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Abstract

The ever growing size and complexity of both technical
and business systems requires efficient software engineering
approaches to keep development cost under control while
still being able to finish development efforts in time with the
required functionality and quality. Systematic software and
systems engineering approaches help to push the boundary
further and leverage the complexity on many different lev-
els. On the one hand, the availability of appropriate models
and notations for the systems under development through-
out the development cycle and for all levels of abstraction
helps to understand and modify manageable views of the
system. On the other hand, systematic development pro-
cesses can provide the harness for successful project execu-
tion and for the ability to repeatedly create results that meet
the required quality standards and functionality within the
budgeted cost and time. In this paper we combine a proven
generic project management framework with a methodol-
ogy for developing complex multi-functional systems. We
embed our service-oriented development approach for re-
active systems into the system development process model
V-Modell XT by providing a modular extension of the V-
Modell XT for service-oriented development. We introduce
our development approach by means of a running example
Jfrom the complex control systems domain, the BART traffic
controller example.

1. Introduction

Enabled by wired and wireless communication technolo-
gies, traditional business intelligence and technical systems
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increasingly converge into ultra-large scale (ULS) systems.
Examples of ULS systems include avionics, automotive,
command and control, as well as telematics and public
safety systems, to name just a few. In all these domains,
the primary challenge to software and systems engineering
is the integration of a wide variety of subsystems, their as-
sociated applications, data models and sources, as well as
the corresponding processes, into a high quality system of
systems under tight time-to-market, budget, security, policy,
governance and other cross-cutting constraints.

Modern ULS systems also have a number of other chal-
lenging requirements characteristics that all but exclude
monolithic software and systems architectures: ever chang-
ing business processes, demands at including both legacy
and emerging systems as they become available, and the
need to cater to changing requirements, are some examples.

These requirements characteristics have led to a high de-
mand for loosely-coupled integration architectures [16]. As
a mechanism to achieve coupling, the notion of service has
attracted increasing attention both in industry and academia.
Web services [32, 39] have emerged in the business domain
as an attempt at simplifying distribution, publishing, discov-
ery, addressing, and accessing of software functions across
the Internet. The increasing complexity of embedded soft-
ware has led to a similar trend in automotive and similar
technical system domains [21, 1].

Intuitively, web services are application programming
interfaces (APIs) that project a subsystem’s capabilities to
the infrastructure via a well-defined Internet address. It is
this deployment character of service-oriented development
that is behind the recent popularity of the service concept;
popular open standards such as HTML and SOAP, together
with their integration in Integrated Development Environ-
ments (IDEs) have made it virtually effortless to expose
subsystem functionality in terms of a web service.

However, the essence of a comprehensive service-
oriented software and systems engineering approach cannot
be deployment-centric alone. Rather, the idea of structuring
an ULS system into a collection of services that project ca-



pabilities of (sub)systems carries much farther than what is
addressed by the question of how a service — once identified
— can be implemented on the infrastructure.

This paper, therefore, attempts a seamless integration
of the concept of services into all phases of the ULS sys-
tems development cycle: from logical architecture design
to implementation/deployment and maintenance. In gen-
eral, complex system development requires a systematic ap-
proach. Development methods and processes, as well as
process and capability models have proven to support the
development efforts in the aim for better adherence to time
and cost budgets, functionality delivered, quality of the re-
sults and repeatability of the entire process. All these pro-
cesses, models and methods have different properties and
application areas, for instance, providing detailed software
development methodology support, establishing essential
project management practices and helping to comply with
specific regulations and standards. They range from quite
heavy-weight, sophisticated processes to very light-weight,
dynamic agile ones. The particular choice depends on many
factors and requires competent and wise project manage-
ment decisions. In general, each process and method should
only be applied with prior adaption to the specific project
and organization, and checked for effectiveness during the
course of a project.

Problem Definition and Solution Overview Because
services are projections of capabilities of (sub)systems, they
are fundamentally partial in nature. It is the composition of
a set of services that yields the desired integration archi-
tecture. Most established development processes, however,
focus on the notion of component as the unit of develop-
ment and deployment — this results in a poor match with the
partial nature of the service concept.

A central goal of the approach we promote in this pa-
per is to cleanly separate a logical notion of service, which
captures the capability that emerges from the interplay of a
set of components, from its mapping to a concrete deploy-
ment architecture. In short, services are the centerpiece of
logical architecture design, whereas components implement
the services at runtime. We employ mechanisms of model-
based development to accomplish this separation. Logical
models describe capabilities in terms of functionality, distri-
bution of components and quality properties independently
of any implementation details or deployment architecture
design decisions. The implementation models contain these
details and decisions, and must be a consistent refinement
of the logical models. This distinction has the advantage
that many implementation models exist, which satisfy one
logical model and that implementation models can be de-
veloped strictly after the logical models.

Technical complexities, such as defining the functional
behavior of the system by identifying the services and their

dependencies, designing objects/components and their in-
terfaces so that they can provide the services with the re-
quired quality properties, and deploying them on a given
middleware for most efficient operation are only part of the
challenge. Organizational requirements within the project,
the need for consistent documentation and efficient tool
support, and extended system maintenance time spans im-
pose further challenges. Development processes provide
systematic support in some or all of these regards to vari-
ous degrees.

The V-Modell XT [4, 30], for instance, is a modern soft-
ware and systems development standard covering project
management, engineering and supporting processes. It pro-
vides a generic process model, which is easy to understand
and to use, and flexibly adaptable to the needs of organiza-
tions and projects. The V-Modell XT promises to lead re-
producibly to project results of higher quality with less cost
and resources spent. It is generic in nature and does not
provide detailed methodic instructions for systems develop-
ment; it has a modular setup enabling flexible extension.

Our goal is to provide an adapted, widely accepted de-
velopment process that is flexible enough to support our
service-oriented development models through all stages of
system development and maintenance, without restriction
to certain application domains. This will increase the ap-
plicability of our approach and help to gain wider accep-
tance beyond the research community. In this paper, we
will present an integration of our service-oriented develop-
ment approach with the V-Modell XT, which fulfills the re-
quirements we have presented above and can be tailored to
a wide range of development processes for ULS systems.

Service-Oriented  Specifications The development
methodology we propose in this paper focuses on services
as first class entities throughout the development process
of ULS systems; it establishes a clean separation between
the services provided by the system under consideration,
and the architecture — comprised of components and their
relationships — implementing the services. Our approach is
well suited for process embedding and tool support.

Following [14, 20] we use the notion of service to de-
couple abstract behavior from implementation architectures
supporting it. Typically, services coordinate workflows
among domain objects; they may also call, and thus depend
on, other services. In this sense, services are specializa-
tions of use cases to specify interaction scenarios; services
“orchestrate” the interaction among certain entities of the
system under consideration to achieve a certain goal [6]. In
contrast to use cases, which describe functionality typically
in prose and on a coarse level of detail, a service is defined
via the interaction pattern among a set of collaborators re-
quired to deliver the functionality. Services are partial in-
teraction specifications.



As methodological core ignoring any management and
QA aspects for now, we employ a two-phase, iterative de-
velopment process (see [14]). In the first phase, services are
elicited from use cases, and captured in terms of interaction
patterns. In the second phase, a deployment architecture is
defined as a set of interacting components; then the services
are mapped to the deployment architecture to yield the over-
all software and systems architecture.

The relevant use cases and their relationships are de-
fined as use case graph. This yields a relatively large-scale,
scenario-based view on the system. From the use cases,
sets of roles (actors) and services (functions) as interaction
patterns of roles are derived. Using roles decouples from in-
teraction details, because roles abstract from components or
objects. Roles describe the contribution of an entity to a par-
ticular service independently of what concrete implementa-
tion component will deliver this contribution. An object or
component of the implementation typically will play multi-
ple roles at the same time. The communication relationships
between roles are captured in a role domain model. The set
of services is mapped to a component configuration refining
the role domain model to yield an architectural configura-
tion. These architectural configurations can be readily im-
plemented, for instance prototypically by code generation.

Contributions and Outline As main contribution, this
work presents an integration of a systematic approach for
the development of ULS systems into an established and
widely accepted generic process standard. We explain our
modeling methodology and present its application by means
of a running example through all stages of development. We
show how we integrate this approach into the existing large-
scale development model, V-Modell XT.

In Sect. 2, we introduce a service-oriented model of
our running example, the Bay Area Rapid Transit sys-
tem (BART). In Sect. 3, we explain the basic concepts
and extension mechanisms of the V-Modell XT, which we
integrate with our service-oriented modeling approach in
Sect. 4. In Sect. 5, we discuss advantages and shortcom-
ings of this integration. Sect. 6 contains related work and
Sect. 7 presents conclusions and an outlook.

2. Service-Oriented Development of Complex
Systems

The systems we address with our service-oriented ap-
proach are complex distributed systems. The complexity
we refer to here stems from the need to integrate multiple
different parts whose interplay is difficult to grasp with tra-
ditional techniques. Rather than treating component inter-
play as an afterthought, addressed only during late stages of
deployment and integration, we focus on services, defined

as the interaction patterns among roles, throughout the de-
velopment process.

The BART Case Study The BART case study [41] de-
scribes parts of the Advanced Automatic Train Control
(AATC) of the Bay Area Rapid Transit (BART) system.
BART is the San Francisco area, heavy commuter rail train
system. The case study describes the part of the train sys-
tem that controls speed and acceleration of the trains. BART
was previously used as a case study in the area of distributed
systems and for the application of formal methods [11].

The BART system automatically controls over 50 trains
on a large track network. Manual operation of the train con-
trol is limited mostly to safety issues and to cases of emer-
gency or malfunction. The AATC system controls the train
movement with a requirement to optimize train throughput,
while constantly ensuring safety. The AATC system op-
erates computers at the train stations which each control a
local part of the track network. Stations communicate with
the trains via a radio network and with neighboring stations.
Trains receive acceleration and brake commands from the
station computers and feed back speed, position and status
information.

We focus on modeling the reactive behavior of a station
computer and of the trains. We apply our service-oriented
development approach to identify the different services of
the system and to specify a service model that will help
us to design an effective service-oriented architecture. Our
model-based approach results in a high level design model
of the AATC that can be refined systematically into an im-
plementable system. In the following, we will explain the
steps in more detail (see also [15]).

Use Case Elicitation From the requirements [41], we
identify a number of use cases, for instance, “A frain com-
municates its current status to the responsible control sta-
tion”. Each use case can be broken down into more de-
tailed steps, leading to a comprehensive use case view of the
BART system. Analyzing the use cases leads to an initial
list of actors, or roles; in our case these are Train, Control
Station, the Safety Computer (VSC) and an External Data
Source as actors. We depict roles and their communication
relations in an initial role domain model, as shown in Fig. 1.

Train

ExternalSource |—— Station — SafetyComputer

]

Figure 1. High Level BART Roles




Modeling Services and Roles We model roles and ser-
vices, starting with the above initial role domain model, by
systematically going though the list of use cases and identi-
fying interaction patterns that define services. The services
we identify are somehow a refinement and formalization of
the use cases. In the process of identifying interaction pat-
terns, we may identify further actors; we add these as roles
to the role domain model. Finally, after modeling all ser-
vices the resulting role domain model looks as depicted in

Fig. 2.
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Figure 2. BART Role Domain Model

We use the extended MSC notation of [13, 15] to spec-
ify services. This notation is based on the Message Se-
quence Chart [9] standard and provides an intuitive graphi-
cal language for specifying interaction patterns and is well-
accepted among engineers. Extensions to the standard no-
tation were cautiously made based on a formal semantics
to provide increased expressiveness and more powerful op-
erators suitable for modeling service-oriented systems. To
model the services, we make use of our tool-chain intro-
duced in [1, 5].

We capture the interactions between the station computer
(and its subcomponents) with a train (and its subcompo-
nents). Other entities, such as external data sources, are
part of the interactions as well. When modeling the interac-
tions, we abstract from any concrete deployment architec-
tures and do not consider multiple occurrence of the same
entities. For instance, we specify the interactions between a
train and the station computer abstractly, not knowing how
often this interaction will occur in the implementation.

Good design principles suggest a hierarchical design of
the service model. We use High Level MSC (HMSC) to
introduce hierarchy. Intuitively, an HMSC is a graph de-
picting a flow through a set of services. The HMSC “Train-
Loop” in Fig. 3 shows an infinite flow of activities of reg-
ular train operation, potentially preempted by exceptional
behavior in case of an emergency situation; then the emer-

gency is resolved after which the behavior returns to normal
operations.

msc TrainLoop msc TrainOperation

TrainSendPosition

EmergencyTimer: ProvideNewCommands

timeout()

EmergencyBreak

EmergencyResolution

SafetyCheckCommands

ReceiveTrainCommand

Ll

Figure 3. HMSCs for BART services

The “TrainLoop” HMSC contains MSC references, de-
picted by labeled rounded boxes, pointing to more de-
tailed interaction behavior. The referenced functionality
for “TrainOperation”, for instance, is specified in the MSC
shown on the right side of the figure. It shows a composition
of four services by means of the “join”-Operator, depicted
as ® . The semantics attached to the join of two services is
the interleaving of the two behavior specifications, synchro-
nized on common messages. The join operator is a powerful
means to combine and synchronize overlapping services —
this ability to disentangle service specifications is central in
our approach. We call services overlapping if they share
at least two roles and at least one message between shared
roles. Overlapping interactions will occur only once — syn-
chronized — in the resulting behavior. For details about the
join operator, see [13, 19, 14]. We can also apply operators
for Sequence of interactions, Non-deterministic choice, Par-
allel interactions and for Preemption, defining exceptional
behavior.

Fig. 4 shows the behavior specification of a train sending
current status values to the nearest station that processes the
information in the syntax of an extended Basic MSC. Mes-
sages are depicted as horizontal arrows between two roles
(represented as vertical axes labeled with the name of the
role) and have parameters to indicate transmission of data
values.

We make use of MSC operators, depicted as labeled
boxes, to express repetition and choice in the interaction
flow. The LOOP <> box around all the interactions in the
MSC expresses repetitive behavior. Alternative or optional
behavior is expressed by ALT boxes. Different alternatives
are separated by horizontal dashed lines through the box. To
indicate optional behavior, we leave one of the alternatives
empty. Further operators at our disposal are for parallel,
Jjoined and preempted interactions. With TRIGGER, we ex-
press liveness conditions. State markers (hexagons) define
states in the execution of a role. For more information and
precise semantics definitions, see [13].
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We integrate control aspects into reactive interaction
specifications by means of local actions. Local actions are
depicted as labeled boxes on role axes. The meaning of this
syntax is that a role performs an activity based on the infor-
mation available until this point in time. Information can be
local variables, data previously received via messages and
the role state.

Mapping the Service Model to Components When tran-
sitioning from a service model with roles and interactions to
an implementable architecture, we define component types,
which are blueprints of component instances in the archi-
tecture. We define their communication interfaces to other

Component | Role Description
Type
FastCPU Station A fast CPU computer for
EnvModel operative station control
StationDispatcher
SlowCPU SafetyComputer | High Reliability (MTBF)
slow CPU unit checking
safety conditions
Train Train Train computing unit on
TrainMotor board of a train
EmergenyTimer
EngineCtrl
Interlocking- | UpdateSrc Interlocking system,
System TrainMotor controlling switches and
gates

Table 1. BART Role Mapping

component types and the services they implement. The
component model needs to be a refinement of the struc-
tural role dependencies. Table 1 shows an example role-to-
component mapping. The behavior of the component types
can be derived for instance from the service specifications
using the component synthesis algorithm, described in [20].

Defining a Component Architecture Fig. 5 shows a sim-
ple architecture, which implements the service model that
we have specified above. It shows the structure of the sys-
tem’s components and their connections. Components are
instances of component types and can occur multiple times
in a system configuration. Each instance has a defined name
and specific type.

1

FC:FastCPU SC:SlowCPU

1 1
. [
Ti:Train

Figure 5. BART Component Architecture

3. The V-Modell XT

V-Modell XT Concepts The V-Modell XT [4, 30] is a
modern German software and systems development stan-
dard; its application is mandatory for all contractors sup-
plying IT systems to the German federal government and
military. The V-Modell XT has a modular setup and en-
ables flexible usage and extension. In order to extend the
V-Modell XT it is imperative to know its main concepts,
which we explain in the following:

o Work Products are the essential project results and
artifacts (documents, models, code, deliverable sys-
tems). They have a prescribed structure and con-
tent and can be structured further into subjects (sub-
sections). Work products have a responsible role and
will be quality evaluated.

e Product Dependencies define consistency relations be-
tween the contents of different work products. This
will keep new work products in a project consistent to
existing ones, assuring overall product quality and in-
formation traceability.

e Activities define actions that need to be performed in
order to edit work products. One activity is associated
exactly with one work product. Activities can be struc-
tured further into sub-activities.

e Roles describe profiles of responsibility for individuals
working in a project.



e Process Modules group Work Products, Activities,
Roles, and other V-Modell XT elements into self-
contained units with a common purpose such as project
management, requirements management, systems de-
velopment, etc. Process modules may depend on oth-
ers. They can be understood, applied and modified in-
dependently and are the units of tailoring and exten-
sion of the V-Modell XT.

e Tailoring is the process of adapting the V-Modell XT
to a specific project or organization, by selecting the
suitable process modules out of the repository of avail-
able ones. Tailoring results in a seamless consistent
adapted software development process.

Systems Development The V-Modell XT defines many
processes which are important for the development of sys-
tems, including management processes (such as “Offer
Preparation and Contract Fulfillment”), engineering pro-
cesses (such as “Specification of Requirements”), as well
as supporting processes (for instance “Quality Assurance”).
Each of these processes is defined in a process module. In
the following, we concentrate on the for main system devel-
opment process modules:

e Specification of Requirements: The process of prepar-
ing a requirements specification document based on a
project proposal and evaluating these requirements in
terms of effort, cost and importance.

o System Development. The process of decomposing a
complex system into manageable units of software,
hardware, supporting systems and additional materials
(such as manuals) and of integrating the units to the
deliverable system.

e Software Development: The process of developing an
individual unit of software, which includes specifica-
tion, software architecture design, implementation and
integration, test specification and unit evaluation.

e Hardware Development: The process of developing an
individual unit of hardware.

These four process modules define work products (ar-
tifacts), activities and roles that are required to develop a
system from customer defined requirements specification to
the acceptance of the final deliverable. Fig. 6 depicts the dif-
ferent stages of development in the shape of the “V”, which
is often associated with the V-Modell XT. System develop-
ment involves the creation of a number of significant project
results with clearly defined role responsibilities. Activities
describe how the project results are created.

Requirements are collected in the Requirements Specifi-
cation by the Requirements Engineer (Acquirer). The docu-
ment contains a situational overview, a list of functional and
non-functional requirements, the list of deliverables with

Verification and Validation

Contract  \ o w/ Acceptance A
Awarded N g Completed

System Delivery
Specified Conducted
System System
Designed Integrated
Detailed Design System Elements
v Completed Realized

Figure 6. V-Modell XT Development Stages
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acceptance criteria and other subjects. Functional require-
ments are defined as use cases. The Requirements Engi-
neer (Supplier) is responsible for refining the Requirements
Specification into an Overall System Specification, which
is the basis for any system development and documenta-
tion activities. The overall system level comprises Inte-
grated Logistic Support (ILS) documentation, enabling sys-
tems and the technical system under development, and con-
tains an overall system architecture and the list of system
interfaces. We concentrate in the following on the technical
system.

The V-Modell XT divides a technical system into system
and unit level. The system contains hardware, software and
documentation parts which can be developed, acquired or
pre-existing. Systems decompose into segments (if neces-
sary) and at the lowest level into units. Units are either pure
software, hardware or external. Software/hardware units
decompose further into components (if necessary) and mod-
ules. The V-Modell XT has a uniform structure for specify-
ing and designing these system elements:

e A Specification document describes the context and
purpose of a system element and its interfaces from
a black-box view, as well as non-functional require-
ments and internal interfaces between sub-elements.

e An Architecture document describes the architecture of
one system element and its parts, by documenting ar-
chitectural principles, design alternatives, decomposi-
tion into sub-elements, cross-cutting concerns (such as
transaction and security handling), internal interfaces
and dependencies, and more.

o An Implementation, Integration and Evaluation Con-
cept describes details and plans about the actual imple-
mentation with tools and procedures used, the integra-
tion and the execution environment, as well as any test
and verification strategies.

The uniform structure of system element specification,
architecture design and decomposition makes development
very systematic, despite the substantially different tasks
of system, software, and hardware engineering. Product
dependencies ensure that the contents in all products are



consistent, for instance that all requirements are realized
by architecture elements. Role responsibilities depend on
the level of decomposition: System Architect, Software Ar-
chitect, Hardware Architect, Software/Hardware Developer
and System Integrator are roles that create the respective
products, by performing the activities (with sub activities)
associated with the products.

V-Modell XT Extension Mechanism The V-Modell XT
can be modularly extended by adding new process modules,
which extend a number of existing process modules. A
new process module can contain definitions for new work
products, activities and roles. New product dependencies
to existing products will make sure that the new products
are created when required. Seamless extension is possible
by adding new subjects, and sub-activities to existing ele-
ments.

4. Extending the V-Modell XT

As described above, the V-Modell XT provides a full
workflow and process for systems development. It does
not, however, give specific methodological guidelines for
service-oriented development. We will provide this in
the following by describing the integration of our service-
oriented development approach into the V-Modell XT [4].

We define a new process module “Service-Oriented Sys-
tems Development” as shown in Fig. 7. We make use of the
fine-grained extension mechanism by adding new subjects
to existing work products and new sub-activities to exist-
ing activities. Additionally, we add product dependencies
to keep our additions consistent with the rest.

<<extends>>
— T

Service-Oriented
Systems
Development

Hardware
Development

Software
Development

Y Ld

Specification of
Requirements

System
Development

V-Modell XT

Figure 7. Service-Oriented V-Modell XT Ex-
tension

Work products are the main V-Modell XT elements and
core project results. Table 2 shows a mapping of the result
artifacts of our service-oriented approach to work products
and their subjects of the V-Modell XT. V-Modell elements

marked with an asterisk (*) are additions. We follow the
V-Modell’s hierarchical system decomposition into system
elements similarly for our service-oriented approach. We
define a service model and mapping to an architecture de-
composition for each system element with specification and
architecture documents. Our service-oriented approach thus

scales in the same way as the V-Modell XT.

Element | V-Modell Element Description

Use Case | Requirements Spec.: Use Case descriptions

Graph Functional Req’s are part of the exist-
Overall System Spec: ing requirements docu-
Functional Req’s mentation.

Services System/SW/HW Spec.: | Service interfaces, ac-
Service Access Points* cessible from outside;
System/SW/HW Arch.: | service specifications
Service Specifications* | as interaction patterns.

Roles System/SW/HW Arch.: | The list of roles, their
Role Model* descriptions and the

states they can be in.

Role System/SW/HW Arch.: | Description of commu-

Domain Role Model* nication channels be-

Model tween roles.

Compon. | System/SW/HW Arch.: | The sub-element struc-

Configu- | Decomposition ture as known.

ration

Mapping | System/SW/HW Arch.: | Maps  roles  (and
Role to Component | thereby service behav-
Mapping* ior) to sub-elements.

Architec- | System/SW/HW Impl., | The exact deploy-

ture Int. and Eval. Concept: | ment configuration as
Integration Procedures | instance network.

Table 2. Product Mapping

We add the following product dependencies that ensure
consistency across work products:

e Consistent Service Refinement, between products
Overall System Specification and Architecture: the ser-
vices and roles realize the defined use cases and non-
functional requirements.

o Consistent Service Model, between products Specifi-
cation and Architecture: All roles used within service
specifications must be defined; the role structure must
reflect the interaction patterns from the service speci-
fications; the service access points must match the ser-
vice specifications.

e Consistent Service Mapping, between products Speci-

fication and Architecture: the sub-element structure as
given by the decomposition must be a refinement of
the role model; all roles and services must be mapped
to sub-elements.

We do not require additional activities; instead we extend
existing ones with relevant sub-activities. The sub-activity
definitions follow our explanations in Sect. 2:



e The V-Modell activities Preparing Sys-
tem/Software/Hardware Specification get the new
sub-activities Defining Service Interfaces.

e The V-Modell activities Preparing Sys-
tem/Software/Hardware Architecture get the new
sub-activities Defining Roles and Role Structure,
Defining System Element Services, and Mapping Roles
to System Elements

The integration of our model affects the responsibilities
of five existing roles of the V-Modell XT. Their role profile
descriptions are sufficiently abstract and fit our purposes.
Thus, only slight extensions need to be performed:

e For the roles Requirements Engineer (Acquirer) and
Requirements Engineer (Supplier), we add domain-
modeling and service-oriented design as required ca-
pability.

e For the roles System Architect, Software Architect and
Hardware Architect, we require knowledge of service-
oriented design and of service-oriented architectures
and infrastructures.

5. Experiences and Discussion

We have applied the extended V-Modell XT to our BART
example in the following way: We start with the Require-
ments Specification containing the system use cases ex-
tracted from [41]. We begin system development by re-
fining the requirements into the Overall System Specifica-
tion document, where we specify the BART system as our
technical system. The System Architect designs the initial
System Architecture similar to Fig. 1, consisting of the seg-
ments Train, Station, ExternalSource, and SafetyComputer,
taking the architectural constraints of [41] into account. We
analyze the use cases and identify the roles and services as
explained in Sect. 2. We list the roles and their connections
(see Fig. 2) in the Role Model subject and the services (as
specified in Fig. 3 and 4) in the Service Specification subject
of the System Architecture. We define the external service
access points in the System Specification, for instance the
communication protocol between Train and Station. With
the domain knowledge from the service elicitation steps,
the System Architect designs the actual System Decompo-
sition in the System Architecture containing the elements
given in Fig. 5. We follow the procedure of Sect. 2 and
document the mapping of roles to services in the subject
Role to Component Mapping of the Software Architecture,
as shown in Table 1. The actual deployment architecture
(see also Fig. 5) is described in the System Impl., Integra-
tion and Eval. Concept. The system decomposes further
into software, hardware and external units (such as the Inter-
locking System), and into components and modules. We do
not describe the detail level specifications and architectures;

they follow the standard V-Modell XT development process
without service modeling. We perform V-Modell XT activ-
ities to edit the work products. Each work product is subject
to a Quality Assurance procedure, which includes checks of
the product dependencies, including the ones listed above.

Following the above, we have conducted the BART
case study as service-oriented V-Modell XT development
project. We have shown how the artifacts of our service
modeling approach fit in the V-Modell XT work results, in
general and for our case example. In summary, we find that
our approach blends well with the V-Modell XT. The nec-
essary changes and additions to use the model fit with the
existing structure and require only additions and slight ex-
tensions of existing V-Modell XT elements. They can all be
packaged nicely as a process module. An embedding into
other process models with a similar structuring, such as the
RUP [12], should be possible with a comparable effort.

One of the challenges of integrating our model-
based service-oriented development approach into the V-
Modell XT is the V-Modell’s strict notion of work prod-
ucts as sole project results. Work products are mostly doc-
uments including design model views that describe the sys-
tem under development. Model-based approaches on the
other hand often make use of integrated models, modeling
environments and highly iterative modeling cycles. With
good tool support, it is possible to keep the service-oriented
model consistent across a number of documents, hierarchies
and iterations.

Another challenge lies in the structure of the V-
Modell XT system elements. The technical system (as part
of the overall system) is hierarchically decomposed into
segments and these into units, which are either software
or hardware. Units have their own specifications and ar-
chitecture documents and decompose into components and
modules. Services in our understanding are cross-cutting
across all structural system elements. They are defined as
interaction patterns (or protocols) between interacting com-
ponents. The solution lies in the strategy how the System
Architect decomposes a system compliant to the V-Modell.
The system elements need to be defined such that services
can span all required components. New levels of hierar-
chy are suitable, where services cross-cut only direct sub-
components. This creates a layered service (and system)
hierarchy.

6. Related Work

The notion of service and service-oriented development
is used in many different application domains and on vari-
ous levels of abstraction in the Software Engineering com-
munity [36, 18]. Its roots lie in the domain of telecommu-
nication systems, where features and their interactions play
an important role in software development [37, 28, 29, 42].



Intensive application of service-oriented approaches can
be observed for web services [26, 39], web service-oriented
architectures [32, 39] and increasingly for embedded au-
tomotive systems [21, 17, 3]. Implementation-oriented
and infrastructure concerns, including web services [32]
and corresponding technologies, such as WSDL [38], WS-
BPEL[22], .NET [27] and J2EE [34], or specific mecha-
nisms such as registration, discovery and binding are rele-
vant as members of the deployment technology space for
service-oriented development. In the realm of web services
standards there has been important work on Web Services
Semantics (WSDL-S) [40], Web Services Modeling On-
tology (WSMO) [31] and Semantic Markup for Web Ser-
vices (OWL-S) [25]. OWL-S, in particular, describes both
a “service profile” and a “service grounding”, which repre-
sent “what the service does” and how it maps to underlying
messaging protocols and deployment technologies, respec-
tively. To describe the functionality of a service, OWL-S
uses a process notion, which uses a limited set of opera-
tors to build composite processes — in particular, the no-
tion of joining overlapping services is missing from this ap-
proach. The deployment model underlying all of OWL-S
and WSDL-S is oriented more towards services as I/O pro-
cesses, whereas our service notion is closer to the “conver-
sations” or orchestration underlying WS-BPEL [22]; WS-
BPEL, however, also would benefit from an operator for
disentangling services, such as the join operator we have
introduced, above.

Because our approach rests on an end-to-end,
interaction-pattern-based service definition (see be-
low), it integrates well with ontologies [25, 31] capturing
non-functional aspects — including, but not limited to,
security and Quality-of-Service [1].

Our approach is related to the Model-Driven Archi-
tecture (MDA) [23], Model-Integrated Computing [35,
10], aspect-oriented modeling (AOM) [7] and architecture-
centric software development (ACD) [24]; similar to MDA
and ACD we also separate the software architecture into ab-
stract and concrete models. In essence, the service elicita-
tion and architecture definition phases in our development
process correspond to building “platform-independent mod-
els” (PIMs) and “platform dependent models” (PDMs), re-
spectively. In contrast to MDA and ACD, however, we con-
sider services and their defining interaction patterns as first-
class, cross-cutting modeling elements of both the abstract
and the concrete models. This also distinguishes our ap-
proach from Model-Integrated Computing and AOM.

Ambler uses process patterns in [2] to describe task-
specific self-contained pieces of processes and workflows
in a reusable way. Such patterns can be applied to solve
complex tasks when needed. Storrle [33] shows how pro-
cess patterns can be described in great detail using UML.
The idea of process patterns is further refined by Gnatz et

al. [8] in the form of a modular and extensible software de-
velopment process based on collections of independent pro-
cess components. These process patterns essentially are the
basis of the extension mechanism of the V-Modell XT.

7. Summary and Outlook

Service-oriented development promises to address many
complexities in the development of ultra-large scale (ULS)
systems. We have explained our service-oriented approach
and corresponding notations using the BART system case
study. Our approach seems to be well suited to managing
the complexity of this distributed, reactive system, by fo-
cusing on services as first-class entities throughout the de-
velopment process.

We have integrated our service-oriented development
approach into an existing systems development process
model by describing a service-oriented extension of the V-
Modell XT. We have shown how our approach can be re-
alized through extensions of V-Modell activities and prod-
uct definitions. We ensure consistency to existing V-Modell
concepts by introducing product dependencies. The V-
Modell XT extension appears to be seamless and intu-
itive. We have enriched the flexible organization and man-
agement framework with valuable methodical detail for
service-oriented development. Thus, we support the devel-
opment of ULS systems by suitable models and notations
as well as by a large-scale systematic development process.

Future work will include conducting a larger case study
or V-Modell XT pilot project with the service-oriented ex-
tensions. We would also like to refine our extensions to
include non-functional requirements and quality properties.
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