
The Contribution of Free Software to Software Evolution

Andreas Bauer, Markus Pizka
Institut für Informatik, Technische Universität München

Boltzmannstr. 3, Germany – 85748 Garching
{baueran|pizka}@in.tum.de

Abstract

It is remarkable to think that even without any interest
in finding suitable methods and concepts that would allow
complex software systems to evolve and remain manage-
able, the ever growing open source movement has silently
managed to establish highly successful evolution techniques
over the last two decades. These concepts represent best
practices that could be applied equally to a number of to-
day’s most crucial problems concerning the evolution of
complex commercial software systems. In this paper, the
authors state and explain some of these principles from
the perspective of experienced open source developers, and
give the rationale as to why the highly dynamic “free soft-
ware development process”, as a whole, is entangled with
constantly growing code bases and changing project sizes,
and how it deals with these successfully.

1 Introduction

“Virtue is more to be feared than vice, be-
cause its excesses are not subject to the regulation
of conscience.” — Adam Smith (1723–1790)

The development and continuous evolution of open
source software exposes astonishing similarities with the
ideas of free market economies [29]. The liberal use and
manipulation of software practised in open source environ-
ments shares the principles of economic liberalism by es-
tablishing unrestricted trade, growth, and manipulation of
software. Consequently, it could be argued that the evolu-
tion of products and processes in open source environments
will prove to be superior to any other model in the long run,
because the self-regulating interplay between demand and
supply provides for constant selection and improvement.

Indeed, there is growing evidence for this hypothesis.
The initially rather insignificant open source community
has grown to an extensive free market for software arte-
facts with thousands of participants world wide and innu-

merable products. Due to the enormous power of this mar-
ket, the quality of some of its products, e. g. GNU/Linux,
has already become sufficiently high for broad commercial
deployment. In addition to this, the size and diversity of
this open market allows it to respond quickly to changing
requirements — see, for example, new device drivers. Be-
sides products, the development process within this market
evolves constantly, too. The emergence of structured com-
munication platforms, such as SourceForge [5], the intro-
duction of roles, e. g. “maintainers”, and the dissemination
of elements of agile methods [9] clearly substantiate this
supposition.

We do not want to give the impression that open source
development could be the “silver bullet” [14] of software
engineering because, obviously, open source has its short-
comings and troubles, too. However, we do argue that the
long history of free software has introduced concepts which
are potentially useful to help large software projects, con-
sisting of millions of lines of code to evolve and develop
in a healthy manner, even over decades. Our own hands-
on experience with some of the high profile open source
products such as the GNU Compiler Collection (GCC), or
GNU/Linux, as well as our authorship and involvement with
smaller open source products, made many benefits of the
free software development model, as well as of the result-
ing architectures, evident to us.

We suggest that several of the principles and practices
discussed below, can and should be adopted by non-open
(commercial) software organisations to improve their evo-
lution capabilities for both products and development pro-
cesses.

Outline

In § 2 we clarify the scope and context of our work. It
defines the term “open source” more precisely asfree soft-
ware, describes related work with reference to successfully
evolving free software projects, and it puts this into context
with descriptions of research on software evolution. After
that, in§ 3, we will take an in-depth look on the evolution of

the process in free software environments before we focus
on the corresponding evolution of the technical architecture
in § 4. In §5 we conclude the paper by summarising the
major results of our study, and by discussing their transfer-
ability to non-free, i. e. commercial, software systems.

2 Open source and free software

When we refer to open source software in this paper, we
do not restrict ourselves to the “Open-Source” movement
which was largely sparked by the GNU/Linux project [3].
We rather talk about free software in general and discuss
software with open sources that are older than GNU/Linux
and not, in particular, free as in “free speech”, but rather
free as in “free beer”. The main difference being that, free
speech is primarily regarded as a fundamental human right,
while free beer is merely enjoyable, because it does not cost
anything.

According to the Free Software Foundation’s (FSF)
GNU General Public License [15] — the license of the
GNU/Linux project — source code may be modified and
used by a third party as long as these program changes re-
main just as free and open and the original copyright no-
tices are not altered. The FSF believes that this is the best
way to accomplish the people’s right to see and also alter
a program’s source code. The BSD-style licenses [36] on
the other hand, are much more liberal and basically allow a
third party to do whatever it pleases with the sources — even
distribute modifications as “closed source”.

The remainder of this paper is concerned with describ-
ing the authors’ experiences withfree software in general,
rather than a particular occurrence of it.

2.1 Myths and clich́ees

It is a common misconception to think of “open source”
as a purely chaotic process which results in a — more or
less — usable software product, created by spare time hack-
ers who do not share the same maintainability concerns
as their “professional” or academic counterparts. Unfor-
tunately, the title of Eric Raymond’s seminal paper “The
Cathedral and the Bazaar” [27] can be misunderstood as
supporting the chaos clichée.

Of course, this is far from being true. As we will show
below, free software development is often very well organ-
ised, with structured processes and well defined roles. Con-
sequently, there is a large number of free software products
which are considered to be at least equal in quality to their
commercial counterparts and are, therefore, supporting our
thesis.

Unfortunately though, the free software movement
largely ignores the results and trends of academia (not only)
in the field of evolution research and the other side ignores

the circumstances under which their favourite text editors,
compilers, or operating systems were brought to life. Again,
we aim to narrow this gap between the achievements of free
and “professional” software engineers in academia and in-
dustry alike.

2.2 Reality

To name just a few of the successful free software sys-
tems we would like to point out, in particular, the BSD-
based operating systems FreeBSD, NetBSD, OpenBSD,
and Darwin [2, 6], which originate from ideas and code cre-
ated mostly in the 1980s. Thanks to the high quality of the
products and the “free beer” philosophy of the BSD license
(i. e. it simply does not cost anything), major vendors like
Apple even based their commercial operating system on an
open source kernel named after Charles Darwin, who gave
birth to the theory of evolution [13, 19].

Even “free speech” projects like GCC [32], or
GNU/Linux are driven in large parts by the financial in-
volvement of major companies (e. g. IBM, Red Hat) who
assign skilled developers and other monetary resources to
software products where everyone can read and modify the
source code [17]. The outcome, of course, must be a main-
tainable product in one way or another, because maintain-
ability is a major reason why “dinosaur” projects like GCC,
*BSD, Emacs, GNU/Linux, etc. still play an important role
today, each in their individual fields.

Obviously, the open source movement has developed its
own concepts and techniques that help big projects evolve
successfully over time as well as under constantly changing
requirements. Although many of the free software products
are not interesting anymore in terms of technical innova-
tion, they are all but irrelevant today. Hence, part of the ev-
ident success of (say) an operating system like GNU/Linux
must be related to the way this software adopts to a chang-
ing technical reality community, as well as with increasing
numbers of contributors to the project (see§ 3.1, 3.2).

2.3 Related work on evolution

Due to the large gap between commercial software de-
velopment, academic research, and the practices of the free
software community it comes as no surprise that there is
still little research directly targeted at the evolution of free
software besides [23], [20], [33], and [16]. On the other
hand, an extensive variety of evolution concepts and tech-
niques, such as configuration management (e. g. CVS), re-
gression testing [28], refactoring [25], source code analysis,
code generators, and separation of concerns — to name only
a few — play an important role in the free software world,
too. We deliberately abstain from enumerating this exten-
sive list, but it should become obvious that the evolution of

2

free software as it is described below has links to various
concrete evolution techniques. However, in this work, our
interest is focused on theprinciplesof the evolution of free
software, independent of certain techniques.

Lehman’s well known eight laws of software evolution
(from [21] to [22]) address the fundamental concepts under-
lying the dynamics of software evolution. As we will see,
free software complies exceptionally well with Lehman’s
laws, although both the laws and the free software develop-
ment process emerged independently: free software is con-
tinuously changed (law I), complexity increases noticeably
(law II), and the self-regulation of the evolution process is
obvious (law III). Our observations described in the follow-
ing also strongly support laws IV to VIII. On the contrary,
the substantial compliance of free software development
with Lehman’s laws is one way of explaining the success
of open source software development.

3 Evolution of the development process

Unlike a lot of closed source software projects, free
software tends to start out with hardly any administrative
overhead. Early project phases to structure and coordi-
nate the following development process, such as proper re-
quirements engineering, usually play no significant role at
all. However, it should be obvious that, as the project size
grows, the administrative efforts can not remain constant.
There are many prominent examples that second this con-
clusion [20, 23, 12].

In fact, the free software development process is highly
dynamic, scaling with the underlying architecture as well as
with the number and skills of people involved in a project.
However, there is notthesingle free software development
process per-se, but an evolution which is firmly entangled
with the complexity of the resulting product itself.

3.1 Inevitable technical changes

Some of the dynamics in the free software development
process are due to technical changes, rather than devel-
opers’ decisions. For example, the widely used compiler
suite GCC was originally created in the mid 1980s to be a
fast and practical C compiler for 32-bit platforms that ad-
dress 8-bit bytes and have several general purpose regis-
ters [31]. Nowadays, GCC supports more than 200 different
platforms and bit ranges [26], as well as many more pro-
gramming languages and its core consists of over 900,000
lines of code. And, while the GCC project has started out
with simple email transfers between core developers (later,
via Usenet as well), its current development process works
fundamentally different today. The project has, obviously,
not only changed its original aims, but also the number and

types of people who contribute and even the way they con-
tribute to the constantly evolving product. The accompa-
nying manual for GCC 3.2.2 [32] states the names of 302
different contributors which, of course, is a strong contrast
to 1984 when Richard Stallman himself created the first ver-
sions of a — back then — rather simple system compiler for
potential GNU platforms.

These drastic changes were possible, mainly because of
the technical conditions that have improved vastly since the
creation of GCC, especially due to the expansion of the In-
ternet and all the new transfer protocols that were spawned
during that process, e. g. Hypertext Transfer Protocol (http).
In particular, the GCC project of today benefits strongly
from the following technical advances:

• automated mailing list management with access to
searchable archives and web interfaces to coordinate
and review the efforts of a world wide distributed net-
work of developers,

• (public) CVS servers with web interfaces which keep
track of different versions as well as of independent
developments within the project

• a huge number of (http and ftp) mirror sites which in-
crease the availability of the relevant data world wide,

• the introduction of and interest in new languages (e. g.
Java, Haskell) and hardware platforms (e. g. ia-64 ar-
chitecture),

• a modern and automated bug tracking system which is
accessible via the world wide web,

• “compile farms” offering central access to multiple
platforms at once, and usually sponsored by industry
firms with substantial interest in open source products,

• a growing number of external projects which are built
on top of GCC, but manage their own progress in-
dependently (e. g. Glasgow Haskell Compiler (GHC),
Realtime Java implementation, Mercury compiler),

This is also the case for other big open source projects,
because most of them evolve by deploying the same tools
(CVS, RCS, BugZilla, etc.) and under similar circum-
stances or technical conditions. Further examples are
*BSD, Mozilla, and the Linux operating system kernel. If
we compare the rise in numbers of contributors of, e. g.
FreeBSD to GCC we see similarities between the two
projects: in 1995 when FreeBSD 2.0 was released it had
55 contributors (i. e. people with write access to the code
repository); by the end of 2002, a total of 319 people were
allowed to commit their changes to the code base [20].

3

3.2 Change of organisation

The real challenge in establishing and maintaining a suc-
cessful development process for a free software product is
to introduce technical changes according to the accompany-
ing social changes when a project surpasses a “critical size”.
“The critical size” does not only depend on lines of code but
also on program modules, number of contributors and, ba-
sically, any other metric that allows us to draw conclusions
about the complexity of a software product.

Table 1. The size of open source products*

Lines of code Project Age

2,437,470 Linux kernel 2.4.2 1991
2,065,224 Mozilla 1998
1,837,608 XFree86 4.0.3 1987

984,076 GCC 2.96-20000731 1984
967,263 GDB / DejaGnu-20010316 mid. 1980s
690,983 Binutils 2.10.91.0.2 mid. 1980s
646,692 glibc 2.2.2 early 1990s
627,626 Emacs 20.7 1984

*Source: David A. Wheeler’sMore Than a Gigabuck: Estimating
GNU/Linux’s Size[38].

The nowadays prospering free software projects have all
surpassed this critical size at least once, usually in lines of
code and often in the number of contributors as well. As
can be seen in Table 1, Linux version 2.4 consists of more
than 2,400,000 lines of code and, in addition, its current
ChangeLog files suggest at least an equal amount of active
developers as (say) are involved in FreeBSD.

These numbers hint to the fact that the management tasks
in successful free software projects can not be solved by a
single person (e. g. the original author of a project) alone.
Once a critical size has been reached an executive board
emerges one way or another and the board coordinates and
controls the further evolution of the product. Consequently,
a mature project like GCC is not driven forward by Richard
Stallman anymore, but by a steering committee that consists
of 12 professional software developers, partly paid by soft-
ware vendors (e. g. Red Hat, IBM, Apple) to focus on the
development of the free compiler suite (see Table 2). While
the members are all experts in their fields, it is not expected
from any single member to keep a full understanding of the
entire 900,000 lines unity as such.

As can be seen in Table 2, free software products seem to
cope well with an executive board of 10–20 members. Ob-
viously, this is large enough to manage a complex project,
but small enough to ensure development does not cease due
to internal debates and politics. Interestingly enough, the
listed projects are roughly equivalent in size and age, but

Table 2. Executive boards in free software
projects

Project Board name Members

FreeBSD Core 15
GCC Steering Committee 12
Debian Leader & Technical Committee 8
Mozilla Project Managers (“Drivers”) 13
KDE Core Group 20

hardly connected to each other and still find 10–20 core
members a comfortable size to make the “right” decisions
about a project.

It should be pointed out that this strategy also perfectly
suits the results of extensive studies of the success and fail-
ure of commercial software projects, such as the well known
CHAOS reports of the Standish Group [35, 34]. These
studies show a project’s tendency to fail, the larger it gets.
Hence, it is highly recommended to keep a project consid-
erably small, or it is very likely to fail. This is why ag-
ile methods, such as XP, deliberately refuse to carry out
“huge” projects in a single step. Unfortunately, the dis-
semination of this fundamental lesson into commercial en-
vironments seems to be very slow. In contrast to this, self-
regulation due to competition and selection within free soft-
ware projects provides for a suitable size of the project.
The project gets split continuously into smaller subsets as
needed, with new maintainance tasks assigned to core team
members according to their skill, experience, and current
project responsibilities. In effect, the entire organisation
scales effectively with the overall size of the product.

However, the way an executive board is nominated dif-
fers between the various free software projects. While De-
bian, for example, uses democratic elections, the KDE team
is solely merit based. Anyone can become a member of
the KDE core group, but the particular applicant must have
distinguished him/herself through outstanding contributions
and dedication in the KDE project over a considerable pe-
riod of time. Albeit, KDE and Debian both make sure that
the most suited and skilled people are in charge, rather than
the “loudest”, oldest, youngest, etc. as it often happens in
commercial environments. This, in itself, is an evolutionary
process that puts forth skill rather than pure authority.

3.3 Change management

Despite the similarities between the various “big” free
software projects, there are many different approaches to
handling change management. These are, however, con-
verging more and more due to the deployment of similar

4

utilities (CVS, RCS, BitKeeper, patch/diff, etc.) that are au-
tomatising the, in parts, very complex tasks involved.

As Kumiyo Nakakoji et al. [23] have observed, the var-
ious approaches in open source change management seem
to be equally successful as there are prominent examples for
the individual techniques. In their paper, different histories
of change management are called “Evolutionary Patterns”
which distinguish themselves mainly by the way patches
are tested, reviewed, and merged into a project.

Linus Torvalds and Alan Cox, for example, two driv-
ing forces within Linux kernel development, have raised
concerns in several interviews about using public CVS
servers to handle change management even though, inter-
nally, many important Linux modules are concurrently ver-
sion controlled [30]. GCC and *BSD, on the other hand
seem to be comfortable with the facilities and possibilities
provided by a public CVS server, despite occasional “com-
mit wars” [20]. We talk about a commit war when peo-
ple working on the same parts of code keep overwriting
each others changes. This can not happen with the main
Linux kernel, because Linus Torvalds as the project’s leader,
decides personally which patches should be adopted and
which should rather be dropped or picked up by other main-
tainers for their individual trees.

In terms of change management, open source projects
seem to be doing the same things that can be found in closed
source software (see also [37]). It should be pointed out
though that even CVS as a tool has its roots in the free soft-
ware world [11], which just shows how an open source pro-
gram that started out as a couple of Shell scripts posted to
Usenet evolved into a de-facto standard today — simply be-
cause it was always tightly integrated into the evolution of
the other free software products it aimed to support. That
is, the numerous products developed with CVS have, effec-
tively, triggered the evolution process of this toolkit, up to
the point where it became an irreplaceable cornerstone in
both free and commercial projects.

4 Evolution of the architecture

In a free software project, it is not only the social struc-
ture which is adopting to a changing reality, but also the
architecture itself that is very often subject to a natural evo-
lution, rather than the result of (say) a carefully planned
requirements analysis. Again, one good example support-
ing this claim is the GCC project’s recent adoption of the
Cross Vendor Application Binary Interface proposed by In-
tel which, initially, received a negative response from its
users, because it introduced incompatibilities with previous
C++ programs. The step was necessary though in order to
be compatible with binaries created by other (commercial)
compilers that also support code generation for the new In-
tel (64-bit) hardware as well as support for the majority of

features proposed by the latest ISO standard for the C++
programming language [18].

4.1 Modular code and layers

Changing the ABI of an existing compiler is not a triv-
ial task at all although, in the case of GCC, it was possible
due to the modular design of the architecture that allows
the majority of the code generation to happen in a platform-
independent manner [31] (see Fig. 1). That is, many of the
back end modifications are transparent to the final compila-
tion passes where the RTL representation gets mapped onto
machine language templates that describe specific platform
properties.

Other projects like the Linux kernel, Mozilla, or *BSD
have similar logical and physical program modules, en-
abling a more optimal coordination of the contributor’s ef-
forts and a better approach to change management. The
majority of these modules however, were not necessarily
obvious and thus present when these projects were initiated
more than ten years ago. Therefore, the sensible differentia-
tion must result from the evolution process that is happening
as an increasing number of contributors submit new source
code, ideas, and solutions to improve already existing code.

4.2 Entanglement of process and architecture

We argue that, in well maintained, successful free soft-
ware projects, the technical structure of the underlying ar-
chitecture is always entangled with the organisation of the
project. In other words, every change to the organisation of
a project must result in a change of the technical composi-
tion of the underlying architecture, and vice versa.

Fig. 2 shows the intense correlation of GCC’s technical
structure and the overall organisation of the project. It also
shows how additions to the code base are being coordinated
via a public review on mailing lists first, in order to elim-
inate obvious bugs before they are being committed to the
CVS repository. In GCC, even the maintainers themselves
go through this process to inform the rest of the contributors
about the upcoming changes. In fact, it is not uncommon for
a patch file to evolve during this process, even before it is
an integral part of the GCC suite. The reason is that large or
complex patches have to be well understood before they can
be adopted and, therefore, a process of constant refinement
is necessary to converge the new functionality with the ever
changing code base. Our own experience in GCC develop-
ment has shown that this process sometimes takes weeks,
and even months [8].

In consequence, the organisation and reorganisation of
the contributors’ efforts is, as we claim, a “natural” process
driven mainly by necessity and rationale, rather than by au-
thority. Therefore, due to this strong entanglement of archi-

5

Scanner Parser

Abstract Syntax

Trees (AST)

Register Transfer

Language (RTL)

RTL−RTL

Optimisation

GCC

Symbol Table

Source Code

(Normally attr. C)

Machine

Language

Compiler Back−End Templates/Ports

(RTL−Assembler)

Figure 1. Logical and physical program modules of the GCC core

Misc. Contributors
with CVS Write−Access

GCC Maintainers

GCC
Steering Committee

controls controls

Web Site Documentation Ports Front Ends

ix86 IA−64 C++ Ada

Public Review

Mailing Lists

CVS
Repository

Patches (to a specific CVS branch)

Contributors

Source code submissions (as Patches)

commit

commit commit commit commit commit

Figure 2. The main parts of GCC’s project structure and organisation

6

tectural decisions and a project’s organisation, a lot of the
technical structure must be evolving “naturally” as well: the
solution which is the most practical, robust or maintainable
one succeeds (maybe not instantly, but certainly asymptoti-
cally).

4.3 Project and interproject dependencies

Even though commercial software vendors are con-
cerned about the evolution of their software, they often have
a static, product-oriented project organisation which is in
strong contrast to the semantics of the word “evolution” as
such. In fact, there are cases where the project structure in
closed source projects reflects the geographic distribution of
the company, rather than the purpose and goals of the prod-
uct. For example, a team in city A is assigned taska, and
a team in city B is responsible for taskb. Is software really
expected to evolve in a sensible manner under such static
conditions?

Another popular open source project with commercial
roots backs our theses. When Netscape released the “Com-
municator” sources in 1998 [12], it gave birth to the Mozilla
project which, for many years, was an example of an
unmaintainable, thus, unsuccessful open source project.
Nowadays Mozilla is fundamentally different from Com-
municator though and the project has undergone many ar-
chitectural changes that also led to successful commercial
applications of newly emerging Mozilla components. Fig. 3
illustrates how the complexity of this once single large prod-
uct has been systematically broken down into more man-
ageable projects that, as splitting up continues, gain more
flexibility on their own and are becoming more independent
from the main Mozilla organisation as well.

As a matter of fact, in April 2003 the Mozilla project
leaders released a statement to announce their biggest ar-
chitectural split so far. Mozilla as such will only remain
as the project’s moniker while its core components, the
mail, news, and web browsers are all turning into separate
projects as it is reflected in the new roadmap: “The rea-
soning behind these new roadmap elements comes down to
preferring quality over quantity. We must do less, but better,
and with sound extension mechanisms [4].”

At the moment, Mozilla consists of approximately 50
“core projects”, over two million lines of code, has 13
project leaders, and about 1000 active contributors [7]. The
project has, finally, gotten rid of its old unmaintainable roots
and is prospering, so much so that Netscape bases their
browsers on Mozilla these days — and not vice versa.

4.4 Reduction of complexity by code splitting

A simple descriptive calculation helps one to compre-
hend the success of this separation strategy. From the re-

n/l

n

n/l

n/ln/l

Figure 4. Code splitting

sults of cost estimation research, e. g. Function Points and
COCOMO [10], the diseconomy of scales is well known,
i. e. the cost of a software project grows non-linear with its
size. Based on this experience, the COCOMO approach
models the cost of a project with the formulaA · nB , where
n is the size of the source code in KLOC (1000 lines of
code) andA,B > 1. Now, let us assume a piece of code
consists ofn modules (interchangeable with KLOC). We
make the simplifying assumption that the program depen-
dencies inside this piece of code cause quadratic growth of
complexity, i. e.B = 2. Hence the overall complexity can
be expressed as

Cold = O(n2) (1)

If we divide the piece of code intol thoroughly separated
parts, the overall system complexity decreases accordingly
to

Cnew = O

(
n2

l
+ c · l

)
(2)

In other words, the complexityCnew of the whole prod-
uct is significantly reduced. The absolute reduction is even
more significant with growingn andl. The constantc is a
linear factor and represents the new glue components that
need to be introduced between the now separatedl code
pieces. Due to the isolation of thel parts, we can also as-
sume that the new glue components do not cause quadratic
complexity by themselves. Technically, this is achieved
by using thin interfaces between the separated components,
such as interprocess communication primitives provided by
the operating system or, also, encapsulated data structures.

From an algorithmic viewpoint — not surprisingly — the
complexity remains quadratic in (1) and (2), but in absolute
numbers,Cnew will always be smaller thanCold if n is suf-
ficiently large compared toc. The maintainers of free soft-
ware project provide for this sensible division of the code
as soon as the envisaged evolution step and the comprehen-
sibility of the code demand it.

4.5 Incremental rewrites

Successful free software projects share a strong ability
to do incremental rewrites of hard-to-maintain source code.
Mozilla is a very good example of this practice as today it

7

Mozilla.Org

Netscape

Communicator

Rewrite

Gecko MathML JavaScript

Web Browser Mail/News Calendar

Further

Subprojects

Further

Subprojects

Further

Subprojects

Components

Independence from Mozilla.Org

high

Figure 3. Interproject dependencies in Mozilla.Org

shares basically zero source code with its predecessor Com-
municator [7], although it was never rewritten as a whole in
just one single step.

Netscape, in contrast, made the single worst strategic
mistake any software company could make: they decided
to wait for the complete rewrite of their code base, in this
case done by the Mozilla project. While, during that time,
Netscape was forced to skip version 5.0 of Communicator,
they had lost valuable market share mainly to the Internet
Explorer by Microsoft.

Albeit, for the Mozilla project being a free and open or-
ganisation without significant pressure from the market, it
was a huge success and it even lead to industrial-strength
components to be found in many commercial applications
(e. g. Borland Kylix API, AOL web browser, Netscape
Communicator, various embedded web browsers for mobile
phones and PDAs).

This case shows the huge discrepancy between the out-
come of an intention applied in a commercial environment,
compared to the outcome of that same intention applied in a
free environment. It succeeded in the free environment due
to flexible, self-regulatory evolution, but failed in the other
because of ill-lead and unrealistic planning.

If we consider the Linux kernel as a rewrite of AT&T
UNIX, BSD, or MINIX, we can come to similar conclu-
sions: a decade ago, it would have been a disaster for any
company to make the immature Linux a building block of
their business model, but for the free software community
these last ten years of intense development have turned out
to be extremely successful as we can clearly witness today.

And even in the current Linux kernel, major incremental
rewrites are still happening, with the latest infamous exam-
ple being the (disputes over the) restructuring of the IDE
layer (see kernel mailing list archives).

The GCC suite, being an even older open source project
than Linux and Mozilla is subject to major changes as well.
The AST project’s goal is to rewrite the Abstract Syntax
Tree handling in the back end, and to shift a lot of the Reg-
ister Transfer Language optimisation into the tree optimisa-
tion passes [1]. There are several subprojects, such as the
Single Static Assignment branch (SSA), mainly sponsored
by Red Hat, to lead this distributed and incremental rewrite
process to a success [24]. It should be obvious that, after 20
years of existence, it is no trivial task to restructure a com-
piler’s back end, but previous, successful rewrites hint to
the fact that an open source project’s success is firmly con-
nected to its ability to restructure itself when and where it
becomes necessary. This is, we believe, another important
evolutionary principle in long living free software projects.

5 Conclusion

The evidently successful free software development
model is a formidable source of good software evolution
principles and practices.

In contrast to most commercial software projects, con-
tinuous and unrestricted evolution is intrinsic to free soft-
ware products. Usually, the only constant in a free software
project is constant change. Considering Lehman’s laws on
software evolution [22] it is not surprising that this strategy

8

has produced long living and high quality software prod-
ucts.

The process of free software development is all but
chaotic. Instead, the process and organisation scales with
the size of the project. That is, projects start with almost
zero overhead and are able to grow rapidly from the begin-
ning. When a certain size is exceeded, however, regulations,
steering committees, and tools are added as needed; i. e.
the process evolves. The resulting organisation correlates
strongly with the technical structure of the product and not
with the geographic location of teams, or a company organ-
isation chart.

Commercial software organisations could benefit
strongly from process evolution according to the technical
product, too. They often employ a single structured process
that either has to be carried out rigidly for all projects,
or must be tailored to projects first. There is, usually, no
evolution of the process matching the needs of the project
as in free software. In addition to this, commercial software
projects often fall far short of assigning the right people to
the right task.

Natural competition and selection within the free soft-
ware process emphasises skill, rather than authority and
rank. This increases the quality of the outcomes. It is very
likely that some kind of competition, combined with dy-
namic assignment of roles within companies, would also in-
crease the quality of non-free software products. Of course,
this would require a radical cultural change within most
organisations, but thanks to agile methods, some of these
changes are already disseminating into the commercial en-
vironments.

Besides the evolution of the process, some of the most
interesting principles to learn from arise through the close
entanglement of a changing development process and the
evolution of the technical architecture, i. e. the product it-
self. First, the architecture of the product is hardly pre-
planned, but evolves freely with changing requirements as
well as with size of the product. At certain points in time,
the architecture and organisation are split into rather iso-
lated parts leading to independently maintainable modules,
or even completely new products.

The evolution of the architecture is accompanied by in-
cremental code rewrites. The scope of rewrites is deter-
mined solely by the required change and the available re-
sources. In contrast to non-free environments, rewrites are
not constrained by non-technical aspects, such as the lack
of rights, or static responsibilities. This, in turn, reduces the
necessity of expensive and inefficient “work-arounds” that
add to the complexity and decrease quality and maintain-
ability alike. A piece of free software evolves in a healthy
and natural way by incremental rewrites and sensible addi-
tions of code.

The observations summarised so far support our initial

thesis that, compared to non-free environments, the free
software movement delivers superior evolution strategies,
similar to economic liberalism that does so for business.

Acknowledgements: This work was sponsored by the
German Federal Ministry for Education and Research
(BMBF) as part of the project ViSEK (Virtual Software En-
gineering Competence Center).

References

[1] Abstract Syntax Tree Optimizations. Web site,
http://www.gnu.org/software/gcc/
projects/ast-optimizer.html , 2003.

[2] Darwin — Open Source. Web site,http://http://
developer.apple.com/darwin// , 2003.

[3] Linux.Org. Web site,http://www.linux.org/ , 2003.
[4] Mozilla Development Roadmap. Web site,http://www.

mozilla.org/roadmap.html , 2003.
[5] Open source development network. Web site,http://

sourceforge.net/ , 2003.
[6] OpenDarwin. Web site,http://www.opendarwin.

org/ , 2003.
[7] The Mozilla Project. Web site,http://www.mozilla.

org/ , 2003.
[8] A. Bauer. Compilation of Functional Programming Lan-

guages using GCC — Tail Calls. Master’s thesis, Depart-
ment of Informatics, Technische Universität München, Mu-
nich, Germany, 2003.

[9] K. Beck. Embracing change with Extreme Programming.
Computer, 32:70–77, Oct. 1999.

[10] B. Boehm.Software Engineering Economics. Prentice-Hall,
1981.

[11] P. Cederqvist et al. Version Management with CVS. Tech-
nical Manual, Signum Support AB, 1993.

[12] D. Cubranic and K. S. Booth. Coordinating open-source
software development. InEighth IEEE International Work-
shop on Enabling Technologies: Infrastructure for Collab-
orative Enterprises, pages 61–65, Stanford, CA, USA, 16–
18 1999. IEEE Computer Society Press.

[13] C. Darwin. On the Origin of Species by Means of Natu-
ral Selection, or the Preservation of Favoured Races in the
Struggle for Life. 1859.

[14] F. P. Brooks jr.The Mythical Man-Month. Addison Wesley,
1995.

[15] Free Software Foundation. GNU General Public License.
http://www.fsf.org/licenses/gpl.html , Free
Software Foundation, Inc., Cambridge, Massachusetts,
1991.

[16] M. W. Godfrey and Q. Tu. Evolution in Open Source Soft-
ware: A Case Study. InProceedings of the ICSM 2000,
pages 131–142, San Jose, CA, 2000.

[17] N. Harris et al.Linux Handbook / A guide to IBM Linux so-
lutions and resources. IBM International Technical Support
Organization, 2002.

9

[18] Intel Corporation.Intel Itanium Software Conventions and
Runtime Architecture Guide. Intel Corporation, Santa Clara,
California, Intel document SC–2791, Rev. No. 2.4E edition,
2001.

[19] H. Kingman. BSD: Darwin’s theory of E-volution.ZDNet
Australia Tech News, 2000.

[20] G. Lehey. Evolution of a free software project. InProceed-
ings of the Australian Unix User’s Group Annual Confer-
ence, pages 11–21, Melbourne, Australia, Sept. 2002.

[21] M. Lehman. The programming process. Technical Re-
port RC2722, IBM Research Centre, Yorktown Heights, NY,
Sept. 1969.

[22] M. Lehman and J. F. Ramil. Rules and tools for software
evolution planning and management.Annals of Software
Engineering, 2001.

[23] K. Nakakoji, Y. Yamamoto, Y. Nishinaka, K. Kishida, and
Y. Ye. Evolution patterns of open-source software sys-
tems and communities. InProceedings of the international
workshop on Principles of software evolution, pages 76–85,
2002.

[24] D. Novillo. Tree SSA — A New High-Level Optimization
Framework for the GNU Compiler Collection. InPro-
ceedings of the Nord/USENIX Users Conference, Väster̊as,
February 2003.

[25] W. F. Opdyke. Refactoring Object-Oriented Frameworks.
PhD thesis, Urbana-Champaign, IL, USA, 1992.

[26] M. Pizka. Design and Implementation of the GNU INSEL
Compiler gic. Technical Report TUM–I 9713, Technische
Universiẗat München, Munich, Germany, 1997.

[27] E. S. Raymond. The cathedral and the bazaar, 11 Nov. 1998.
[28] R. Savoye. Dejagnu – the gnu testing framework. Technical

report, Free Software Foundation, 2002.
[29] A. Smith. The Wealth of Nations. 1776.
[30] J. Southern and C. Murphy. Eine zielgerichtete Explosion.

Linux Magazin, (1), 2002.
[31] R. M. Stallman. GNU Compiler Collection Internals.

http://gcc.gnu.org/onlinedocs/gccint/ ,
Free Software Foundation, Inc., Cambridge, Massachusetts,
2003.

[32] R. M. Stallman. Using the GNU Compiler Collec-
tion. http://gcc.gnu.org/onlinedocs/gcc-3.
2.2/gcc/ , Free Software Foundation, Inc., Cambridge,
Massachusetts, 2003.

[33] G. Succi and A. Eberlein. Preliminary Results from an Em-
pirical Study on the Growth of Open Source and Commer-
cial Software Products. InProceedings of the Workshop on
Economics-driven Software Engineering Research, EDSER
3, pages 14–15, Toronto, Canada, 2001.

[34] I. The Standish Group International. Chaos, 1995.
[35] I. The Standish Group International. Chaos: A recipe for

success, 1999.
[36] University of California, Berkeley. The BSD Li-

cense.http://www.opensource.org/licenses/
bsd-license.html , Regents of the University of Cali-
fornia, 1998.

[37] A. van der Hoek. Configuration management and open
source projects. InProceedings of the 3rd International
Workshop on Software Engineering over the Internet, Lim-
erick, Ireland, June 2000.

[38] D. A. Wheeler. More Than a Gigabuck: Estimating
GNU/Linux’s Size. Web site,http://www.dwheeler.
com/sloc/redhat71-v1/redhat71sloc.html ,
2002.

10

