
On TLA as a Logic

Mart��n Abadi� and Stephan Merz�

� Digital Equipment Corporation� Systems Research Center� ��� Lytton Avenue�
Palo Alto� CA ������ U�S�A�

� Institut f�ur Informatik� TU M�unchen� Arcisstr� ��� 	���� M�unchen� Germany

Summary� We describe the Temporal Logic of Actions
TLA� from a logical per�
spective� After giving the syntax and semantics of TLA� we discuss some methods
for representing reactive systems in TLA and study verication rules�

� The L in TLA

The Temporal Logic of Actions �TLA� is a variant of temporal logic� de�
signed for the speci�cation and veri�cation of reactive systems in terms of
their actions� In this paper we describe TLA from a logical perspective� our
description of TLA has three aspects	

� As a logic� TLA has a precise syntax and semantics� We de�ne these in
the next section� Our intent is not to develop a new TLA� but rather to
explain and to re�ne Lamport�s de�nition of TLA �
��

�� Like HOL �
�� and other logics� TLA can serve for representing reac�
tive systems in several styles� In particular� a speci�cation may describe
concurrent steps as interleaved or simultaneous� communication between
components may be synchronous or asynchronous�We discuss a few styles
in section ��

�� Proofs in TLA rely on basic rules of temporal logic� rules for re�nement�
and rules for composition� We state the principal rules in sections � and ��
Following ��� ��� we show that some of them arise from general logical �or
algebraic� considerations� largely independent of the details of TLA

This paper is a self�contained presentation of TLA� It is however not
a survey� in that it includes technical novelties and in that it is far from
comprehensive�
Lamport�s original work on TLA �
� provides much additional� useful

material� and in particular some motivation for the TLA approach and a proof
system for TLA� Other papers discuss mechanical veri�cation in TLA �

�
���
re�nement and composition ��� ��� real�time systems and hybrid systems ���

��
��� and medium�size examples ����� There are also works on PTLA �
� ���
a propositional logic based on a preliminary version of TLA� Finally� the logic
TLR has many similarities with TLA �����

� Mart��n Abadi and Stephan Merz

� A De�nition of TLA

In this section we de�ne a syntax and a semantics for TLA� The de�nition is
rather precise� it is intended to answer questions of detail� such as	

� what are the rules for substitution of terms for variables�
� what is stuttering equivalence�

With this goal in mind� we may err on the side of dotting too many i�s�
Lamport has described TLA in fairly informal terms� leaving open some

questions of this sort� These questions are often boring� but often necessary�
They have come up frequently	 they have been asked by confused TLA be�
ginners� by meticulous referees� and by experienced colleagues who wished to
mechanize TLA�
Lamport has also introduced a speci�cation language based on TLA�

named TLA� �
�� ���� The de�nition of TLA� is precise� and in fact includes
a concrete syntax� Some advantages of TLA� over TLA are that TLA� pro�
vides a module system� abundant syntactic sugar� and a built�in set theory�
The principal disadvantage of TLA� may be its complexity	 it is a complete
language rather than a core logic�

��� Syntax and Informal Semantics

TLA has four tiers	

� In one tier� we �nd formulas whose meaning is state�independent� They
are called constant� Rigid variables� whose value is state�independent�
may occur in constant formulas�

�� The second tier is concerned with reasoning about particular states� The
formulas of this tier are called state formulas� they comprise state func�

tions and state predicates �or actions�� Both rigid variables and �exible

variables� whose value is state�dependent� may occur in state formulas�
�� The third tier is concerned with reasoning about pairs of states� The for�
mulas of this tier are called transition formulas� they comprise transition
functions and transition predicates� Flexible variables may occur primed
in transition formulas� the primed occurrences are evaluated at a di�erent
state than the others�

�� The fourth tier is concerned with reasoning about behaviors� which are
in�nite sequences of states� The formulas of this tier are called temporal

formulas �or behavior predicates�� They are built from formulas of the
other tiers using temporal operators�

Next we cover some syntactic preliminaries� and then de�ne the syntax of the
third and fourth tiers in turn� We obtain the �rst and second tiers as special
cases of the third� We also sketch an informal semantics� a possible�world
semantics appears in section ����

On TLA as a Logic �

����� Basics TLA formulas are built from predicate and function symbols�
variable symbols� and the special symbols �� �� �� �� ������� �� and �� �In addition�
TLA formulas include parentheses� which we use rather loosely�� We assume
given	

� An in�nite set of variables V � These are partitioned into an in�nite set VR
of rigid variables and an in�nite set VF of �exible variables�

� A sequence of symbols L� partitioned into a sequence LP of predicate sym�
bols and a sequence LF of function symbols� To each of the symbols in L
is assigned a natural number� its arity�

These sets of symbols should be disjoint from each other and from the set of
special symbols �� �� � � � � Moreover� no symbol in V should be of the form x��
When writing TLA speci�cations� one usually does not present these sets

of symbols explicitly� For example� it is common to assume without mention
that x is a variable� that � is a function symbol of arity �� and that � is a
function symbol of arity �� We make such assumptions below� in our examples�
On the other hand� we cannot a�ord such informality in the de�nition of TLA�

����� Transition Formulas Let VF �

�

� fx� j x � VF g be the set of primed

�exible variables� and VE
�

� VR�VF �VF � be the set of rigid variables� �exible
variables� and primed �exible variables�
A transition function is a �rst�order expression over the predicate and

function symbols of L and over the variables of VE � A transition predicate is
a �rst�order predicate over the predicate and function symbols of L and over
the variables of VE � Transition predicates are commonly called actions� For
example� if f � LF is a function symbol of arity �� p � LP is a predicate
symbol of arity
� x � VR� and y � VF � then f�x� y� y�� is a transition function
and �y���p�f�x� y� y��� � ��x � y��� is a transition predicate�
The following inductive de�nitions are more explicit �but equivalent�� The

set of transition functions is the smallest set such that	

� If x � VE then x is a transition function�
� If f � LF is an n�ary function symbol and v�� � � � � vn are transition func�
tions then f�v�� � � � � vn� is a transition function�

The set of transition predicates is the smallest set such that	

� If v� and v� are transition functions then v� � v� is a transition predicate�
� If p � LP is an n�ary predicate symbol and v�� � � � � vn are transition func�
tions then p�v�� � � � � vn� is a transition predicate�

� If A is a transition predicate then so is �A�
� If A and B are transition predicates then so is �A � B��
� If x � VE and A is a transition predicate then so is �x�A�

The de�nitions of free variables and substitution are the usual ones for
�rst�order logic �over the set of variables VE�� We write FVtrans�v� and
FVtrans�A� for the sets of free variables of v and A� respectively� these are

� Mart��n Abadi and Stephan Merz

subsets of VE � Given a variable x � VE � we write vfa�xg and Afa�xg for
the results of substituting the transition function a for the free occurrences
of x in v and A� respectively� For example� FVtrans�x � x�� is fx� x�g and the
substitution �x � x��fy�x�g yields x � y�
A state function is a transition function with no free primed variables

�that is� the transition function v is a state function i� FVtrans�v��VF � � ���
Analogously� a state predicate is a transition predicate with no free primed
variables� If v is a state function then v� is an abbreviation for the result of
priming the free �exible variables of v	 if FVtrans�v��VF � fx�� � � � � xng then
v� is vfx���x�gf� � � � � � �gfx

�
n�xng� If P is a state predicate then P

� is de�ned
similarly�
Further� a constant function is a state function with no free �exible vari�

ables� and a constant predicate is a state predicate with no free �exible vari�
ables� If v is a constant function then v� equals v�

����� Temporal Formulas Behavior predicates are the only temporal for�
mulas� At present� TLA has no corresponding notion of behavior function�
The set of behavior predicates is the smallest set such that	

� If P is a state predicate then P is a behavior predicate�
� If A is a transition predicate and v is a state function then ��A�v is a
behavior predicate�

� If F is a behavior predicate then so is �F �
� If F and G are behavior predicates then so is �F �G��
� If F is a behavior predicate then so is �F �
� If x � VR and F is a behavior predicate then so is �x�F �
� If x � VF and F is a behavior predicate then so is ������x�F �

Thus� if A is a transition predicate� then �A is a behavior predicate only if
A is in fact a state predicate� This restriction is designed to make possible
the proof of Proposition ��
� given below�
We write FVtemp�F � for the set of free variables of the behavior predi�

cate F � this is a subset of V � We de�ne	

FVtemp�P � � FVtrans�P �

FVtemp���A�v� � fx � V j x � FVtrans�A� or x
� � FVtrans�A�g

� FVtrans�v�

FVtemp��F � � FVtemp�F �

FVtemp�F �G� � FVtemp�F � � FVtemp�G�

FVtemp��F � � FVtemp�F �

FVtemp��x�F � � FVtemp�F �� fxg

FVtemp�������x�F � � FVtemp�F �� fxg

This de�nition is somewhat ambiguous �and so are several others below�� In
particular� if P is a state predicate� then FVtemp��P � is de�ned in two ways�

On TLA as a Logic �

as FVtemp�P � and as FVtrans�P �� Fortunately� the two de�nitions coincide�
This slight problem can be avoided altogether by making explicit the coercion
from the set of state formulas to the set of behavior predicates�
We also de�ne a form of substitution� Given a rigid or �exible variable

y � V � a state function b� and a behavior predicate F � we write F �b�y� for
the result of substituting b for the free occurrences of y in F � When y is rigid
�y � VR�� the substitution F �b�y� is useful to us only when b is in fact a
constant function� However� the de�nitions of F �b�y� for y � VR and y � VF
are mostly identical� so we treat them together	

P �b�y� � Pfb�yg

���A�u��b�y� � ��Afb�yg�ufb�yg if y � VR

���A�u��b�y� � ��Afb�ygfb��y�g�ufb�yg if y � VF

��F ��b�y� � ��F �b�y��

�F �G��b�y� � F �b�y� �G�b�y�

��F ��b�y� � ��F �b�y��

��x�F ��b�y� � �x��F �b�y�� if x �� FVtrans�b� � fyg

��y�F ��b�y� � �y�F

�������x�F ��b�y� � ������x��F �b�y�� if x �� FVtrans�b� � fyg

�������y�F ��b�y� � ������y�F

The de�nition is partial because the two clauses for existential quanti�cation
require x �� FVtrans�b�� In other words� F �b�y� is de�ned only when b is free for
y in F �and some renaming is needed otherwise�� This simpli�es the de�nition
while preventing the capture of variables�
These de�nitions should be contrasted with the corresponding de�nitions

for transition formulas� According to these de�nitions� if x � VF is a �exible
variable� then the x in x� is treated as an occurrence of x� in the de�nitions
for transition formulas� x� is viewed as a separate variable� unrelated to x�
For example� FVtemp���x � x��x� is fxg� while FVtrans�x � x�� is fx� x�g�
Similarly� ���x � x��x��b�x� yields ���b � b��b�� while �x � x��fb�xg yields
b � x��

����� Informal semantics The meaning of a constant formula is its usual
�rst�order meaning� A constant formula is like a constant expression in a
programming language� hence the name �borrowed from TLA���
A state function is like an expression in a programming language� Seman�

tically� a state is a mapping from the set of �exible variables to a set of values�
the value of rigid variables is state�independent� A state function has a value
at each state� Similarly� a state predicate is either true or false at each state�
Unlike a state formula� a transition formula is not evaluated at a state�

but at a pair of states� Given a pair of states� the primed variables refer to
the second state and the unprimed variables to the �rst� For example� p�x� y��

� Mart��n Abadi and Stephan Merz

is true at a pair of states �s� t� i� p holds for the value of x in s and the value
of y in t� An A step is a pair of states satisfying A�
A behavior is an in�nite sequence of states� A behavior predicate is true

or false of a behavior	

� A state predicate is true of a behavior i� it is true of its �rst state�
� The Boolean connectives � and � are standard� So is quanti�cation over
rigid variables	 �x�F means that there is some way of choosing a value for
x such that F holds�

� The � operator is the �always� operator of temporal logic� As usual� �F
means that F is true always in the future�

� Similarly� ��A�v means that� in the future� every pair of consecutive states
satis�es A or v� � v�

� The formula ������x�F roughly means that there is some way of choosing a
sequence of values for x such that F holds� We call x an internal or a
hidden variable of ������x�F �

����� Abbreviations Many abbreviations are commonly used in TLA� We
introduce some of the essential ones�
The Boolean abbreviations true� false� 	�
� and � are the usual ones�

and so is the de�nition of �x�F as ��x��F � Analogously� ������x�F stands for
�������x��F �
By far the most delicate abbreviation is the one for writing �enabled�

predicates	

� If A is a transition predicate then Enabled A is an abbreviation for the state
predicate obtained by existentially quantifying the free primed variables of
A �in any order�	 if FVtrans�A� � VF � � fx��� � � � � x

�
ng then Enabled A is

�x��� � � � �x
�
n�A�

We say that A is enabled in state s i� Enabled A is true at s� Thus� A is
enabled in s i� there exists a state t such that �s� t� is an A step�

In de�ning the remaining abbreviations� we assume that v� v�� � � � � vn are
state functions� that A is a transition predicate� and that F is a behavior
predicate� Under these assumptions	

� ��A�v������vn stands for the behavior predicate ��A�v� � � � � � ��A�vn � This
predicate is a generalization of ��A�v � it means that� in the future� every
pair of consecutive states satis�es A or v�� � v� � � � � � v�n � vn�

� �hAiv������vn stands for � � ��A�v������vn � and means that some future pair
of consecutive states satis�es A and v�� �� v� 	 � � � 	 v�n �� vn�

� �F stands for the behavior predicate ���F � The � operator is the �some�
time� operator of temporal logic� As usual� �F means that F is true some�
time in the future�

� WFv������vn�A� stands for the behavior predicate

� � �Enabled �A � �v�� �� v� 	 � � � 	 v
�
n �� vn��
 �� hAiv������vn

On TLA as a Logic �

This is a weak fairness formula� it holds for a behavior if either there are
in�nitely many A steps where at least one of v�� � � � � vn changes� or there
are in�nitely many states from which such a step is impossible�

� Similarly� SFv������vn�A� stands for the behavior predicate

�� �Enabled �A � �v�� �� v� 	 � � � 	 v
�
n �� vn��
 �� hAiv������vn

This is a strong fairness formula� it holds for a behavior if either there are
in�nitely many A steps where at least one of v�� � � � � vn changes� or there
are only �nitely many states from which such a step is possible�

��� Possible�World Semantics

We formalize the semantics of TLA in terms of possible worlds� much as
usual for modal logics� The sequence of de�nitions for the semantics mostly
parallels that for the syntax�

����� Basics Just as the sequence of symbols L is usually not given explic�
itly� the �rst�order structure that underlies the meaning of a TLA formula is
usually taken for granted� A structure M is a non�empty set U together with
a sequence of relations on U and a sequence of functions on U � Each relation
and each function has a natural number as arity�
The structureM is a structure for L if the number of relations and the

number of functions inM are equal to the number of predicate symbols and
the number of function symbols in L� and if the sequences of arities forM and
L are identical� WhenM is a structure for L� there is an evident bijection C
from the symbols in L to relations and functions� In the following de�nitions�
M and C are �xed�
An interpretation over a set of variablesW is a mapping fromW to U � A

state is simply an interpretation over VF � If � is an interpretation over W �
x � W � and e � U � then �fx eg equals � except that it maps x to e� If
� and � are both interpretations over W � then � and � are similar up to x�
written � �x �� i� � � �fx eg for some e�
Next we de�ne the semantics of TLA expressions� When t is a classical�

�rst�order expression� we write ��t��� for the meaning of t under interpretation
�� We use the same notation independently of the sort of t� the meaning of
t may be either a truth value or an element of the universe U � In general�
when t is an arbitrary TLA expression� we write ��t����� for the meaning of t
with interpretation �� and state� pair of states� or behavior �� We rely on the
type of � to resolve ambiguities�

����� Transition Formulas The semantics of �rst�order expressions is the
usual one	

� If x � VE then ��x��� is ��x��
� ��f�v�� � � � � vn���� is C�f����v����� � � � � ��vn�����

and

	 Mart��n Abadi and Stephan Merz

� ��v� � v���� is true i� ��v���� and ��v���� are equal�
� ��p�v�� � � � � vn���� is true i� C�p����v����� � � � � ��vn���� is true�
� ���A��� is true i� ��A��� is not�
� ��A � B��� is true i� both ��A��� and ��B��� are�
� ���x�A��� is true i� ��A��� is true for some � �x ��

Given an interpretation � over VR and a pair of states �s� t�� we de�ne an
interpretation E��� s� t� over VE by	

E��� s� t��x� � ��x� if x � VR
E��� s� t��x� � s�x� if x � VF
E��� s� t��x�� � t�x� if x � VF

The semantics ��� � ������s�t� of a transition formula under � at a pair of states

�s� t� is its �rst�order semantics ��� � ���E���s�t� under E��� s� t�	

��v�����s�t� � ��v��E���s�t�

��A�����s�t� � ��A��E���s�t�

The semantics of a state formula at a pair of states does not depend on
the second state of the pair� Hence� when P and b are state formulas� we may
shorten ��P �����s�t� and ��b�����s�t� to ��P ����s and ��b����s� Similarly� the semantics
of a constant formula at a pair of states does not depend on the states at all�

����� Temporal Formulas A behavior is an in�nite sequence of states� If
� is s�� s�� � � �� then �jn is its su�x sn� sn��� � � � � The result of pre�xing the
�nite sequence � to � is � � �� The �nite sequence consisting of t�� t�� � � � � tm
is ht�� t�� � � � � tmi�

Stuttering equivalence is the �nest equivalence relation on behaviors such
that any two behaviors � � ht� ti � � and � � hti � � are stuttering equivalent�
Two behaviors � � s�� s�� � � � and � � t�� t�� � � � are equal up to x i� si �x ti
for all i� They are similar up to x� written � �x � � i� there exists �

� and � �

such that	

� �� and � � are equal up to x�
� � and �� are stuttering equivalent�
� � and � � are stuttering equivalent�

Given an interpretation � over VR and a behavior � � s�� s�� � � �� we
extend the semantics to behavior predicates	

� ��P ����� is ��P ����s� �
� ����A�v ����� is true i� ��A 	 �v

� � v������sn�sn��� is true for all n � ��

� ���F ����� is true i� ��F ����� is not�
� ��F �G����� is true i� both ��F ����� and ��G����� are�
� ���F ����� is true i� ��F �����jn is true for all n � ��

� If x � VR then ���x�F ����� is true i� ��F ����� is true for some � �x ��
� If x � VF then ��������x�F ����� is true i� ��F ����� is true for some � �x ��

On TLA as a Logic �

A logic is invariant under stuttering when none of its formulas can dis�
tinguish between two stuttering�equivalent behaviors� Invariance under stut�
tering is important in connection with re�nement �
��� A fundamental result
about TLA is that it is invariant under stuttering� namely	

Proposition ��� �Invariance under stuttering	� If F is a behavior pred�

icate� � is an interpretation over VR� and � and � are two stuttering�

equivalent behaviors� then ��F ����� � ��F ����� �

Proof	 We use the following simple facts	

� If � and � are stuttering equivalent� then for every n � � there exists
m � � such that �jn and � jm are stuttering equivalent�

�� If � � s�� s�� � � � and � � t�� t�� � � � are stuttering equivalent then
a� t� � s�� and
b� t� � s� or t� � s��

�� For any x � VF � similarity up to x ��x� is an equivalence relation on the
set of behaviors�

The proof is by induction on the structure of F 	

� Case	 F is a state predicate�
Proof	 Since � and � are stuttering equivalent� Fact �a implies s� � t��
Therefore� ��F ����� � ��F ����s� � ��F ����t� � ��F ����� �

�� Case	 F is ��A�v where A is a transition predicate and v is a state func�
tion�

Proof	 Since stuttering equivalence is an equivalence relation� by the def�
inition of ����A�v ����� it su�ces to	
Assume	
� ����A�v ����� is true�

�� n � �
Prove	 ��A 	 �v� � v������sn�sn��� is true�

��
� Choose m � � such that �jn and � jm are stuttering equivalent�
Proof	 Such m exists by the assumption that � and � are stuttering
equivalent� and Fact
�
���� sn � tm
Proof	 By the choice of m in Step ��
� and Fact �a�
���� Case	 sn�� � tm��

Proof	 Step ��� and the case assumption imply �sn� sn��� � �tm� tm����
and hence ��A 	 �v� � v������sn�sn��� � ��A 	 �v

� � v������tm�tm���
� since

����A�v ����� is true by assumption� ��A 	 �v
� � v������tm�tm���

is true�
���� Case	 sn�� � tm
Proof	 Step ��� and the case assumption imply sn � sn��� Therefore�
��v� � v�����sn�sn��� is true� and hence ��A 	 �v

� � v������sn�sn��� is true�
���� Q�E�D�
Proof	 The choice ofm in Step ��
 and Fact �b ensure that sn�� � tm��

or sn�� � tm� The assertion follows by Steps ��� and ����

�� Mart��n Abadi and Stephan Merz

�� Case	 F is �G for some behavior predicate G�
Proof	 By the induction hypothesis� ��G����� � ��G����� � and this immedi�
ately implies the assertion�

�� Case	 F is G �H for some behavior predicates G� H �
Proof	 ��F ����� is true

i� ��G����� and ��H ����� are true

i� ��G����� and ��H ����� are true �by induction hypothesis�

i� ��F ����� is true
�� Case	 F is �G for some behavior predicate G�
Proof	 Since stuttering equivalence is an equivalence relation� by the def�
inition of ���G����� it su�ces to	
Assume	
� ���G����� is true�

�� n � �
Prove	 ��G�����jn is true�

��
� Choose m � � such that �jn and � jm are stuttering equivalent�
Proof	 Such m exists by the assumption that � and � are stuttering
equivalent� and Fact
�
���� Q�E�D�
Proof	 The assumption that ���G����� is true implies that ��G����� jm is
true for all m � �� Step ��
 and the induction hypothesis imply that
��G�����jn is true�

�� Case	 F is �x�G for some behavior predicate G and x � VR�
Proof	 ��F ����� is true

i� ��G����� is true for some � �x �

i� ��G����� is true for some � �x � �by induction hypothesis�

i� ��F ����� is true

�� Case	 F is ������x�G for some behavior predicate G and x � VF �
Proof	 ��F ����� is true

i� ��G����� is true for some � �x �

i� ��G����� is true for some � �x � � by the assumption that
� and � are stuttering equivalent �and therefore � �x ���
since �x is transitive �Fact ��

i� ��F ����� is true
�� Q�E�D�
Proof	 From Steps
�� by induction on the de�nition of behavior predi�
cates�

����� Validity Given a structureM for L� the state predicate P isM�valid
i� ��P ����s is true for all interpretations � and states s� Similarly� a transition
predicate A isM�valid i� ��A�����s�t� is true for all interpretations � and states

s and t� Finally� a behavior predicate F is M�valid i� ��F ����� is true for all
interpretations � and behaviors ��
More generally� given a class of structures S �for example� the models of

a �rst�order theory�� a formula is S�valid i� it is M�valid for all M in S�

On TLA as a Logic ��

Often� the class of structures of interest is clear from context� and then we
say that the formula is valid�
There can be a slight ambiguity� since �P is valid� may mean �P is a

valid state predicate� or �P is a valid temporal formula�� fortunately� these
two readings are equivalent�

��� Notes

Other presentations of TLA are possible� The following are some notes on the
choices that we made consciously in our presentation� and on alternatives�

����� TLA and
Ordinary Logic� Throughout� we have chosen to exploit
the syntax and semantics of ordinary� �rst�order logic in de�ning those of
TLA� In particular� our transition formulas are simply �rst�order formulas
over a large set of variables �VE�� To obtain this� it is important that

� be
applied only to variables�
In an alternative de�nition� we could have taken � to be an operator that

can be applied to any state function� With that de�nition� � would be treated
much like the �next� operator ��� of temporal logic�

����� Subscripts Invariance under stuttering is part of the essence of TLA�
Syntactically� this means that subscripts are part of the essence of TLA� The
use of subscripts has given rise to many abbreviations� and to many di�erent
conventions�
Traditionally ��A�v������vn is not an abbreviation for ��A�v� � � � ����A�vn �

Instead� one writes ��A��v������vn� where �v�� � � � � vn� is the tuple of the state
functions v�� � � � � vn� If the underlying �rst�order language is su�ciently rich�
tupling is de�nable� so �v�� � � � � vn� is in fact a state function� We have taken
��A�v������vn as an abbreviation in order to avoid assumptions on the �rst�
order language� In particular� we can reason about �nite domains� where
tupling is not available�
Another common convention is to take �A�v as an abbreviation for A 	

�v� � v�� This convention can be useful� but we avoid it in order to simplify
the parsing of formulas�

����� TLA� From a logical point of view� TLA� is essentially a special
case of TLA� with many added de�nable constructs�
The main di�erences between TLA as we have described it and its for�

malization in TLA� are syntactic� In TLA�� L consists of a single predicate
symbol � with arity �� In addition� TLA� includes Hilbert�s choice opera�
tor 	� More importantly� TLA� provides some syntactic sugar and a module
system� both useful for writing speci�cations in practice�
In TLA�� the structures of interest are models of a set theory� they are

equipped with one binary membership relation and no functions�

�� Mart��n Abadi and Stephan Merz

� Representing a Component

Like other logics� TLA supports several di�erent styles for modelling a com�
ponent� We now discuss� by means of an example� some of these styles� Which
style is most appropriate depends on the problem at hand�
All the styles we describe have some common logical aspects	

� Temporal formulas are used both for describing components and for spec�
ifying their properties�

� Variable hiding is represented by existential quanti�cation�
� The composition of two components is represented by the conjunction of
their speci�cations	 composition means logical conjunction�

� A component implements a property if the formula for the component
implies the formula for the property	 implementation means logical impli�
cation�

For simplicity� we explain how to describe a component with one input
��environment�� variable e� one output ��module�� variable m� and one in�
ternal variable x� Correspondingly� we use three �exible variables� e� m� and
x� Other situations are discussed in ���� and in particular the important spe�
cial case where the component is a complete system� with no input from the
outside�

��� The Standard Interleaving Style

An interleaving representation of a component is one that disallows simul�
taneous steps by the component and its environment� Interleaving repre�
sentations are studied in some detail in ���� We call standard the style of
speci�cation developed there�

����� The Form of a Specication In the standard interleaving style� a
speci�cation has the form

������x��Init ���N �m�x � L�

where	

Init is a state predicate describing the initial values of m and x�
N is a transition predicate describing the component steps� Since the com�
ponent does not change its input variable� N should imply e� � e�

m�x appears as the subscript for N because ��N �m�x allows any state change
that leaves m and x unchanged� Such a state change can a�ect only e
and variables not mentioned in the speci�cation� so we think of it as an
environment step� Thus� according to ��N �m�x� the environment may do
anything but change m and x�

L is the conjunction of fairness conditions� each of the form WFm�x�A� or
SFm�x�A�� It is common that N is a disjunction� and that each A is one
of N �s disjuncts�

On TLA as a Logic ��

The speci�cation disallows simultaneous changes of the input variable and
the output variable� In fact� the speci�cation without the quanti�er �that is�
Init ���N �m�x�L� also disallows simultaneous changes of the input variable
and the internal variable� More precisely� if

N
 e� � e

is a valid transition formula then

������x��Init ���N �m�x � L�
 ��e� � e 	m� � m�e�m

and

�Init ���N �m�x � L�
 ��e� � e 	 �m� � m � x� � x��e�m�x

are valid temporal formulas�

����� A Lossy Queue As an illustration of the standard interleaving style�
we specify a simple� lossy queue� Figure
 shows a picture of this lossy queue�
The lossy queue�s interface consists of two �wires�� i for input and o for
output� Because there is no acknowledgment protocol� inputs may be lost�
Similarly� an input may be added to the lossy queue several times�

� �
i o

q� � � �

Fig� �� A simple queue�

The speci�cation of the lossy queue is shown in Figure �� In the speci��
cation� a list of formulas� each prefaced by �� denotes the conjunction of the
formulas� and indentation is used to eliminate parentheses�
The speci�cation is a temporal formula that mentions the �exible vari�

ables i and o� as well as the �exible variable q� which equals the sequence
of messages received but not yet output� q is hidden by quanti�cation� The
speci�cation uses standard predicate and function symbols for sequences� in
particular� Head�q� denotes the �rst element of q� and Tail �q� denotes the
sequence obtained by removing the �rst element of q�
The state predicate InitQ describes the initial state� It asserts that the

values of i and o are equal� and the value of q is the empty sequence�
The action Enq represents the receipt of a message by the lossy queue�

This action is always enabled� The action Deq represents the operation of
removing a message from the head of q and sending it on the output wire�
This action is enabled i� the value of q is not the empty sequence� The action
NQ is the speci�cation�s complete next�state relation�

�� Mart��n Abadi and Stephan Merz

InitQ
�

� � o � i
� q � hi

Enq
�

� � q� � q � hii
� i� � i

� o� � o

Deq
�

� � q �� hi
� o� � Head
q�
� q� � Tail
q�
� i� � i

NQ
�

� Enq � Deq

LQ
�

� WFo�q
Enq� � WFo�q
Deq�

�Q
�

� InitQ � ��NQ�o�q � LQ

�Q
�

� ������q��Q

Fig� �� A specication of a lossy queue�

The formula LQ is the fairness speci�cation of the lossy queue� It consists
of fairness conditions for Enq and Deq �
The formula
Q is the complete speci�cation of the lossy queue before q

is quanti�ed� The �rst conjunct� InitQ� describes the initial state� The second
conjunct� ��NQ�o�q� asserts that every step is either an NQ step or leaves o
and q unchanged� The third conjunct is LQ�
The formula �Q is the actual speci�cation� The free �exible variables of

�Q are only i and o� while q is existentially quanti�ed�
Writing this TLA speci�cation of the lossy queue is not much di�erent

from writing a corresponding piece of code� except that a TLA formula has
a precise meaning and can be manipulated with logical rules� while a piece
of code can be executed�
The same TLA is used for expressing the properties expected of the lossy

queue� For example� the temporal formula

�u���� �i � u�
 � � �o � u��

expresses that if eventually i settles to a value u then eventually o settles to
the same value u� The lossy queue implements this property� More precisely�
for structures where the queue operations have the expected meaning� the
temporal formula �Q
 �u���� �i � u�
 � � �o � u�� is valid�

����� The Lossy Queue� da Capo The speci�cation of the lossy queue is
simple� but peculiar� �In the terminology of ���� the speci�cation is neither �n
nor internally continuous�� For example� consider a behavior where i remains
constant� In this case� an implementation of the lossy queue could simply do
nothing� leaving o equal to i� Curiously� however� the weak fairness condition
on the Enq action implies that Enq has to take place in�nitely often�

On TLA as a Logic ��

InitQ
�

� � o � i
� q � hi

Enqy
�

� � i �� Last
hoi � q�
� q� � q � hii
� i� � i

� o� � o

Deq
�

� � q �� hi
� o� � Head
q�
� q� � Tail
q�
� i� � i

N
y
Q

�

� Enqy � Deq

L
y
Q

�

� WFo�q
Enq
y� � WFo�q
Deq�

�
y
Q

�

� InitQ � ��Ny
Q�o�q � L

y
Q

�
y
Q

�

� ������q��y
Q

Fig� �� An alternative specication of a lossy queue�

We reformulate the speci�cation of the lossy queue in Figure �� The en�
queuing action is new� it is enabled i� i �� Last�hoi � q� where Last�hoi � q�
denotes the last element of hoi�q� Hence� the queue cannot enqueue the same
input twice in a row� Furthermore� when the lossy queue is empty and the
input is equal to the output� an enqueue cannot take place�
Despite these changes� the resulting speci�cation is logically equivalent to

the original one� so the two speci�cations implement one another� We discuss
how to prove this equivalence in section ��

��� An Interleaving Style with Synchronous Communication

Speci�cations in the standard interleaving style describe components that
communicate asynchronously� all synchronization relies on handshakes� In
this section we describe another style for writing interleaving speci�cations
which models a form of synchronous communication�
In this style� a speci�cation still does not allow behaviors where an input

variable and an output variable of a component change value simultaneously�
the visible steps of component and environment are interleaved� However� a
speci�cation may allow behaviors where an input variable and an internal
variable change value simultaneously�
This possibility is useful in modelling a sort of synchronous communica�

tion� where the component can record in its internal variable every step of
the environment� as it happens� This sort of communication is less laborious
�but perhaps less realistic� than an explicit handshake between component
and environment�

�� Mart��n Abadi and Stephan Merz

����� The Form of a Specication In this style� a speci�cation has the
form

������x��Init ���N �e�m�x � L�

where	

Init is the usual state predicate�
N is no longer expected to imply e� � e� Instead� N should be expressible as
the disjunction of an action Nmod that implies e

� � e and an action Nenv

that implies m� � m� Intuitively� the former describes the component
steps� while the latter describes the environment steps and the resulting
changes to x�

e�m� x appears as the subscript in ��N �e�m�x in order to guarantee that N
accounts for every state change that modi�es any of the variables of
interest�

L is the conjunction of fairness conditions� each of the form WFe�m�x�A� or
SFe�m�x�A�� Now Nmod may be a disjunction� and each A may be one of
the disjuncts of Nmod �

The speci�cation disallows simultaneous changes of e and m� More pre�
cisely� if the transition formulas

N
 �Nmod 	Nenv� Nmod
 �e� � e� Nenv
 �m� � m�

are valid then the temporal formula

������x��Init ���N �e�m�x � L�
 ��e� � e 	m� � m�e�m

is valid� However� Init ���N �e�m�x � L may allow simultaneous changes of e
and x�

����� A Queue with Synchronous Input We can take advantage of the
synchronous style for writing a simple speci�cation of a �non�lossy� queue�
This queue never misses an input because each change on its input wire i is
simultaneously re�ected in its contents q� The speci�cation �	Q of the queue
is given in Figure ��
In this speci�cation� there is no enqueue action� Instead� we �nd an input

action� Inp� This action asserts that i changes� that the new value of i is added
to the queue� and that o does not change� Conversely� Deq implies that i does
not change� The speci�cation includes a fairness condition on Deq � It does
not include a fairness condition on Inp� because we do not require that the
environment produce in�nitely many inputs� The queue implements the lossy
queue� as the implication �	Q
 �Q is valid�
While the Inp action is part of the queue speci�cation� it does not restrict

how the input variable i may change� The speci�cation allows arbitrary en�
vironment steps� In section � we discuss how to express assumptions about
the environment�

On TLA as a Logic ��

InitQ
�

� � o � i
� q � hi

Inp
�

� � i� �� i

� q� � q � hi�i
� o� � o

Deq
�

� � q �� hi
� o� � Head
q�
� q� � Tail
q�
� i� � i

N�
Q

�

� Inp � Deq

L�
Q

�

� WFi�o�q
Deq�

��
Q

�

� InitQ � ��N�
Q�i�o�q � L�

Q

��
Q

�

� ������q���
Q

Fig� �� A synchronous specication of a queue�

It would be easy to restrict the Inp action� For example� we could add
that the length of q is at most � as a conjunct to Inp� with the e�ect that
an input step would be disallowed when the queue contains � elements� We
would obtain a component speci�cation that also imposes conditions on the
component�s environment� Such a speci�cation is interestingly reminiscent of
those that can be written in process calculi like CCS ����� our experience with
this kind of speci�cation is limited�

��� A Noninterleaving Style

All of the speci�cations given so far are interleaving speci�cations� where com�
ponent and environment do not take steps simultaneously� A noninterleaving
speci�cation� in contrast� allows such simultaneous steps�
In our experience� interleaving speci�cations are often easier to reason

about than noninterleaving speci�cations� On the other hand� noninterleaving
speci�cations lead to a direct treatment of composition� we give an example
below�

����� The Form of a Specication One appealing way of writing a non�
interleaving speci�cation is �variable by variable�� as	

������x��Init ���Ninp �e ���Nout �m ���Nint �x � L�

The actions Ninp � Nout � and Nint are intended to describe changes to one
variable each �to e� m� and x� respectively�� The choice of subscripts implies
that a step that changes e� m� or x satis�es Ninp � Nout � or Nint � respectively�
The actions Ninp � Nout � and Nint may be mutually consistent� Therefore�

a behavior may satisfy Init � ��Ninp �e � ��Nout �m � ��Nint �x � L even if it
contains simultaneous changes to e� m� and x� Therefore� a behavior may

�	 Mart��n Abadi and Stephan Merz

satisfy ������x��Init � ��Ninp �e � ��Nout �m � ��Nint �x � L� even if it contains
simultaneous changes to e and m�
Another style for noninterleaving speci�cations appears in ����

����� A Noninterleaving Queue A noninterleaving speci�cation of the
queue appears in Figure �� Its actions are de�ned in terms of auxiliary tran�
sition functions di and do that represent the values enqueued or dequeued in
a transition� if any�

InitQ
�

� � o � i
� q � hi

di
�

� if i� � i then hi else hi�i

do
�

� if o� � o then hi else ho�i

Inp�
�

� � i� �� i

� q � di � do � q�

Deq�
�

� � q �� hi
� o� � Head
q�
� q � di � do � q�

L�
Q

�

� WFo
Deq
��

��
Q

�

� InitQ � ��Inp��i � ��Deq
��o � ��Inp� � Deq��q � L�

Q

��
Q

�

� ������q���
Q

Fig� �� A noninterleaving specication of a queue�

The speci�cation allows simultaneous input and output steps when the
queue is not empty� The conjunct q � di � do � q� appears in the input action
to relate the old value of the queue with the new one� whether there has been
an output or not� The conjunct q � di � do � q� appears in the output action
with an analogous purpose� This conjunct implies that any change to i is
re�ected in the queue� so that the queue never misses an input� and that any
change to o comes from the queue�
The speci�cation allows but does not require simultaneous input and out�

put steps� Therefore� a behavior where input and output never coincide may
satisfy the speci�cation� In particular� the interleaving queue implements the
noninterleaving queue	 the implication �	Q
 ��

Q is valid�

����� Composing Queues We may want to prove that two queues Q� and
Q� in series implement a single queue Q� This proof may not be possible if Q
has an interleaving speci�cation� and we represent the composition of Q� and
Q� by the conjunction of their speci�cations� In particular� Q� may receive
an input at the same time as Q� produces an output� so the speci�cation of
the composite queue would allow simultaneous input and output steps� while
an interleaving speci�cation of Q would not� We may avoid this problem
by simply assuming that input and output do not happen simultaneously

On TLA as a Logic ��

�as in ����� In contrast� this problem does not even arise for noninterleaving
speci�cations� as we show next�
Consider two queues with noninterleaving speci�cations ��

Q�
and ��

Q�
�

Suppose that the �rst queue has input variable i� the second queue has output
variable o� and the two queues are connected by the variable c� Thus� ��

Q�
is

��
Q�c�o� and �

�
Q�
is ��

Q�c�i�� The composition of the queues with c exposed is
represented by the conjunction ��

Q�
� ��

Q�
� It implements a single queue� as

���
Q�
� ��

Q�
�
 ��

Q is valid� The composition of the queues with c hidden is
represented by ������c����

Q�
� ��

Q�
�� Since c does not occur free in ��

Q� it follows
that ������c����

Q�
� ��

Q�
�
 ��

Q is valid as well�

� Proof Rules

So far we have explained TLA formulas in terms of their semantics� This
semantics is su�cient for writing speci�cations� and sometimes for informal
reasoning� but the proof of TLA formulas requires precise rules of inference� In
this section� we give some rules for TLA and discuss their use in veri�cation�

��� Logical Rules

We describe some basic rules of temporal logic and rules for existential quan�
ti�cation� We adapt the rules from Lamport�s work� with some attention to
logical details� The rules that we present are quite incomplete� our purpose
is only to illustrate an approach�
To understand the rules� it is useful to keep in mind an overall proof

strategy that underlies the TLA approach �but is certainly not unique to
it�� The meaning of a temporal formula is given in terms of behaviors� and
in principle one has to reason about sets of behaviors to prove a temporal
formula� Unfortunately� reasoning about sets of behaviors can be hard� The
rules of TLA have as objective reducing that hard� temporal reasoning to
easier reasoning about actions� We do not give rules for reasoning about
actions� since no new rules are needed actions are �rst�order formulas�
Other proof systems for temporal logics �for example� that of Manna

and Pnueli ����� include rules for relating programs and logical formulas�
TLA does not include such rules	 in the TLA approach� formulas represent
programs� and the rules used for veri�cation are purely logical�

����� Invariants for � Most veri�cations require proving an invariant� as
a starting point� A basic proof rule for proving an invariant is	

P � �N 	 v� � v�
 P �

P � ��N �v
 �P
�Inv�proof
�

where P is a state predicate� N an action� and v a state function� This rule
is sound� in the following sense	

�� Mart��n Abadi and Stephan Merz

� take any sets of symbols �L� VR� VF �� and take any class of structures for
L �possibly a single structure��

� take any state predicate P � action N � and state function v�
� assume that P � �N 	 v� � v�
 P � is valid� as a transition formula�
� then P ���N �v
 �P is valid� as a temporal formula�

The proof of soundness is by a straightforward induction on behaviors�
Whenever we state a rule� from now on� we implicitly adopt the same

reading� We assume given a set of symbols and a class of structures� A rule
is sound when� if its antecedents are valid for the given class of structures�
then so is its conclusion� Similarly� an axiom is sound if it is valid for the
given class of structures� Clearly� not every useful axiom and rule is sound
for every class of structures �consider x�� � x�� however� all the axioms and
rules listed here are valid for every class of structures�
Once an invariant is proved� it can be used� The following rule allows that	

P � P � � �N 	 v� � v�
 �M 	 u� � u�

� P � ��N �v
 ��M �u
�Inv�use
�

In particular� this rule yields	

�P � ��N �v
 ��N � P � P ��v

Note that the converse of this implication does not always hold� The for�
mula on the right�hand side is true of any behavior where v never changes�
independently of the value of P �
The rules for invariants have straightforward generalizations that handle

several transition formulas at once	

P � �N� 	 v�� � v�� � � � � � �Nk 	 v�k � vk�
 P �

P � ��N��v� � � � � � ��Nk�vk
 �P
�Inv�proof��

P � P � � �N� 	 v
�
� � v�� � � � � � �Nk 	 v

�
k � vk�
 �M 	 u� � u�

� P � ��N��v� � � � � � ��Nk�vk
 ��M �u
�Inv�use��

����� Lattices for � The TLA method for proving fairness properties is
based on a common lattice rule ���� �
�� The lattice rule relies on a well�
founded relation � �a binary relation such that there is no in�nite chain
x� � x� � x� � � � ��� In our formalization� we assume that x � y is a constant
predicate with free variables x and y� and a � b stands for �x � y�fa�xgfb�yg�
For now �following Lamport� we express that � is well�founded by �� is well�
founded�� as if this were a logical formula�
In logical form� the lattice rule reads	

� is well�founded

H ���x��H
 ��G 	 �y��x � y� �H �y�x���
 �G

�Lattice�
x� y � VR
x �� FVtemp�G�
y �� FVtemp�H�

On TLA as a Logic ��

where x and y are rigid variables such that x �� FVtemp�G� and y ��
FVtemp�H�� For emphasis� let us write H�x� for H � and H�y� for H �y�x��
This rule gives a way of proving that G is eventually true� from the assump�
tions	

� H�x� is true initially� for some x� and
� always� for every x� H�x� implies that eventually G is true or H�y� is true
for some y such that x � y�

The assumption that � is well�founded can be formalized in several ways�
It can be written as a nontemporal formula� such as	

�f��i��i � Nat � ��f�i� � f�i�
��

provided the underlying language is rich enough� Interestingly� it can also be
written as a temporal formula	

�x���x � x� � ������u����u � u��u
 � � �false�u�

The �rst conjunct of this formula expresses antire�exivity� For each particular
behavior� the second conjunct says only that if always u � u� or u � u� then
after some point u � u�� If this temporal formula is valid for a structure�
then � is well�founded for that structure� This temporal formula may be a
�ne way of formalizing the assumption that a relation � is well�founded� On
the other hand� it may be hard to prove this formula from more elementary
ones� should that be desirable�
In addition to the lattice rule� TLA includes specialized rules for reason�

ing about fairness� according to Lamport �
�� those are not necessary for
completeness� but important in practice�

����� Quantication The rules for � are familiar from �rst�order logic	

G
 F

��x�G�
 F

���left�
x � VR
x �� FVtemp�F �

G
 F �b�x�

G
 ��x�F �

���right�
x � VR
b a constant function

The rules for ������ are similar	

G
 F

�������x�G�
 F

��������left�
x � VF
x �� FVtemp�F �

G
 F �b�x�

G
 �������x�F �

��������right�
x � VF
b a state function

Since existential quanti�cation over �exible variables corresponds to hiding�
these rules play a central role in proofs of re�nement for reactive systems�
However� the rules are the standard� logical ones�

�� Mart��n Abadi and Stephan Merz

����� Auxiliary Variables Unfortunately� it is not always possible to prove
a formula of the form ������x�F using ��������right�� Additional principles are needed
for completeness� Consider for example the trivial formula	

������x�WFx�true�

This formula states that if there exist at least two di�erent values there is a
sequence of values for x such that eventually x� �� x� Although this formula
is valid� we cannot exhibit any state function b such that WFb�true� is valid�
For any state function b� there are behaviors where all the �exible variables
that occur in b remain constant� and hence b remains constant too� Therefore�
������x�WFx�true� cannot be derived directly using ��������right��
One approach to solving this problem consists in adding auxiliary vari�

ables� History variables are the most common auxiliary variables� but there
are other sorts too ���� In this approach� we reduce a proof that G
 �������x�F �
to a proof that Gaux
 �������x�F �� where Gaux is G plus an auxiliary vari�
able� The proof that Gaux
 �������x�F � is performed with ��������right�� The proof
that Gaux is equivalent to G relies on special rules for auxiliary variables�
For simple auxiliary variables� like history variables� this latter proof is often
routine�
We discuss auxiliary variables again in section ������ in the context of

an example� That example is both larger and conceptually clearer than
������x�WFx�true��
An alternative approach has been explored for other formalisms� but not

for TLA �e�g�� ������ In that approach� the notion of state function is extended
to that of state relation� The use of appropriate state relations removes the
need for auxiliary variables� On the other hand� the rules for quanti�cation
become more complicated �and perhaps less logical��

��� Verication

The rules of TLA are designed to be used in proving that one reactive system
implements another� Next we explain the overall strategy for their use� and
then consider examples�

����� The Strategy As we have seen in section �� there are several reason�
able ways to represent systems by formulas� however� all the formulas that
we have examined have the form	

������x� � � � �������xn��Init ���N��v� � � � � � ��Nk�vk � L�

Simplifying matters� �rst we consider only formulas of the modest form
Init ���N �v� If we represent two systems SF and SG by two such formulas�

F
�

� I ���M �u

G
�

� J ���N �v

On TLA as a Logic ��

then the validity of G
 F means that SG implements SF � The rules given
above� together with propositional logic� yield the following method for prov�
ing G
 F 	

� prove J
 I �
�� pick a state predicate P � and prove J
 P and P � �N 	 v� � v�
 P ��
�� using �Inv�proof
� and ���� derive G
 �P �
�� prove P � P � � �N 	 v� � v�
 �M 	 u� � u��
�� using �Inv�use
�� �
�� and ���� derive �P �G
 F �
�� obtain G
 F from ��� and ����

To extend this method to deal with multiple transition formulas� it suf�
�ces to replace �Inv�proof
� with �Inv�proof�� and �Inv�use
� with �Inv�use���
Handling fairness properties requires use of �Lattice� and other rules� see �
�
for details and examples�
The quanti�er ������ can be treated with ��������left� and ��������right�� When we

have two speci�cations F
�

� ������x�F I and G
�

� ������y�GI � with y �� FVtemp�F ��
we can prove that G
 F by �nding a state function b such that GI

F I �b�x�� then applying ��������right� and ��������left� in sequence� The state function
b is called an abstraction function� or a re�nement mapping �e�g� �
�� �� and
the references therein�� A re�nement mapping gives a value �an instantiation�
for the variable x in terms of the other variables� including y�
Re�nement mappings are an important tool for proving that one spec�

i�cation implements another one� However� they do not always su�ce� in
practice� veri�cations sometimes require auxiliary variables� Section ������
below� illustrates this�

����� A Simple Example As a simple example of a veri�cation� we argue
that the speci�cation �Q of the lossy queue of section ��
�� implements the

alternative speci�cation �y
Q of section ��
��� That is� we prove that �Q
 �y

Q

is valid�
The formulas �Q and �

y
Q are ������q�
Q and ������q�

y
Q� respectively� so they both

have q as an internal variable� Informally� we call q the low�level queue or the
high�level queue� depending on whether we refer to �Q or �

y
Q� According to

the speci�cations given above� the low�level queue may contain an element
several times in sequence� while the high�level queue does not have any such
repetitions�
Finding a re�nement mapping means �nding an expression for the high�

level queue in terms of i� o� and the low�level queue� According to our rules�
it su�ces to check that

Q

y
Q�!q�q�

for some state function !q� We choose	

!q
�

� Tail ���hoi � q��

where ��hoi � q� is the sequence obtained by removing all repetitions from
hoi � q� in general� �� is de�ned inductively by	

�� Mart��n Abadi and Stephan Merz

��hi� � hi

��hai� � hai

��ha� bi � �� � a � ��hbi � �� if a �� b

��ha� ai � �� � a � ����

Once this re�nement mapping is given� it remains to prove	

�InitQ � ��NQ�o�q � LQ�
 �InitQ � ��Ny
Q�o�q � Ly

Q��!q�q�

The �rst step is checking an invariant	 simply the type invariant that q is
always a �nite queue� which we write Queue�q�� By propositional logic� it
su�ces to prove	

Queue�q� � Enq
 Queue�q��
Queue�q� � Deq
 Queue�q��
Queue�q� � o� � o � q� � q
 Queue�q��

and then �Inv�proof�� yields Queue�q� �
Q
 �Queue�q�� since InitQ

Queue�q�� it also follows that
Q
 �Queue�q��
Now it remains to prove	

Queue�q� � InitQ
 �InitQ��!q�q�

�Queue�q� � ��NQ�o�q
 ���Ny
Q�o�q��!q�q�

�Queue�q� �
Q
 �Ly
Q��!q�q�

The �rst of these formulas is easy to prove directly in �rst�order logic� The
second one can be proved by �Inv�use��� The third one is more di�cult we
would not expect to handle it with �Lattice�� but to use specialized rules for
reasoning about fairness�

����� A Harder Example The proof of the converse implication� �y
Q

�Q� is more di�cult� The natural re�nement mapping �de�ning !q as q� does
not work� To use this mapping� we would have to prove in particular

y
Q
 WFi�o�q�Enq�

This formula is not valid� because
y
Q is true for a behavior where i and o

never change and the high�level queue remains empty� while WFi�o�q�Enq� is
false for such a behavior�
In fact� the proof that �y

Q
 �Q requires more than a re�nement mapping�
If i and o remain constant and q remains empty throughout a behavior� any
state function !q de�ned from i� o� and q remains constant too�
y

Q is true for
this behavior but
Q�!q�q� cannot be�
The proof can be performed by adding a dummy� auxiliary variable s to

�y
Q� This variable may be set to
 when q is empty and i equals o� Then s is
decremented to �� The other variables �i� o� q� remain unchanged whenever s
is set� to the observer of these variables� these transitions look like stutters�

On TLA as a Logic ��

A fairness condition guarantees that if i and o remain constant and equal�
and q remains empty� then s is set in�nitely often�
The speci�cation with the auxiliary variable is �y

QS � given in Figure �� It
is obtained by conjoining a formula �S with the internal variable s to the
formula
y

Q that describes q� and then hiding q as usual� In �S � the formula
��Pass �i�o�q means that� whenever i� o� or q change� s equals � and s does not
change� the formula ��Set �s means that� whenever s changes� q equals hi� i
equals o� and s� is if �s � �� then
 else ��
The speci�cation �S is written in a regular form� as an instance of a

general template for auxiliary variables� Using general results� it is easy to
derive that �S is valid� Hence�

y
Q is equivalent to

y
QS � and �

y
Q to �

y
QS �

InitS
�

� s � �

Pass
�

�
s � �� �
s� � s�

Set
�

� �
q � hi� �
i � o�
� s� � if
s � �� then � else �

�S
�

� InitS � ��Pass �i�o�q � ��Set �s � WFs
Set�

�S
�

� ������s��S

�
y
QS

�

� �
y
Q � �S

�
y
QS

�

� ������q��y
QS

Fig� �� A lossy queue with an auxiliary variable�

A re�nement mapping can be given in terms of q and s	

!q
�

� if s ��
 then q else hii

The auxiliary variable s has enabled us to �fake� an Enq immediately followed
by a Deq � in a circumstance when q is empty and i and o are equal� These
actions have no externally observable e�ect because i and o stay unchanged�
Using this re�nement mapping� we can prove that

y
Q �
S

Q�!q�q�

From this it follows that
�y
QS
 �Q

and �nally that
�y
Q
 �Q

as desired�

�� Mart��n Abadi and Stephan Merz

� Assumption�Guarantee Speci�cations

Few components can be expected to work as intended in arbitrary environ�
ments� Usually� the speci�cation of a component must describe the environ�
ment in which the component is supposed to operate� There are at least two
di�erent methods for this	

� A closed system speci�cation constrains both the environment and the
component� It may be written in the form E �M � where E describes the
environment and M the component� A behavior satis�es this speci�cation
i� it satis�es both E and M �

� An open system speci�cation does not constrain the environment� Instead�
it states an assumption about the environment and a guarantee by the
component �e�g�� �
�� ��� ��� ��
���� It may be written in the form E
M �
where E is the assumption andM the guarantee� A behavior that does not
satisfy E does satisfy E
M � �We re�ne this form in section �����

The proof rules of section � are adequate for reasoning about closed system
speci�cations� On the other hand� reasoning about assumptions and guaran�
tees requires new rules� We give an account of compositional reasoning about
assumption"guarantee speci�cations in a rather general algebraic setting� Re�
turning to TLA� we obtain a proof rule that reduces reasoning about open
system speci�cations to reasoning about closed system speci�cations�

��� Safety Properties

As a preliminary� we extend the semantics of temporal formulas to �nite
sequences of states	

� ��F ����ht������tni is true i� either ht�� � � � � tni is empty or there exists some

�in�nite� behavior � that extends ht�� � � � � tni such that ��F ����� is true�

This de�nition implies that if F is true for a behavior then it is true for every
pre�x of the behavior�
It is customary to classify properties as safety or liveness properties ���

A safety property is true for an in�nite behavior � i� it is true for all �nite
pre�xes of �� In particular� if P is a state predicate� A a transition formula�
and v a state function� then �P and P � ��A�v are safety properties� A
liveness property is true for every �nite behavior� For example� �P � � � P �
and � � P are all liveness properties if P is a satis�able state predicate�
Manna and Pnueli give a more detailed classi�cation of properties in their
temporal logic �����
Since TLA is invariant under stuttering �by Proposition ��
�� if a formula

F is true of ht�� � � � � tni then it is also true of ht�� � � � � tn� tni� Hence� any safety
property F is true of the �nite state sequence ht�� � � � � tni i� it is true of the
behavior ht�� � � � � tn� tn� tn� � � �i� In turn� this implies that a conjunction of

On TLA as a Logic ��

safety properties is again a safety property� and is true of ht�� � � � � tni i� every
conjunct is true of ht�� � � � � tni� Similarly� a �nite disjunction of safety prop�
erties is again a safety property� and is true of ht�� � � � � tni i� some disjunct
is true of ht�� � � � � tni�
For any property G� there is a strongest safety property C�G�� called the

closure of G� such that G
 C�G� is valid� The property C�G� has a syntactic
de�nition in TLA� in terms of the TLA primitives �see section ����� However�
in practice� we do not use that de�nition� but instead rely on the following
semantics� Let � be a behavior s�� s�� � � �� then	

� ��C�F ������ is true i� ��F ����hs������sni is true for every n � ��

��� Connectives for Assumption�Guarantee Specications

The evident way to write an open system speci�cation with assumption E
and guarantee M is as an implication� E
 M � with both E and M in one
of the forms discussed in section �� Following ���� we prefer to use a stronger
formula� E �� M � Informally� E �� M is true for a behavior i�	

�a� if E holds� then M holds�
�b� if both E and M are violated� then M is violated later than E�

An intermediate formula� E � M � is sometimes useful too� E � M is true
for a behavior i�	

�a� if E holds� then M holds�
�b� if both E and M are violated� then M is violated no sooner than E�

If no step can violate both E and M � then E � M and E �� M are equiv�
alent� In all cases� E �� M implies E � M � and E � M implies E
 M �
Although E � M is strictly stronger than E
M � they are equivalid	

E
M

E � M
�while�

An analogous rule is not sound for ��	 for example� false
 false is valid� but
false

�� false is not�
Like C� both � and �� have complicated syntactic de�nitions� The follow�

ing semantic de�nitions are more transparent� Let � be a behavior s�� s�� � � ��
then	

� ��F � G����� is true i�

� for all n � �� if ��F ����hs������sni is true� then ��G����hs������sni is true� and

�� if ��F ����� is true� then ��G����� is true�

� ��F �� G����� is true i�

� for all n � �� if ��F ����hs������sn��i is true then ��G����hs������sni is true� and

�� if ��F ����� is true� then ��G����� is true�

In particular� these de�nitions imply that F � G and F �� G are safety
properties whenever G is a safety property�

�	 Mart��n Abadi and Stephan Merz

��� Syntactic Denitions

We give the de�nition of C�G� in order to illustrate the expressiveness of TLA�
and in order to clarify that TLA is not an open�ended logic with an ever grow�
ing set of operators� Let x� y� z � VF and u � VR be di�erent variables� and
suppose for simplicity that FVtemp�G� � VF � fxg� �The de�nition of C�G�
when G has several free �exible variables is a straightforward generalization��
Then	

C�G� � ������z��u�

�
�
��z� �� u�z �WFz�z� �� u�

������y�� �u � z
 x � y� �G�y�x�

�
A

Roughly� the antecedent of the implication� ��z� �� u�z �WFz�z� �� u�� says
that z may equal u for some time and then becomes di�erent from u� say
at time n� The consequent� ������y� � �u � z
 x � y� � G�y�x�� says that the
sequence of values for x up to time n �
 can be extended to an in�nite
sequence of values for y that satis�es G� The quanti�ers ������z and �u are in
e�ect quantifying over all n�
The technique used in the de�nition of C yields a de�nition of � for safety

properties� Let x� y� z � VF and u � VR be di�erent variables� and suppose
for simplicity that FVtemp�F � � VF � fxg and that FVtemp�G� � VF � fxg�
Then	

C�F � � C�G� � ������z��u�

�
BBBB�

��z� �� u�z �WFz�z
� �� u�

�
�

������y�� �u � z
 x � y� � F �y�x�

������y�� �u � z
 x � y� �G�y�x�

�
A

�
CCCCA

We obtain a de�nition of F � G for arbitrary F and G from the de�nition
of C�F � � C�G�� through the equivalence	

F � G � �C�F � � C�G�� � �F
 G�

Finally� we obtain a de�nition of ��� through	

C�F � �� C�G� � ��C�G� � C�F �� � C�G��

and
F �� G � �C�F � �� C�G�� � �F
 G�

This de�nition of �� in terms of � has an important counterpart in sec�
tion ��� below�

On TLA as a Logic ��

��� Composing Assumption�Guarantee Specications

If we have two systems with speci�cations E�
�� M� and E�

�� M�� their
composition is described by �E�

�� M�� � �E�
�� M��� To show that the

composite system implements a speci�cation E �� M � we would have to
prove	

�E�
�� M�� � �E�

�� M��
 �E
�� M�

A natural but unsound rule for proving this formula is	

E � M� � M�
 E� � E�

E � M� � M�
M

�E�
�� M�� � �E�

�� M��
 �E
�� M�

The �rst hypothesis serves to discharge the environment assumptions of the
components� For example� when E is true� it expresses that the component
guarantees M� and M� imply the component assumptions E� and E�� The
second hypothesis expresses that the �nal guarantee follows from the envi�
ronment assumption E and the component guarantees M� and M��
The literature contains a number of sound approximations and variants of

the unsound rule� We give one below� In the meantime� we illustrate the use
of the unsound rule� because reasoning with the unsound rule is similar to
reasoning with its sound variants� and in order to justify later restrictions to
the unsound rule� We consider two components X and Y that communicate
through the variables x and y as shown in Figure ��

Component
X

Component
Y

�
x

�

y

Fig� �� A simple example of composition�

As a �rst example� we let	

MX
�

� ��x� � x�x and MY
�

� ��y� � y�y

and specifyX byMY
�� MX � and Y byMX

�� MY � That is� each component
guarantees that the value of its output variable does not decrease� provided
the value of its input variable does not decrease� According to the rule� we
can derive MX �MY from the conjunction of MX

�� MY and MY
�� MX �

That is� the composition of X and Y guarantees that the values of x and y
do not decrease� This conclusion is correct�

�� Mart��n Abadi and Stephan Merz

As a second example� we let	

MX
�

� �� odd �x� and MY
�

� �� odd �y�

and specify X by MY
�� MX � and Y by MX

�� MY � That is� each compo�
nent guarantees that its output variable eventually becomes odd� provided
its input variable eventually becomes odd� Again� the rule would allow us to
deduceMX �MY � This conclusion is incorrect� To see this� consider the spec�
i�cations �X and �Y that imply MY

�� MX and MX
�� MY � respectively	

�X
�

� �x � �� � ��x� � y � ��x � WFx�x
� � y � ��

�Y
�

� �y � �� � ��y� � x� ��y � WFy�y
� � x� ��

Both x and y remain even throughout any behavior that satis�es �X � �Y �
so �X ��Y does not imply MX �MY � As this example illustrates� reasoning
about assumption"guarantee speci�cations is more problematic for liveness
properties than for safety properties�

��� A Logic of Inductive Orderings

We now study the problem of composition formally� �rst in an algebraic
framework� and later in the context of TLA� We take the algebraic detour
because of its generality� and because it makes proofs more transparent� Con�
tinuing some of the work of ���� we obtain an explanation of composition in
a general intuitionistic logic of speci�cations�
We assume given a set �� together with a well�founded pre�order v on

�� We write � � � if � v � and � �� � � A set S � � is downward closed if
� � S whenever � � S and � v ��
For P�Q � �� we de�ne the sets P � Q � � and P

�

� Q � � by	

� � P � Q i� for all � v � 	 � � P implies � � Q

� � P
�

� Q i� for all � v � 	 �� � P for all � � �� implies � � Q

By de�nition� P � Q and P
�

� Q are downward closed�
Let S be a set of downward closed subsets of � such that S is closed under

arbitrary intersections and unions� and under �� For example� we may take
S to be the set of all downward closed subsets of ��
Any such set S supports a natural style of reasoning where � acts as

implication� and intersection and union as conjunction and disjunction� This
follows from Proposition ��
 below� which shows that S forms a complete
Heyting algebra� A complete Heyting algebra �A���

V
�
W
��� is a complete

distributive lattice A� with a partial order �� with a meet operation
V
and

a join operation
W
� and an implication operation � such that �P � Q� � R

i� P � �Q� R� ��
�� In fact� � can be de�ned from
V
and

W
� by Q� R �W

fP j P �Q � Rg� The meet and join operations apply to arbitrary �possibly
in�nite� sets� we write P �Q for

V
fP�Qg� Any complete Heyting algebra is

a model of propositional intuitionistic logic ���� pp� ���������

On TLA as a Logic ��

Proposition ���� �S���
T
�
S
��� is a complete Heyting algebra�

The set S does not yield a Boolean algebra� because the complement of
a downward closed set need not be downward closed� In other words� it is
essential to use intuitionistic logic rather than classical logic to reason in S�
Somewhat surprisingly�

�

� can be de�ned from �� The proof of the fol�
lowing proposition proceeds by induction� and thus relies on the assumption
that v is well�founded�

Proposition ���� For any P�Q � S� �P
�

� Q� � ��Q� P �� Q��

Assume	 P�Q � S
Prove	 P

�

� Q � �Q� P �� Q

� P
�

� Q � �Q� P �� Q
Proof	 Using induction on v� it su�ces to	
Assume	
� � � P

�

� Q
�� For all � � �� � � P

�

� Q implies � � �Q� P �� Q�
�� � v �
�� � � Q� P

Prove	 � � Q

�
� For all � � � � � � P �

�
�
� For all � � � � � � P

�

� Q�
Proof	 This follows from the assumptions that � � P

�

� Q and
� v �� since P

�

� Q is downward closed�

�
��� For all � � � � � � �Q� P �� Q�
Proof	 From Step
�
�
 by the induction hypothesis �Assumption ���
the assumption that � v �� and the transitivity of v�

�
��� For all � � � � � � Q� P �
Proof	 From the assumption that � � Q � P � since Q � P is
downward closed�

�
��� For all � � � � � � Q�
Proof	 From Steps
�
�� and
�
��� by the de�nition of ��

�
��� Q�E�D�
Proof	 Steps
�
�� and
�
��� by the de�nition of ��

��� � � P
�

� Q
Proof	 From the assumptions that � � P

�

� Q and � v �� since P
�

� Q
is downward closed�

��� Q�E�D�
Proof	 From Steps
�
 and
��� by the de�nition of

�

��
�� �Q� P �� Q � P

�

� Q

Proof	 By the de�nition of
�

�� it su�ces to	
Assume	
� � � �Q� P �� Q

�� � v �
�� For all � � � � � � P �

Prove	 � � Q

�� Mart��n Abadi and Stephan Merz

��
� If � �� Q� then � � Q� P �
Proof	 By the de�nition of �� it su�ces to	
Assume	
� � �� Q

�� � v �
�� � � Q

Prove	 � � P
��
�
� � � �
Proof	 The assumptions that � � Q and � �� Q imply � �� � � The
assertion follows from the assumption that � v � �
��
��� Q�E�D�
Proof	 Step ��
�
� and the assumption that � � P for all � � � �

���� � � �Q� P �� Q
Proof	 From the assumptions that � � �Q� P �� Q and � v �� since
�Q� P �� Q is downward closed�
���� If � � Q� P � then � � Q�
Proof	 From Step ��� by the de�nition of �� since v is re�exive�
���� Q�E�D�
Proof	 By Steps ��
� ���� and propositional reasoning�

�� Q�E�D�
Proof	 Steps
 and ��

Propositions ��
 and ��� open the door to purely syntactic reasoning about
� and

�

�� In this syntactic reasoning� we write
V
for
T
� we also write P � Q

for P � Q� and simply Q for � � Q�
Simple intuitionistic reasoning yields	

Proposition ���� Let I be some index set� and assume that P� Pi� Q�Qi� R �
S for i � I� Then�

Q � P
�

� Q �
�

P
�

� Q � P � Q ���

P
�

� P � P ���

�P � Q� � �Q
�

� R� � P
�

� R ���

�P
�

� �Q� R�� � �P
�

� Q� � P
�

� R ����
i�I

�Pi
�

� Qi� �
�
i�I

Pi
�

�
�
i�I

Qi ���

Theorem ���� For P�Q�R � S�

�P �Q�� R � �R
�

� Q�� �P
�

� Q�

Proof	 By Proposition ��
 and simple intuitionistic logic� it su�ces to	
Assume	
� P �Q� R

�� R
�

� Q
Prove	 P

�

� Q

On TLA as a Logic ��

� P � �Q
�

� Q�
Proof	 It su�ces to	
Assume	 P
Prove	 Q

�

� Q

�
� Q� R
Proof	 From the assumptions that P �Q� R and P � by simple intu�
itionistic logic�

��� Q�E�D�
Proof	 Step
�
� the assumption that R

�

� Q� and Proposition �������
�� P � Q
Proof	 Step
� Proposition ������� and simple intuitionistic logic�

�� P � R
Proof	 Step �� the assumption that P �Q� R� and simple intuitionistic
logic�

�� Q�E�D�
Proof	 From Step � and the assumption that R

�

� Q� by Proposition
�������

As Corollary ��
� we obtain a rule for composition in S� The composition
rule of this corollary is similar in shape to the unsound rule considered in
section ����

Corollary ���� Let I be some index set� and assume that P�Q� Pi� Qi � S
for i � I� Then�

P �
V
i�I Qi �

V
i�I Pi

P
�

� �
V
i�I Qi � Q�V

i�I�Pi
�

� Qi�� �P
�

� Q�

Proof	 Theorem ��
� with the substitutions R
�

�
V
i�I Pi and Q

�

�
V
i�I Qi

yields

�
�
i�I

Pi
�

�
�
i�I

Qi�� �P
�

�
�
i�I

Qi�

The assertion follows by Proposition ������ and ���� and simple intuitionistic
reasoning�

��� Compositional Reasoning in TLA

We apply the algebraic framework of section ��� to infer a composition rule
for TLA� More precisely� we show that Corollary ��
 yields a composition
rule for safety properties� and then extend this rule to arbitrary properties�
Let � denote the set of �nite sequences of states over some �xed structure

M� The pre�x ordering� which we write v� is a well�founded pre�order on ��
Let S be the set of sets of �nite sequences of states closed under v and under
stuttering equivalence� The results of section ��� immediately apply to S� In
particular� Corollary ��
 is a semantic composition rule for S�

�� Mart��n Abadi and Stephan Merz

To obtain a syntactic composition rule� we reinterpret the results of sec�
tion ��� in terms of temporal formulas� Logical conjunction and disjunction
correspond to �nite intersection and union over S� Similarly� for safety proper�
ties� the logical operators � and �� of section ��� correspond to the semantic
operators � and

�

�� respectively� Thus� we obtain	

Theorem ���� Let I be some �nite index set� and assume that E�Ei�M�Mi

are safety properties� Then�

E �
V
i�I Mi

V
i�I Ei

E �� �
V
i�I Mi � M�V

i�I�Ei
�� Mi�
 �E

�� M�

Here the index set I is required to be �nite simply because TLA o�ers only
�nite conjunctions and disjunctions� An in�nitary form of Theorem ��� would
be sound�
For safety properties� this rule is a sound variant of the rule discussed in

section ���� It su�ces to treat the �rst example of section ���� since there
MX and MY are safety properties� For that example� we take I � fX�Y g�
E � true� EX � MY � EY � MX � and M � MX �MY � and observe that
true

�� F is equivalent to F �
Looking beyond safety properties� we recall that the following equivalence

is valid for arbitrary temporal formulas F and G	

F �� G � �C�F � �� C�G�� � �F
 G� ���

We obtain the following composition rule� which is essentially the same as
that of ���	

Theorem ���� Let I be some �nite index set� and assume that E�Ei�M�Mi

are temporal formulas� Then�

C�E� �
V
i�I C�Mi�

V
i�I Ei

C�E� �� �
V
i�I C�Mi� � C�M��

E �
V
i�I Mi
MV

i�I�Ei
�� Mi�
 �E

�� M�

Proof	

�
V
i�I�C�Ei�

�� C�Mi��
 �C�E�
�� C�M��

Proof	 The �rst hypothesis implies that

C�E� �
�
i�I

C�Mi�

�
i�I

C�Ei�

is valid� since Ei
 C�Ei� is valid� The assertion follows by Theorem ����
since C�E�� C�Ei�� C�Mi�� and C�M� are all safety properties�

On TLA as a Logic ��

��
V
i�I�Ei

�� Mi�
 �E
M�

Proof	 Theorem ���� with the substitution M
�

�
V
i�I C�Mi�� yields�

i�I

�C�Ei�
�� C�Mi��
 �C�E�

��
�
i�I

C�Mi��

from which we obtain�
i�I

�C�Ei�
�� C�Mi��
 �C�E�

�
i�I

C�Mi��

by ���� The �rst hypothesis implies�
i�I

�C�Ei�
�� C�Mi��
 �C�E�

�
i�I

Ei�

Using ��� and the validity of E
 C�E�� we infer�
i�I

�Ei
�� Mi�
 �E

�
i�I

Ei�

Using ��� again� we infer�
i�I

�Ei
�� Mi�
 �E

�
i�I

Mi�

The assertion follows by the third hypothesis�
�� Q�E�D�
From Steps
 and � by the equivalence ����

To apply this composition rule� the low�level assumptions Ei have to be
deduced from a conjunction of safety properties� Hence� in practice� they com�
monly are safety properties themselves� this restriction to safety properties
is consistent with the informal discussion and the examples of section ����
When Ei is not a safety property� we can use the equivalence ��� to apply
the composition rule to the safety part of the speci�cation� and use ordinary
temporal reasoning for the liveness part�
The �rst and third hypotheses of the composition rule can be established

using standard TLA proof rules� such as those of section �� and some aux�
iliary rules to deal with closures� A strategy for reducing the proof of the
second hypothesis to the proof of ordinary implications is discussed in ����
An alternative strategy consists in using the following rule	

F �G
 �P

��P �v �G
 H

F �� �G � H�

where P is a state predicate� v a state function� and F � G� and H arbitrary
temporal formulas� This rule enables us to derive a formula with � and
�� from two classical implications� The state predicate P plays the role of
an invariant� guaranteed by F and G according to the �rst hypothesis� The
second hypothesis says� roughly� that H follows from G together with the
invariant�
Thus� the techniques for verifying the hypotheses of the composition rule

are rather speci�c to TLA� On the other hand� the composition rule is general�
and follows fairly directly from the algebraic arguments of section ����

�� Mart��n Abadi and Stephan Merz

Acknowledgements

Leslie Lamport contributed to most of the ideas presented here� and encour�
aged this work�

References

�� Mart��n Abadi� An axiomatization of Lamport�s Temporal Logic of Actions� In
J�C�M� Baeten and J�W� Klop� editors� CONCUR ���� Theories of Concurrency�
Uni�cation and Extension� volume ��	 of Lecture Notes in Computer Science�
pages ������ Springer�Verlag� August ����� Also appeared as SRC Research
Report ��� revised in March �����

�� Mart��n Abadi and Leslie Lamport� The existence of renement mappings� The�
oretical Computer Science� 	�
��������	�� May �����

�� Mart��n Abadi and Leslie Lamport� Composing specications� ACM Transac�
tions on Programming Languages and Systems� ��
���������� January �����

�� Mart��n Abadi and Leslie Lamport� Conjoining specications� Research Report
��	� Digital Equipment Corporation� Systems Research Center� ����� To appear
in ACM Transactions on Programming Languages and Systems�

�� Mart��n Abadi and Leslie Lamport� An old�fashioned recipe for real time�
ACM Transactions on Programming Languages and Systems� ��
�������������
September �����

�� Mart��n Abadi� Leslie Lamport� and Stephan Merz� Rening specications� To
appear�

�� Mart��n Abadi and Gordon Plotkin� A logical view of composition and rene�
ment� In Proceedings of the Eighteenth Annual ACM Symposium on Principles
of Programming Languages� pages �������� January �����

	� Mart��n Abadi and Gordon Plotkin� A logical view of composition� Theoretical
Computer Science� ���
�������� June �����

�� Bowen Alpern and Fred B� Schneider� Dening liveness� Information Processing
Letters� ��
����	���	�� October ��	��

��� Pierre Collette� Design of Compositional Proof Systems Based on Assumption�
Commitment Speci�cations� Application to UNITY� PhD thesis� Universit�e
Catholique de Louvain� June �����

��� Urban Engberg� Peter Gronning� and Leslie Lamport� Mechanical verication
of concurrent systems with TLA� In Computer�Aided Veri�cation� Lecture Notes
in Computer Science� pages ������ Springer�Verlag� June ����� Proceedings of
the Fourth International Conference� CAV����

��� Limor Fix and Fred B� Schneider� Reasoning about programs by exploiting
the environment� In Annual International Colloquium on Automata� Languages
and Programming� �����

��� M�J�C� Gordon� Introduction to HOL� A Theorem Proving Environment� Cam�
bridge University Press� �����

��� C�A�R� Hoare� Proof of correctness of data representations� Acta Informatica�
�������	�� �����

��� Cli� B� Jones� Specication and design of
parallel� programs� In R� E� A�
Mason� editor� Information Processing ��� Proceedings of the IFIP �th World
Congress� pages �������� IFIP� North�Holland� September ��	��

On TLA as a Logic ��

��� R�P� Kurshan and Leslie Lamport� Verication of a multiplier� �� bits and
beyond� In Costas Courcoubetis� editor� Computer�Aided Veri�cation� volume
��� of Lecture Notes in Computer Science� pages �������� Springer�Verlag� June
����� Proceedings of the Fifth International Conference� CAV����

��� Leslie Lamport� What good is temporal logic� In R�E�A� Mason� editor� In�
formation Processing ��� Proceedings of the IFIP �th World Congress� pages
������	� IFIP� North�Holland� September ��	��

�	� Leslie Lamport� Hybrid systems in TLA�� In Robert L� Grossman� Anil Nerode�
Anders P� Ravn� and Hans Rischel� editors� Hybrid Systems� volume ��� of
Lecture Notes in Computer Science� pages ������� Springer�Verlag� �����

��� Leslie Lamport� The temporal logic of actions� ACM Transactions on Pro�
gramming Languages and Systems� ��
���	������� May �����

��� Leslie Lamport and Stephan Merz� Specifying and verifying fault�tolerant sys�
tems� In H� Langmaack� W��P� de Roever� and J� Vytopil� editors� Formal
Techniques in Real�Time and Fault�Tolerant Systems� volume 	�� of Lecture
Notes in Computer Science� pages ������ Springer�Verlag� September �����

��� Zohar Manna and Amir Pnueli� Verication of concurrent programs� A tempo�
ral proof system� In J�W� de Bakker and J� van Leeuwen� editors� Foundations
of Computer Science IV� Distributed Systems� Part 	� pages �������� Math�
ematical Center Tracts ���� Center for Mathematics and Computer Science�
Amsterdam� ��	��

��� Zohar Manna and Amir Pnueli� The Temporal Logic of Reactive and Concurrent
Systems� Speci�cation� Springer�Verlag� �����

��� Michael Merritt� Completeness theorems for automata� In J�W� de Bakker�
W��P� de Roever� and G� Rozenberg� editors� Stepwise Re�nement of Distributed
Systems� Models� Formalism� Correctness� volume ��� of Lecture Notes in Com�
puter Science� pages �������� Springer�Verlag� �����

��� Robin Milner� A Calculus of Communicating Systems� volume �� of Lecture
Notes in Computer Science� Springer�Verlag� ��	��

��� Jayadev Misra and K� Mani Chandy� Proofs of networks of processes� IEEE
Transactions on Software Engineering� SE��
����������� July ��	��

��� Susan Owicki and Leslie Lamport� Proving liveness properties of concur�
rent programs� ACM Transactions on Programming Languages and Systems�
�
����������� July ��	��

��� Amir Pnueli� In transition from global to modular temporal reasoning about
programs� In Krzysztof R� Apt� editor� Logics and Models of Concurrent Sys�
tems� NATO ASI Series� pages �������� Springer�Verlag� October ��	��

�	� Amir Pnueli� System specication and renement in temporal logic� In R�K�
Shyamasundar� editor� Foundations of Software Technology and Theoretical
Computer Science� volume ��� of Lecture Notes in Computer Science� pages
���	� Springer�Verlag� �����

��� Y�S� Ramakrishna� On the satisability problem for Lamport�s Propositional
Temporal Logic of Actions and some of its extensions� Fundamenta Infor�
matic
� ����� To appear� A preliminary version appears in the Proceedings of
the ICTL��� Workshop
editor H�J� Ohlbach�� Technical Report MPI�I��������
Max�Planck�Institut f�ur Informatik� Saarbr�ucken� pp� ������ June �����

��� A�S� Troelstra and D� van Dalen� Constructivism in Mathematics� An Intro�
duction� volume �� North Holland� ��		�

��� Steven Vickers� Topology Via Logic� volume � of Cambridge Tracts in Theoret�
ical Computer Science� Cambridge University Press� ��	��

