl.

optimization steps

abstract
syntax-trees

programm

representation

programm

representation

stream of
characters

assembler
output

GCC SYMBOLTABLE

attribute

evaluator
scanner parser

Figure �� GIC Compilation Process

the current values of the run�time attributes�
that in turn in�uence the synthesis step� lead�
ing to the desired new di�erent target repre�
sentation�

The �nal task of the INSEL front�end is to
transform the MT into the GNU AST represen�
tation by traversing the MT and calling proce�
dures of the generic back�end of gcc� The GNU
back�end manages an own symbol table and
performs several RTL to RTL transformations
before producing assembler code�

��� Modi�cations to gcc�s Back�End

The desired exploitation of gcc�s capabilities
for a distributed computing environment re�
quires modi�cations of gcc�s code generating
facility� such as restricting some optimization
techniques� introducing new ones and adapting
memory management to meet the requirements
of distributed and parallel computing� In the

subsequent sections we will explain some of the
interventions needed�

����� Access to non�local variables

gcc provides a simple but e�cient way to ac�
cess non�local data in languages that support
nesting� Instead of employing displays �	
 it
simple uses a chain of static predecessors� On
Sun Sparc� global register �g� is used to hold
the address of the static predecessor� Assum�
ing that levels of nesting are low and program
execution is centralized� this scheme delivers
su�cient performance and of course� was easy
to implement�

Without support by the code�generator�
nesting can be implemented by constructing
compound objects consisting of non�locally ac�
cessibles and passing a pointer to this com�
pounds to the callee� The callee then uses
this pointer to access non�local data� Such

an implementation is done for example in p�c
�GNU Pascal to C translator�� Comparing the
performance of this implementation with gcc�s
support for nesting we measured a
�� bene�
�t for the gcc implementation� demonstrating
that integration in the code�generator is supe�
rior�

In a distributed environment� a chain of
static predecessors is unacceptable� since track�
ing the chain might necessitate communication
over the network for each link� Hence� gcc�s
code generator has to be enhanced by replac�
ing chaining with the handling of displays�

����� Trampolining

For compatibility reasons� gcc implements
pointers to nested sub�programs via a tram�
polining technique� If the address of a nested
function g is taken within function f � a portion
of code� that sets up information about static
predecessors before branching to g is inserted
in the stack frame of f and the address of the
trampoline is used in place of the address of g�
This technique allows to use existing libraries�
such as pthreads �	� without modi�cations to�
gether with languages that support nesting�

Unfortunately� since trampoline code is stat�
ically produced by the compiler� this strat�
egy hampers dynamic extensibility� Trampo�
lines can not be dynamically placed on stack
frames of existing functions at the time new
functionality is to be integrated into the run�
ning system� To overcome this de�ciency we
replaced the trampolining mechanism with a
customized addressing scheme for nested func�
tions�

����� Parallel and Distributed Memory

Management

Due to its well�known advantages concerning
persistency and mobility of objects we em�
ploy a single virtual ��bit address space for
our system� A major problem in such parallel
computing environments with �ne�grain par�
allelism is adequate management of multiple
activities within the single non�segmented ad�

dress space� First the management has to be
performed decentralized to avoid bottlenecks
and second� the stack size required for a paral�
lel activity can not be statically predicted� A
mechanism is needed that automatically han�
dles stack growths� collisions and over�ows�

For decentralized and adaptive virtual mem�
ory management the address space is parti�
tioned into regions that are continuous ranges
of pages and are assigned to Actor�Context
�AC� speci�c Managers� Regions are units of
cooperation between managers� If a new AC
and manager is generated� the manager of the
caller splits his own regions and provides an
initial region to the callee for autonomous man�
agement� Only if the assigned regions are not
su�cient� the manager cooperates according to
application level dependencies with other man�
agers to fetch or return regions� Within the
assigned regions� each manager organizes four
logical segments for stack� heap� code and free
ranges of addresses of its AC� Each logical seg�
ment is realized by subdividing the assigned
regions into real stack� heap� code and free seg�
ments� being continuous ranges of pages� Most
interesting concerning compilation is the man�
agement of the logical stack segment�

In fact� hardware should provide advanced
means to monitor stack evolution of multiple
threads and the OS has to be prepared to
expand and shrink stack sizes transparently�
Since hardware support is not available� we
have to integrate stack checks into the com�
piler� Whenever stack space is �de��allocated�
the frame�pointer has to be checked against
upper and lower bounds of the current real
stack segment� If these limits are exceeded�
the runtime manager has to �de��allocate real
stack segments by splitting or merging the log�
ical free segment� To avoid expensive reorga�
nizations of the stack space� the newly allo�
cated real stack segment does not have to be
continuous with the existing ones� establish�
ing a fragmented stack organization� Accord�
ing to the fragmentation of stack space the ad�
dressing scheme of the gcc back�end has to be
changed� For example on a SUN Sparc argu�
ments are addressed via a constant o�set from

the frame�pointer ��fp�� We modi�ed the ad�
dressing scheme to use local register �l� as an
explicit argument pointer�

This example illustrates on the one hand the
importance of adapting and seamlessly inte�
grating all management units to the require�
ments of distributed and parallel computing
and that on the other hand� e�cient imple�
mentation is often possible by simple adaption
of existing tools�

����� Optimization

A general problem using existing unmodi�ed
compilers for parallel or even distributed pro�
cessing is� that some optimization steps are not
applicable and hard or even impossible to turn
o� selectively� But compiling without any op�
timization usually leads to signi�cant perfor�
mance degradations of factor
 to � that can
hardly be compensated with distributed pro�
cessing techniques� Distributed Performance
measurements made on such a foundation must
be considered biased� One such case is mov�
ing of loop invariant computations� For exam�
ple implementing busy waiting via distributed
shared memory �DSM� �	� might lead to end�
less loops if optimization is turned on� since the
check of the condition is considered as being in�
variant� Declaring variables used for busy wait�
ing as volatile in C solves this problem but
is no general solution� neither for distributed
programming nor for optimization in general�
Developing the INSEL�compiler on top of the
gcc back�end allows us to selectively activate
and modify such optimization steps as well as
adding new ones�

��� Extended Role of the Compiler

Besides generating code� the task of the com�
piler as part of the integrated management is
to analyze the source code and the structural
dependencies within the application� It has
to analyze� prepare and forward information
about the application to the runtime manage�
ment� Information that is not collected by
the compiler or not forwarded limits the suc�

cess of runtime management� The collection
of information out of the application source
code is essential for the success of parallel and
distributed computing with system�integrated
management� Following a two examples of us�
age of this information�

����� Preparation for Object

Distribution

A well known problem in distributed shared
memories is false sharing �	�� A shared page
includes several di�erent objects� But caused
by locality not all objects of a page are used
by an activity� Untouched or unused objects
are transported via the network without any
need� This leads to a tremendous performance
drawback in large systems with many activities
spread over several workstations� The problem
can be solved or to be more precise reduced
with the help of the compiler� Data analy�
sis during compile time can point out critical
clustering of objects on pages� Afterwards the
compiler is able to reorganize the object place�
ment pattern�

Another important point is prefetching of
needed objects� A usual DSM only fetches
an object if it is accessed� The tight cou�
pling of a DSM with the compiler allows to
prefetch objects in advance transparently to
the application�level� Not only the object cur�
rently needed is ordered by the DSM but also
objects needed in the near future� Such an in�
tegration allows the distributed system to min�
imize data and page faults�

����� Optimizing Scheduling

The optimization of distributed scheduling is
another important factor for the performance
of the running system� The foundation for an
optimal distribution is the cooperation analy�
sis of the compiler� It analysis which activi�
ties cooperate via messages and shared datas�
This information is evaluated by the load bal�
ancer to place cooperating activities on the
same workstation�

� Related Work

In approaches like Muse�Apertos �	� re�ec�
tive management architectures are constructed
similar to our manager approach� In this
projects the re�ective managers are objects for
themselves� In contrast to this� our managers
are abstract and implemented by tools� the
system itself and the kernel� Other language�
based approaches like ORCA �	� or Guide �	�
also try to provide a homogeneous program�
ming environment but often either lack the in�
tegration of activity into the languages ham�
pering analyzes concerning parallelism or are
not fully supported by a systematically de�
veloped resource management system� Often�
for simpli�cation compilers are constructed us�
ing C as a portable intermediate language� for
example in Diamonds ���� The compiler for
Napier ��	 goes steps beyond this translation
scheme by exploiting extensions of GNU C� to
for example place certain data in �xed hard�
ware registers� Common to these approaches
is� that overall management is not fully inte�
grated� limiting either the success of static op�
timization or runtime management�

In the �eld of parallel programming� numer�
ous new compilers with speci�c optimizations
for parallel processing are developed� such as
for the language psather ���� We aim to incor�
porate these important experiences and tech�
niques into our general approach to resource
management� Data parallelism in addition to
tasking parallelism will provide additional �ex�
ibility and increase performance�

The properties of single address space sys�
tems are investigated in projects like ��
� ���
��� For time and space saving management
of the single address space� we employ guarded

page tables as introduced in ����

� Current State and Future

Work

All implementations are based on a cluster of
	� SUN UltraSparc workstations connected via
Fast Ethernet� running Solaris ����	� Currently

the INSEL�compiler gic� supports about ���
of the language concepts and includes simple
semantic analysis as well as adaptions that al�
low for full optimization� At the same time�
a new incremental linker and loader based on
dynamic linking techniques known from dy�

namic and shared libraries is developed� The
goal of the linker is to support dynamic ex�
tension of the running system and to be able
to choose at runtime between di�erent alterna�
tives produced by the compiler� As described
in ��� providing di�erent implementation al�
ternatives for classes of passive objects using
compilation techniques� such as replicable or
migrable implementations is capable of enhanc�
ing resource management� As soon as the com�
piler fully supports the language INSEL� we
will add further alternatives for active objects�
such as providing or omitting threads for ab�
stract active objects� A major requirement for
this extended �exibility is� that generatable al�
ternatives are orthogonal� For example� the
decision to implement an abstract actor with
an own thread or not� must not in�uence the
implementation of callers of the actor� This
easy to state requirement must be ful�lled with
systematic construction of all alternatives by
avoiding the introduction of additional man�
agement overhead�

� Conclusion

To support the development of complex and
high�quality distributed programs� new pro�
gramming environments are required� Within
the MoDiS approach� we currently develop a
new resource management system integrating
compiler� linker and OS functionalities� The
complete set of software tools involved in the
transformation of a parallel program into an ef�
�cient distributed executable� is tailored to the
requirements of distributed computing� The
alternative to construct layers above existing
unmodi�ed tools and techniques introduces ad�
ditional overhead and even con�icts� limiting
the potential e�ciency of distributed process�
ing�

In this paper we demonstrated the bene�ts
of using existing tools and techniques to reduce
development overhead for software tools con�
siderably� Existing and successful techniques
integrated and implemented in available tools
can and should be reused with modi�cations�
reducing the development e�ort�

We presented the INSEL compiler gic based
on the GNU gcc as an example to demon�
strate our general implementation strategy�
The tight integration of the modi�ed gcc into
our resource management system eliminated
the expensive need to implement a new code�
generator� Furthermore� it gives us full �ex�
ibility for the source to target transformation
and the opportunity to make use of a large col�
lection of advanced compilation techniques� es�
pecially optimization steps�

References

�	 C� Eckert and H��M� Windisch� A Top�
down Driven� Object�based Approach
to Application�speci�c Operating System
Design� In Proceedings of the IEEE Inter�

national Workshop on Object�orientation

in Operating Systems� pages 	�
�	���
Lund� Sweden� August 	����

�� C� Eckert and H��M� Windisch� A new
approach to match operating systems to
application needs� In Proceedings of the

�th IASTED � ISMM International Con�

ference on Parallel and Distributed Com�

puting and Systems� Washington� DC� Oc�
tober 	����

�
 H��M� Windisch� The Distributed Pro�
gramming Language INSEL � Concepts
and Implementation� In High�Level Pro�

gramming Models and Supportive Envi�

ronments HIPS���� 	����

�� M� Pizka and C� Eckert� A language�based
approach to construct structured and e��
cient object�based distributed systems� In
Proc� of the �	th Hawaii Int� Conf� on

System Sciences� volume 	� pages 	
��

	
�� Maui� Hawai� January 	���� IEEE CS
Press�

�� Bjarne Stroustrup� The C

 Program�

ming Language� Addison�Wesley� Read�
ing� MA� �nd edition� 	��	�

�� Sascha Groh� Designing an e�cient
resource management for parallel dis�
tributed systems by the use of a graph re�
placement system� In Proceedings of the

International Conference on Parallel and

Distributed Processing Techniques and

Applications �PDPTA����� pages �	��
���� August 	����

�� Sascha Groh and Markus Pizka� A dif�
ferent approach to resource management
for distributed systems� In Proc� of
PDPTA��� International Conference on

Parallel and Distributed Processing Tech�

niques and Applications� July 	����

�� Sascha Groh and J�urgen Rudolph� On the
e�cient distribution of a �exible resource
management� In Proc� of EuroPDS����
June 	����

�� Richard M� Stallman� Using and Port�

ing GNU CC� Free Software Foundation�
November 	����

�	� Richard Kenner� Targetting and retarget�
ting the GNU C compiler� slides� Novem�
ber 	����

�		 C� Comar� F� Gasperoni� and E� Schon�
berg� The gnat project� A GNU�Ada�X
compiler� Technical report� Courant Insi�
tute of Mathematical Science� N�Y� Uni�
versity�

�	� A� Poetzsch�He�ter� Programming lan�
guage speci�cation and prototyping using
the MAX system� Cornell University� NY�

�	
 Alfred V� Aho� Ravi Sethi� and Je�rey D�
Ullman� Compilerbau �Teil ��� Addison�
Wesley Verlag �Deutschland� GmbH�
	����

�	� OSF� Introduction to OSF DCE� Prentice
Hall� Englewood Cli�s� NJ� 	����

�	� Kai Li� Shared Virtual Memory on

Loosely Coupled Multiprocessors� Disser�
tation� Department of Computer Science�
Yale University� New Haven� CT� October
	����

�	� W� J� Bolosky and Michael L� Scott� False
sharing and its e�ect on shared mem�
ory performance� Proc�� Fourth Symp� on

Experiences with Distributed and Multi�
processor Systems �SEDMS�� September
	��
�

�	� Y� Yokote� A� Mitsuzawa� N� Fujinami�
and M� Tokoro� Re�ective Object Man�
agement in the Muse Operating Sys�
tem� Technical Report SCSL�TR��	�����
Sony Computer Science Laboratory Inc��

�	��	
 Higashi�gotanda� Shinagawa�ku�
Tokyo� 	�	 JAPAN� September 	
 	��	�

�	� H�E� Bal� M�F� Kaashoek� and A�S�
Tanenbaum� Orca� A Language for Paral�
lel Programming of Distributed Systems�
IEEE Transactions on Software Engineer�

ing� 	��
��	������� 	����

�	� M� Riveill� An overview of the Guide lan�
guage� In Second workshop on Objects in
Large Distributed Applications� Vancou�
ver� 	��	�� 	����

��� U� Bellur� G� Craig� K� Shank� and
D� Lea� DIAMONDS� Principles and Phi�
losophy� Technical Report CASE Center
�
	
� SONY Oswego� Dept� of Computer
Science� June 	��
�

��	 R� Morrison� M� P� Atkinson� and
A� Dearle� Flexible incremental bindings
in a persistent object store� Technical re�
port� University of St� Andrews� St� An�
drews� Scotland� June 	����

��� Stephan Murer� Jerome A� Feldman� Chu�
Cheow Lim� and Martina�Maria Seidel�
psather� Layered extensions to an object�
oriented language for e�cient parallel

computation� Technical Report TR��
�
���� International Computer Science In�
stitute� Berkeley� CA� June 	��
 Novem�
ber 	��
�

��
 K� Murray� T� Wilkinson� P� Osmon�
A� Saulsbury� T� Stiemerling� and P� Kelly�
Design and implementation of an object�
orientated ���bit single address space mi�
crokernel� In Proceedings of the USENIX

Symposium on Microkernels and Other

Kernel Architectures� pages
	��
� 	��
�

��� Je� Chase� Hank Levy� Miche Baker�
Harvey� and Ed Lazowska� Opal� A single
address space system for ���bit architec�
tures� In Proceedings of the Fourth Work�

shop on Workstation Operating Systems�
pages ������ 	��
�

��� Kevin Elphinstone� Address space man�
agement issues in the Mungi operating
system� Technical Report SCS�E Re�
port �
	�� University of New South Wales�
Australia� November 	��
�

��� Jochen Liedtke� Page Table Structures
for Fine�Grain Virtual Memory� Tech�
Rep� ���� German National Research Cen�
ter for Computer Science �GMD�� October
	����

��� H��M� Windisch� Improving the e�ciency
of object invocations by dynamic object
replication� In Proc� of the Int� Conf� on

Parallel and Distributed Processing Tech�

niques and Applications � PDPTA� pages
�������� November 	����

