
Don’t Know in the µ-Calculus

Orna Grumberg1, Martin Lange2, Martin Leucker3,, and Sharon Shoham1

1 Computer Science Department, The Technion, Haifa, Israel
2 Institut für Informatik, University of Munich, Germany

3 Institut für Informatik, Technical University of Munich, Germany

Abstract. This work presents game-based model checking for abstract
models with respect to specifications in µ-calculus, interpreted over a 3-
valued semantics. If the model checking result is indefinite (don’t know),
the abstract model is refined, based on an analysis of the cause for this
result. For finite concrete models our abstraction-refinement is fully au-
tomatic and guaranteed to terminate with a definite result true or false.

1 Introduction

This work presents a game-based [19] model checking approach for abstract
models with respect to specifications in the µ-calculus, interpreted over a 3-
valued semantics. In case the model checking result is indefinite (don’t know),
the abstract model is refined, based on an analysis of the cause for this result.
If the concrete model is finite then our abstraction-refinement is fully automatic
and guaranteed to terminate with a definite result (true or false).

Abstraction is one of the most successful techniques for fighting the state
explosion problem in model checking [3]. Abstractions hide some of the details
of the verified system, thus result in a smaller model. Usually, they are designed
to be conservative for true, meaning that if a formula is true of the abstract model
then it is also true of the concrete (precise) model of the system. However, if it
is false in the abstract model then nothing can be deduced of the concrete one.

The µ-calculus [12] is a powerful formalism for expressing properties of transi-
tion systems using fixpoint operators. Many verification procedures can be solved
by translating them into µ–calculus model checking [1]. Such problems include
(fair) CTL model checking, LTL model checking, bisimulation equivalence and
language containment of ω-regular automata.

In the context of abstraction, often only the universal fragment of µ-calculus
is considered [14]. Over-approximated abstract models are used for verification
of such formulae while under-approximated abstract models are used for their
refutation.

Abstractions designed for full µ-calculus [6] have the advantage of handling
both verification and refutation on the same abstract model. A greater advantage
is obtained if µ-calculus is interpreted w.r.t the 3-valued semantics [11, 10]. This
semantics evaluates a formula to either true, false or indefinite. Abstract models
can then be designed to be conservative for both true and false. Only if the
value of a formula in the abstract model is indefinite, its value in the concrete
model is unknown. Then, a refinement is needed in order to make the abstract

model more precise. Previous works [13, 16, 17] suggested abstraction-refinement
mechanisms for various branching time logics over 2-valued semantics.

Many algorithms for µ-calculus model checking with respect to the 2-valued
semantics have been suggested [8, 20, 22, 5, 15]. An elegant solution to this prob-
lem is the game-based approach [19], in which two players, the verifier (denoted
∃) and the refuter (denoted ∀), try to win a game. A formula ϕ is true in a model
M iff the verifier has a winning strategy, meaning that she can win any play, no
matter what the refuter does. The game is played on a game graph, consisting of
configurations s ` ψ, where s is a state of the model M and ψ is a subformula
of ϕ. The players make moves between configurations in which they try to verify
or refute ψ in s. These games can also be studied as parity games [7] and we
follow this approach as well.

In model checking games for the 2-valued semantics, exactly one of the players
has a winning strategy, thus the model checking result is either true or false. For
the 3-valued semantics, a third value should also be possible. Following [18], we
change the definition of a game for µ-calculus so that a tie is also possible.

To determine the winner, if there is one, we adapt the recursive algorithm
for solving parity games by Zielonka [23]. This algorithm recursively computes
the set of configurations in which one of the players has a winning strategy. It
then concludes that in all other configurations the other player has a winning
strategy.

In our algorithm we need to compute recursively three sets, since there are
also those configurations in which none of the players has a winning strategy.
We prove that our algorithm always terminates and returns the correct result.

In case the model checking game results in a tie, we identify a cause for the
tie and try to eliminate it by refining the abstract model. More specifically, we
adapt the presented algorithm to keep track of why a vertex in the game is
classified as a tie. We then exploit the information gathered by the algorithm for
refinement. The refinement is applied only to parts of the model from which tie
is possible. Vertices from which there is a winning strategy for one of the players
are not changed. Thus, the refined abstract models do not grow unnecessarily.
If the concrete model is finite then our abstraction-refinement is guaranteed to
terminate with a definite result.

It is the refinement based on the algorithm which rules out the otherwise
interesting approach taken for example in [11, 10] in which a 3-valued µ-calculus
model checking problem is reduced to two 2-valued µ-calculus model checking
problems.

Organization of the paper The 3-valued µ-calculus is introduced in the next
section. Then we describe the abstractions we have in mind. In Section 4, a 3-
valued model-checking game for µ-calculus is shown. We give a model-checking
algorithm for 3-valued games with a finite board in Section 5, and, explain how
to refine the abstract model, in case of an indefinite answer in Section 6. We
conclude in Section 7.

2

2 The 3-Valued µ-Calculus

Let P be a set of propositional constants, and A be a set of action names. Every
a ∈ A is associated with a so-called must-action a! and a may-action a?. Let
A! = {a! | a ∈ A} and A? = {a? | a ∈ A}. A Kripke Modal Transition System
(KMTS) is a tuple T = (S, { x−→ | x ∈ A! ∪ A?}, L) where S is a set of states,
and x−→ ⊆ S × S for each x ∈ A! ∪ A? is a binary relation on states, s.t. for all

a ∈ Act:
a!−→ ⊆ a?−−→.

Let B3 = {⊥, ?,>} be partially ordered by ⊥ ≤ ? ≤ >. Then L : S → BP
3 ,

where BP
3 is the set of functions from P to B3. We use > to denote that a

proposition holds in a state, ⊥ for not holding, and ? if it cannot be determined
whether it holds or not.

A Kripke structure in the usual sense can be regarded as a KMTS by setting
a!−→ =

a?−−→ for all a ∈ A and not distinguishing them anymore. Furthermore, its
states labelling is over {⊥,>}.

Let V be a set of propositional variables. Formulae of the 3-valued modal
µ-calculus in positive normal form are given by

ϕ ::= q | ¬q | Z | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈a〉ϕ | [a]ϕ | µZ.ϕ | νZ.ϕ

where q ∈ P , a ∈ A, and Z ∈ V . Let 3-Lµ denote the set of closed formulae
generated by the above grammar, where the fixpoint quantifiers µ and ν are
variable binders. We will also write η for either µ or ν. Furthermore we assume
that formulae are well-named, i.e. no variable is bound more than once in any
formula. Thus, every variable Z identifies a unique subformula fp(Z) = ηZ.ψ of
ϕ, where the set Sub(ϕ) of subformulae of ϕ is defined in the usual way.

Given variables Y, Z we write Y ≺ϕ Z if Z occurs freely in fp(Y) in ϕ, and
Y <ϕ Z if (Y, Z) is in the transitive closure of ≺ϕ. The alternation depth ad(ϕ)
of ϕ is the length of a maximal <ϕ-chain of variables in ϕ s.t. adjacent variables
in this chain have different fixpoint types.

The semantics of a 3-Lµ formula is an element of BS
3 —the functions from S

to B3—which forms a boolean lattice when equipped with the following partial
order: let f, g : S → B3. f v g iff ∀s ∈ S : f(s) ≤ g(s). Joins (meets) in this
lattice are denoted by f t g (f u g, resp.). The complement of f , written f is
defined by f(s) := f(s) for s ∈ S where ⊥ and > are complementary to each
other, and ? =?.

Then the semantics [[ϕ]]
T

ρ of a 3-Lµ formula ϕ w.r.t. a KMTS T = (S, { x−→ |

x ∈ A! ∪ A?}, L) and an environment ρ : V → BS
3 , which explains the meaning

of free variables in ϕ, is an element of B
S
3 . We assume T to be fixed and do not

mention it explicitly anymore. With ρ[Z 7→ f] we denote the environment that
maps Z to f and agrees with ρ on all other arguments. Later, when only closed
formulae are considered, we will also drop the environment from the semantic
brackets.

[[q]]ρ := λs.L(s)(q)

[[¬q]]ρ := λs.L(s)(q)

[[Z]]ρ := ρ(Z)

3

[[ϕ ∨ ψ]]ρ := [[ϕ]]ρ t [[ψ]]ρ
[[ϕ ∧ ψ]]ρ := [[ϕ]]ρ u [[ψ]]ρ

[[〈a〉ϕ]]ρ := λs.

> , if ∃t ∈ S, s.t. s
a!−→ t and [[ϕ]]ρ(t) = >

⊥ , if ∀t ∈ S, if s a?−−→ t then [[ϕ]]ρ(t) = ⊥
? , otherwise

[[[a]ϕ]]ρ := λs.

> , if ∀t ∈ S, if s a?−−→ t then [[ϕ]]ρ(t) = >

⊥ , if ∃t ∈ S, s.t. s a!−→ t and [[ϕ]]ρ(t) = ⊥
? , otherwise

[[µZ.ϕ]]ρ :=

⊔

{f | [[ϕ]]ρ[Z 7→f] v f}

[[νZ.ϕ]]ρ :=
⊔

{f | f v [[ϕ]]ρ[Z 7→f]}

Note that s
a!−→ t implies s

a?−−→ t.
The functionals λf.[[ϕ]]ρ[Z 7→f] : B

S
3 → B

S
3 are monotone w.r.t. v for any Z,ϕ

and S. According to [21], least and greatest fixpoints of these functionals exist.
Approximants of 3-Lµ formulae are defined in the usual way: if fp(Z) = µZ.ϕ

then Z0 := λs.⊥, Zα+1 := [[ϕ]]ρ[Z 7→Zα] for any ordinal α and any environment

ρ, and Zλ :=

⊔α<λ Zα for a limit ordinal λ. Dually, if fp(Z) = νZ.ϕ then
Z0 := λs.>, Zα+1 := [[ϕ]]ρ[Z 7→Zα], and Zλ :=

⊔

α<λ Zα.

Theorem 1. [21] For all KMTS T with state set S there is an α ∈ Ord s.t. for
all s ∈ S we have: if [[ηZ.ϕ]]ρ(s) = x then Zα(s) = x.

3 Abstraction

We use Kripke Modal Transition Systems [11, 9] as abstract models that preserve
satisfaction and falsification of 3-Lµ formulae.

Let TC = (SC , {
a−→C | a ∈ A}, LC) be a (concrete) Kripke structure. Let SA

be a set of abstract states and γ : SA → 2SC a total concretization function that
maps each abstract state to the set of concrete states it represents. An abstract
model, a KMTS TA = (SA, {

x−→A | x ∈ A! ∪ A?}, LA), can then be defined as
follows.

The labelling of an abstract state is defined in accordance with the labelling
of all the concrete states it represents. For p ∈ P : LA(sa)(p) = > (⊥) only if
∀sc ∈ γ(sa) : LC(sc)(p) = > (⊥). In the remaining cases LA(sa)(p) = ?.

The may-transitions in an abstract model are computed such that every
concrete transition between two states is represented by them: For every action
a ∈ A, if ∃sc ∈ γ(sa) and ∃s′c ∈ γ(s′a) such that sc

a−→C s
′
c, then there exists a

may transition sa
a?−−→A s

′
a. Note that it is possible that there are additional may

transitions as well. The must-transitions, on the other hand, represent concrete
transitions that are common to all the concrete states that are represented by

the source abstract state: a must-transition sa
a!−→A s

′
a exists only if ∀sc ∈ γ(sa)

∃s′c ∈ γ(s′a) such that sc
a−→C s

′
c. Note that it is possible that there are less must

transitions than allowed by this rule. That is, the may and must transitions do
not have to be exact, as long as they maintain these conditions.

4

s ` ψ0 ∨ ψ1

s ` ψi

∃ : i ∈ {0, 1}
s ` ψ0 ∧ ψ1

s ` ψi

∀ : i ∈ {0, 1}

s ` ηZ.ϕ
s ` Z

∃
s ` Z
s ` ϕ

∃ : if fp(Z) = ηZ.ϕ

s ` 〈a〉ϕ
t ` ϕ

∃ : s
a!

−→ t or s
a?

−−→ t
s ` [a]ϕ

s ` ϕ
∀ : s

a!
−→ t or s

a?
−−→ t

Fig. 1. The model checking game rules for 3-Lµ.

Theorem 2. [9] Let T be a Kripke structure and let T ′ be a KMTS obtained
from T with the abstraction process described above. Let s be a state of T and

s′ its corresponding abstract state in T ′. For all closed ϕ ∈ 3-Lµ: [[ϕ]]T
′

(s′) 6= ?

implies [[ϕ]]T (s) = [[ϕ]]T
′

(s′).

4 Model Checking Games for 3-L
µ

The model checking game ΓT (s0, ϕ0) on a KMTS T with state set S, initial
state s0 ∈ S and a 3-Lµ formula ϕ0 is played by players ∃ and ∀ in order
to determine the truth value of ϕ0 in s0, cf. [19]. Configurations are elements
of C ⊆ S × Sub(ϕ0), and written t ` ψ. Each play of ΓT (s0, ϕ0) is a maximal
sequence of configurations that starts with s0 ` ϕ0. The game rules are presented
in Figure 1. Each rule is marked by ∃ / ∀ to indicate which player makes the
move. A rule is applied when the player is in configuration Ci, which is of the
form of the upper part of the rule. Ci+1 is then the configuration in the lower
part of the rule. The rules shown in the first and third lines present a choice
which the player can make. Since no choice is possible when applying the rules
shown in the second line, we arbitrarily assign one player, let us say ∃, and call
the rules deterministic. If no rule can be applied the play terminates.

Definition 1. A play is called ∃-consistent, resp. ∀-consistent, if Player ∃, resp.

Player ∀, never chooses a transition of type
a?−−→ for some a ∈ A.

Player ∃ wins an ∃-consistent play C0, C1, . . . iff

1. there is an n ∈ N, s.t. Cn = t ` q with L(t)(q) = > or Cn = t ` ¬q with
L(t)(q) = ⊥, or

2. there is an n ∈ N, s.t. Cn = t ` [a]ψ and there is no t′ ∈ S s.t. t a?−−→ t′, or
3. the outermost variable that occurs infinitely often is of type ν.

Player ∀ wins a ∀-consistent play C0, C1 . . . iff

4. there is an n ∈ N, s.t. Cn = t ` q with L(t)(q) = ⊥ or Cn = t ` ¬q with
L(t)(q) = >, or

5. there is an n ∈ N, s.t. Cn = t ` 〈a〉ψ and there is no t′ ∈ S s.t. t
a?−−→ t′, or

6. the outermost variable that occurs infinitely often is of type µ.

In all other cases, the result of the play is a tie.

5

Definition 2. The truth value of a configuration t ` ψ in the context of ρ is
the value of [[ψ]]ρ(t). The value > improves both ? and ⊥, while ? only improves
⊥. On the other hand, x worsens y iff y improves x.

An inspection of game rules and semantics shows: The deterministic rules
preserve the truth value in a move from one configuration to another. Player ∃
cannot improve it but can preserve >. Player ∀ cannot worsen it but can preserve
⊥.

A strategy for player p is a partial function ζ : C → C, such that its domain is
the set of configurations where player p moves. Player p plays a game according
to a strategy ζ if all his choices agree with ζ. A strategy for player p is called
a winning strategy if player p wins every play where he plays according to this
strategy.

Theorem 3. Given a KMTS T = (S, { x−→ | x ∈ A!∪ Act?}, L), an s ∈ S, and
a closed ϕ ∈ 3-Lµ, we have:

(a) [[ϕ]]T (s) = > iff Player ∃ has a winning strategy for ΓT (s, ϕ),

(b) [[ϕ]]T (s) = ⊥ iff Player ∀ has a winning strategy for ΓT (s, ϕ),

(c) [[ϕ]]T (s) = ? iff neither Player ∃ nor Player ∀ has a winning strategy for
ΓT (s, ϕ).

Theorem 4. Let T = (S, { x−→ | x ∈ A}, L) be a Kripke structure with s ∈ S
and T ′ = (S ′, { x−→ | x ∈ A!∪A?}, L′) be an abstraction of T with concretization
function γ. Let s′ ∈ S ′ with s ∈ γ(s′).

(a) If Player ∃ has a winning strategy for ΓT ′(s′, ϕ) then T , s |= ϕ.
(b) If Player ∀ has a winning strategy for ΓT ′(s′, ϕ) then T , s 6|= ϕ.

5 Winning Model Checking Games for 3-L
µ

The previous section relates model checking games with the semantics of 3-Lµ.
An algorithm estimating the winner of the game and a winning strategy is yet to
be given. Note that the result of the previous section also holds for infinite-state
systems. From now on, however, we restrict to finite KMTS.

For the sake of readability we will deal with parity games. Instead of Player
∃ and ∀, we talk of Player 0 and Player 1, resp., and use σ to denote Player 0
or 1 and σ̄ = 1 − σ for the opponent.1

Parity games are traditionally used to describe the model checking game for
µ-calculus. In order to describe our game for the 3-Lµ, we need to generalize them
in the following way: (1) we have two types of edges: must edges and may edges,
where every must edge is also a may edge, (2) terminal configurations (dead-end)
are classified as either winning for one player, or as tie-configurations, and (3) a
consistency requirement is added to the winning conditions.

1 The numbers 0 and 1 have parities and this is more intuitive for this notion of game.

6

A generalized parity game G = (A,χ) has an arena A = (V0, V1, Vtie ,
must

−→

,
may

−→) for which every v ∈ Vtie is a dead-end and
must

−→⊆
may

−→. The set of vertices
is denoted by V = V0] V1] Vtie . χ : V → N is a priority function that maps
each vertex v ∈ V to a priority.

A play is a maximal sequence of vertices v0, . . . , where Player σ moves from
vi to vi+1 when vi ∈ Vσ and (vi, vi+1) ∈

may

−→. It is called σ-consistent iff Player σ

chooses only moves that are (also) in
must

−→. A σ-consistent play is winning for
Player σ if

– it is finite and ends in Vσ , or
– it is infinite and the maximal priority occurring infinitely often is even when
σ = 0 or odd when σ = 1.

All other plays are a tie.
A model checking game is a generalized parity game (see also [7]): Set V0

to the configurations in which ∃ moves together with configurations in which
the play terminates and ∃ wins. Set V1 to the configurations in which ∀ moves,
together with configurations in which the play terminates and ∀ wins. The re-
maining configurations, i.e. the ones of the form t ` q or t ` ¬q with L(t)(q) =

L(t)(¬q) = ? are set to Vtie .
must

−→ comprises the moves based on the rules shown
in the first two lines in Figure 1 or when a a!-transition is taken while

may

−→ com-
prises all possible moves. The priority of a vertex t ` ϕ is only non-zero when
ϕ is a fixpoint formula. Then, it is given by the alternation depth of ϕ, possibly
plus 1 to assure that it is even iff the outermost fixpoint variable in ϕ is ν. It is
easy to see that the notions of winning and winning strategies for both notions
of games coincide.

We define an algorithm for solving generalized parity games. Our algorithm
partitions V into three sets: W0,W1,Wtie , where for σ ∈ {0, 1}, the set Wσ

consists of all the vertices from which Player σ has a winning strategy and the
set Wtie consists of all the vertices from which none of the players has a winning
strategy. When applied to model checking whether s0 |= ϕ0, we check when the
algorithm terminates whether v = s0 ` ϕ0 is in W0, W1, or Wtie and conclude
true, false , or indefinite , respectively.

We adapt the recursive algorithm for solving parity games by Zielonka [23].
Its recursive nature makes it easy to understand and analyze, allows simple
correctness proofs, and can be used as basis for refinement.

The main idea of the algorithm presented in [23] is as follows. In each recursive
call, σ denotes the parity of the maximal priority in the current game. The
algorithm computes the set Wσ̄ iteratively and the remaining vertices form Wσ .
In our generalized game, we again compute Wσ̄ iteratively, but we then add
a phase where we also compute Wtie iteratively. Only then, we set Wσ to the
remaining vertices.

We start with some definitions. For X ⊆ V , the subgraph of G induced by X ,
denoted by G[X], is (A|X , χ|X) where A|X = (V ′

0 , V
′
1 , Vtie ∩X,

must

−→ ∩X ×X,
may

−→
∩X ×X) and χ|X is the restriction of χ to X . For σ ∈ {0, 1}, let Bσ denote the
set of non-dead-end vertices that belong to Vσ in G, but become dead-ends in

7

G[X]. Then, in G[X], V ′
σ = ((Vσ \Bσ)∪Bσ̄)∩X . That is, vertices that become

dead-ends, move to the set of vertices of the other player.
G[X] is a subgame of G w.r.t. σ, for σ ∈ {0, 1}, if all non-dead-end vertices

of Vσ in G remain non-dead-ends in G[X]. It is a subgame of G if it is a subgame
w.r.t. to both players. That is, if G[X] is a subgame, then every dead-end in it
is also a dead-end in G.

For σ ∈ {0, 1} andX ⊆ V , we define the must-attractor set Attr!σ(G,X) ⊆ V

and the may-attractor set Attr?σ(G,X) ⊆ V of Player σ in G.
The must-attractor Attr!σ(G,X) ⊆ V is the set of vertices from which

Player σ has a strategy in the game G to attract the play to X or a dead-
end in Vσ while maintaining consistency. The may-attractor Attr?σ(G,X) ⊆ V

is the set of vertices from which Player σ has a strategy in G to either (1) attract
the play to X or a dead-end in Vσ ∪ Vtie , possibly without maintaining his own
consistency or (2) to prevent σ̄ from playing consistently. In other words, if σ̄
plays consistently, σ can attract the play to one of the vertices described in (1).

Let D0, D1, Dtie denote the dead-end vertices of V0, V1, Vtie respectively (i.e.,
Dtie = Vtie). It can be shown that the following is an equivalent definition of the
sets Attr!σ(G,X) and Attr?σ(G,X).

Attr!0σ(G,X) = X ∪Dσ

Attr!i+1
σ (G,X) = Attr!iσ(G,X)

∪ {v ∈ Vσ \Dσ | ∃v′.v
must

−→ v′ ∧ v′ ∈ Attr!iσ(G,X)}
∪ {v ∈ Vσ̄ \Dσ̄ | ∀v′.v

may

−→ v′ =⇒ v′ ∈ Attr!iσ(G,X)}
Attr!σ(G,X) =

⋃

{Attr!iσ(G,X) | i ≥ 0}

Attr?0
σ(G,X) = X ∪Dσ ∪Dtie

Attr?i+1
σ (G,X) = Attr?i

σ(G,X)

∪ {v ∈ Vσ \Dσ | ∃v′.v
may

−→ v′ ∧ v′ ∈ Attr?i
σ(G,X)}

∪ {v ∈ Vσ̄ \Dσ̄ | ∀v′.v
must

−→ v′ =⇒ v′ ∈ Attr?i
σ(G,X)}

Attr?σ(G,X) =
⋃

{Attr?i
σ(G,X) | i ≥ 0}

The latter definition of the attractor sets provides a method for computing
them. As i increases, we calculate Attr!iσ(G,X) or Attr?i

σ(G,X) until it is the
same as Attr!i−1

σ (G,X) or Attr?i−1
σ (G,X), respectively.

Note that Attr!iσ(G,X) ⊆ Attr?i
σ(G,X), and that for X ′ = V \Attr?σ(G,X)

we have X ′ = Attr!σ̄(G,X ′). Thus, the corresponding must and may attractors
partition V .

Solving the Game

We present a recursive algorithm SolveGame(G) (see Algorithm 3) that computes
the sets W0, W1, and Wtie for a parity game G. Let n be the maximum priority
occurring in G.

n = 0: W1 = Attr!1(G, ∅)
W0 = V \ Attr?1(G, ∅)
Wtie = Attr?1(G, ∅) \ Attr!1(G, ∅)

8

Algorithm 1 Winning vertices for the opponent: ComputeOpponentWin

1 Function ComputeOpponentWin(G, σ, n)
2 Wσ̄ := ∅.
3 repeat

4 W ′

σ̄ := Wσ̄

5 Xσ̄ := Attr!σ̄(G,Wσ̄)
6 Xσ := V \Xσ̄

7 N := {v ∈ Xσ | χ(v) = n}
8 Y := Xσ \ Attr?σ(G[Xσ], N)
9 (Y0, Y1, Ytie) := SolveGame(G[Y])

10 Wσ̄ := Xσ̄ ∪ Yσ̄

11 until W ′

σ̄ = Wσ̄

12 return Wσ̄

Since the maximum priority of G is 0, Player 1 can only win G on dead-
ends in V1 or vertices from which he can consistently attract the play to such
a dead-end. This is exactly Attr!1(G, ∅). From the rest of the vertices Player 1
does not have a winning strategy. For vertices in V \ Attr?1(G, ∅), Player 0 can
always avoid reaching dead-ends in V1 ∪ Vtie , while playing consistently. Since
the maximum priority in this subgraph is 0, it is easy to see that she wins in
such vertices. The remaining vertices in Attr?1(G, ∅) \ Attr!1(G, ∅) are a subset
of Attr?1(G, ∅), which is why Player 0 does not win from them (and neither
does Player 1, as previously claimed). Therefore none of the players wins in
Attr?1(G, ∅) \ Attr!1(G, ∅).

n ≥ 1: We assume that we can solve every game with maximum priority smaller
than n. Let σ = n mod 2 be the player that wins if the play visits infinitely
often the maximum priority n.

We first computeWσ̄ in G. This is done by the function ComputeOpponentWin

shown in Algorithm 1.
Intuitively, in each iteration we hold a subset of the winning region of Player σ̄.

We first extend it to Xσ̄ by using the must-attractor set of Player σ̄ (which en-
sures his consistency, line 5). From the remaining vertices, we disregard those
from which Player σ can attract the play to a vertex with maximum priority
n, perhaps by giving up his consistency. Left are the vertices in Y (line 8) and
Player σ is basically trapped in it. He can only “escape” from it to Xσ̄ . Thus,
we can add the winning region of Player σ̄ in G[Y] to his winning region in G.
This way, each iteration results in a better (bigger) under approximation of the
winning region of Player σ̄ in G, until the full region is found (line 11). The
correctness proof of the algorithm is sketched in the following.

Lemma 1. 1. For every Xσ as used in Algorithm 1, G[Xσ] is a subgame
w.r.t. σ.

2. For every Y as used in Algorithm 1, G[Y] is a subgame.
Moreover, the maximum priority in G[Y] is smaller than n, which is why the

recursion terminates.

9

Lemma 2. At the beginning of each iteration in Algorithm 1, Wσ̄ is a winning
region for Player σ̄ in G.

Proof. The proof is by induction. The base case is when Wσ̄ = ∅ and the claim
holds. Suppose that at the beginning of the ith iteration Wσ̄ is a winning region
for Player σ̄ in G. We show that it continues to be so at the end of the iteration
and therefore at the beginning of the i+ 1 iteration.

Clearly, Xσ̄ = Attr!σ̄(G,Wσ̄) is also a winning region for Player σ̄ in G: by
simply using his strategy to attract the play to Dσ̄ or to Wσ̄ (where he wins)
while being consistent, and from there using the winning strategy of Wσ̄ in G.

We now show that Yσ̄ is also a winning region of Player σ̄ in G. We know
that it is a winning region for him in G[Y] (by the correctness of the algorithm
SolveGame for games with a maximum priority smaller than n). As for G, for
every vertex in Yσ̄ , as long as the play remains in Y , Player σ̄ can use his
strategy for G[Y]. Since G[Y] is a subgame, Player σ̄ will always be able to
stay within Y in his moves in G and if the play stays there, then he wins (since
he uses his winning strategy). Clearly Player σ cannot move from Y to Xσ \
Y = Attr?σ(G[Xσ], N). Otherwise the vertex v ∈ Y ⊆ Xσ where this is done
belongs to Attr?σ(G[Xσ],Attr?σ(G[Xσ], N)) (because the same move is possible
in G[Xσ]). Hence v belongs to Attr?σ(G[Xσ], N) as well, in contradiction to
v ∈ Y . Finally, if Player σ moves to V \ Xσ = Xσ̄ , then Player σ̄ will use his
strategy for Xσ̄ in G and also win.

We conclude that Xσ̄ ∪ Yσ̄ is a winning region for Player σ̄ in G. ut
This lemma ensures that the final result Wσ̄ of ComputeOpponentWin is in-

deed a subset of the winning region of Player σ̄ in G. It remains to show that
this is actually an equality, i.e. that no winning vertices are missing.

Lemma 3. When W ′
σ̄ = Wσ̄, then V \Wσ̄ is a non-winning region for Player σ̄

in G.

Proof. When W ′
σ̄ = Wσ̄ , it must be the case that the last iteration of SolveGame

ended with Yσ̄ = ∅, andWσ̄ = Xσ̄. Therefore it suffices to show that V \Xσ̄ = Xσ

is a non-winning region for Player σ̄ in G.
Clearly, Player σ̄ cannot move from Xσ to Xσ̄ without compromising his con-

sistency. Otherwise the vertex v ∈ Xσ where this is done belongs to Attr!σ̄(G,Xσ̄)
and so to Xσ̄ as well. This contradicts v ∈ Xσ. Hence, Player σ̄ cannot win by
moving to Xσ̄. As G[Xσ] is a subgame w.r.t. σ, Player σ is never obliged to move
to Xσ̄.

Consider the case where the play stays in Xσ . In order to prevent Player σ̄
from winning, Player σ will play as follows. If the current configuration is in Y ,
then Player σ will use his strategy on G[Y] for preventing Player σ̄ from winning
(such a strategy exists since Yσ̄ = ∅). If the play visits a vertex v ∈ N , then
Player σ will move to any successor v′ inside Xσ . Such a successor must exist
since vertices in N are never dead-ends in G. Furthermore, they belong to Vσ ,
thus since G[Xσ] is a subgame w.r.t. σ (by Lemma 1.1), they remain non-dead-
ends in G[Xσ]. If the play visits Attr?σ(G[Xσ], N) \N , then Player σ will use
his strategy to either cause Player σ̄ to be inconsistent, or to attract the play

10

Algorithm 2 Vertices in which no win is possible: ComputeNoWin

13 Function ComputeNoWin(G, σ, n,Wσ̄)
14 nowin := Wσ̄.
15 repeat

16 nowin′ := nowin

17 Xσ̄ := Attr?σ̄(G, nowin)
18 Xσ := V \Xσ̄

19 N := {v ∈ Xσ | χ(v) = n}
20 Y := Xσ \ Attr!σ(G[Xσ], N)
21 (Y0, Y1, Ytie) := SolveGame(G[Y])
22 nowin := Xσ̄ ∪ Yσ̄ ∪ Ytie

23 until nowin′ = nowin

24 return nowin

in a finite number of steps to N or D′
σ ∪ Dtie (such a strategy exists by the

definition of a may-attractor set). We use D′
σ to denote the dead-end vertices

of Player σ in G[Xσ]. Since G[Xσ] is not necessarily a subgame w.r.t. σ̄, D′
σ

may contain non-dead-end vertices of Player σ̄ from G that became dead-ends
in G[Xσ]. However, this means that all their successors are in Xσ̄ , and as stated
before Player σ̄ cannot move consistently from Xσ to Xσ̄ , thus he cannot win in
them in G as well.

It is easy to see that this strategy indeed prevents Player σ̄ from winning. ut

Corollary 1. The result of ComputeOpponentWin is the full winning region of
Player σ̄ in G.

In the original algorithm in [23], given the set Wσ̄ , we could conclude that
all the remaining vertices form the winning region of Player σ in G. Yet, this
is not the case here. We now divide the remaining vertices into Wtie and Wσ .
We first compute the set nowin of vertices in G from which Player σ does not
have a winning strategy, i.e. Player σ̄ has a strategy that prevents Player σ from
winning. This is again done iteratively, by the function ComputeNoWin, given as
Algorithm 2.

The algorithm ComputeNoWin resembles the algorithm ComputeOpponentWin.
The initialization here is to Wσ̄ , since this is clearly a non-winning region of
Player σ. Furthermore, in this case after the recursive call to SolveGame(G[Y]),
the setXσ̄ is extended not only by the winning region of Player σ̄ in G[Y], Yσ̄ , but
also by the tie-region Ytie (line 22). Apart from those differences, one can see that
the only difference is that the use of a must-attractor set is replaced by a may-
attractor set and vice versa. This is because in the case of ComputeOpponentWin
we are after a definite win of Player σ̄, whereas in the case of ComputeNoWin we
also allow a tie, therefore may edges take a different role. Namely, in this case,
when we extend the current set nowin (line 17), we use a may-attractor set of
Player σ̄ because when our goal is to prevent Player σ from winning, we allow
Player σ̄ to be inconsistent. On the other hand, in the computation of Y we now
remove from Xσ̄ only the vertices from which Player σ can consistently attract
the play to the maximum priority (using the must-attractor set, line 20). This is

11

because only such vertices cannot contribute to the goal of preventing Player σ
from winning. Other vertices where he can reach the maximum priority, but only
at the expense of consistency can still be of use for this goal.

Lemma 4. 1. For every Xσ as used in Algorithm 2, G[Xσ] is a subgame.
2. For every Y as used in Algorithm 2, G[Y] is a subgame.

Again, the maximum priority in G[Y] is smaller than n, which is why the
recursion terminates.

Lemma 5. At the beginning of each iteration, the set nowin is a non-winning
region for Player σ in G.

This lemma that can be shown with a careful analysis ensures that the final
result nowin of ComputeNoWin is indeed a subset of the non-winning region of
Player σ in G. It remains to show that no non-winning vertices are missing.

Lemma 6. When nowin′ = nowin, then V \ nowin is a winning region for
Player σ in G.

Proof. When nowin′ = nowin, it must be the case that the last iteration of
SolveGame ended with Yσ̄ = Ytie = ∅, and nowin = Xσ̄. Therefore it suffices to
show that V \Xσ̄ = Xσ is a winning region for Player σ in G.

Clearly, Player σ̄ cannot move from Xσ to Xσ̄ . Otherwise the vertex v ∈ Xσ

where this is done belongs to Attr?σ̄(G,Xσ̄) and therefore to Xσ̄ as well. This
contradicts v ∈ Xσ. Hence, Player σ̄ is “trapped” in Xσ and as G[Xσ] is a
subgame, Player σ is never obliged to move to Xσ̄.

Consider the case where the play stays in Xσ. In order to win, Player σ
will play as follows. If the current configuration is in Y , then Player σ will
use his winning strategy on G[Y] (such a strategy exists since Yσ̄ = Ytie = ∅
and Yσ = Y). If the play visits a vertex v ∈ N , then Player σ will move to
a must successor v′ inside Xσ. Such a successor exists because otherwise v ∈
Attr?σ̄(G,Xσ̄) and hence also in Xσ̄ , in contradiction to v ∈ N ⊆ Xσ . If the
play visits Attr!σ(G[Xσ], N) \N , then Player σ will attract it in a finite number
of steps to N or Dσ, while being consistent.

This strategy ensures that Player σ is consistent and is indeed winning. ut

Corollary 2. ComputeNoWin returns the full non-winning region of Player σ in
G.

We can now conclude that the remaining vertices in V \ nowin form the full
winning region of Player σ in G, and the tie region in G is exactly nowin \Wσ̄ .
This is the set of vertices from which neither player wins.

Solving the game is now achieved by Function SolveGame shown in Algo-
rithm 3.

We have suggested an algorithm for computing the winning (and non-winning)
regions of the players. The correctness proofs also show how to define strategies
for the players. Yet, we omit this discussion due to space limitations. The algo-
rithm can also be used for checking a concrete system in which all may-edges
are also must-edges and Vtie = ∅.

Remark 1. Let G be a parity game in which Vtie = ∅ and all edges are must.
Then Wtie computed by the algorithm SolveGame is empty.

12

Algorithm 3 The main function: SolveGame

25 Function SolveGame(G)
26 n := max{χ(v) | v ∈ V }
27 if n = 0 then // return (W0, W1, Wtie)
28 return (V \ Attr?1(G, ∅), Attr!1(G, ∅), Attr?1(G, ∅) \ Attr!1(G, ∅))
29 else

30 σ := n mod 2
31 Wσ̄ := ComputeOpponentWin(G, σ, n)
32 Wσ := V \ ComputeNoWin(G, σ, n, Wσ̄)
33 Wtie := V \ (Wσ̄ ∪Wσ)
34 return (W0, W1, Wtie)

Complexity Let l and m denote the number of vertices and edges of G. Let n
be the maximum priority. A careful analysis shows that the algorithm is in
O((l +m)n+1).

Theorem 5. Function SolveGame computes the winning regions (W0,W1,Wtie)
for a given parity game in time exponential in the maximal priority. Additionally,
it can be used to determine the winning strategy for the corresponding winner.

We conclude that when applied to a model checking game ΓT (s0, ϕ0), the
complexity of SolveGame is exponential in the alternation depth of ϕ0.

6 Refinement of Generalized Parity Games

Assume we are interested to know whether a concrete state sc satisfies a given
formula ϕ. Let (W0,W1,Wtie) be the result of the previous algorithm for the
parity game obtained by the model checking game. Assume the vertex v = sa `
ϕ, where sa is the abstract state of sc, is in W0 or W1. Then the answer is clear:
sc |= ϕ if v ∈ W0 and sc 6|= ϕ if v ∈ W1. Otherwise, the answer is indefinite and
we have to refine the abstraction to get the answer.

As in most cases, our refinement consists of two parts. First, we choose a
criterion telling us how to split abstract states. We then construct the refined
abstract model using the refined abstract state space. In this section we study
the first part.

Given that v ∈ Wtie , our goal in the refinement is to find and eliminate at
least one of the causes of the indefinite result. Thus, the criterion for splitting
the abstract states is obtained from a failure vertex. This is a vertex v′ = s′a ` ϕ′

s.t. (1) v′ ∈ Wtie ; (2) the classification of v′ to Wtie affects the indefinite result
of v; and (3) the indefinite classification of v′ can be changed by splitting it.
The latter requirement means that v′ itself is responsible for introducing (some)
uncertainty. The others demand that this uncertainty is relevant to the result in
v.

The game solving algorithm is adapted to remember for each vertex in Wtie

a failure vertex, and a failure reason. We distinguish between the case where
n = 0 and the case where n ≥ 1 in SolveGame.

13

n = 0: In this case the set Wtie is computed by Attr?1(G, ∅)\W1. Note that W1

is already updated when the computation of Attr?1(G, ∅) starts. We now enrich
the computation of Attr?1(G, ∅) to record failure information for vertices which
are not in W1 and thus will be in Wtie .

In the initialization we have two possibilities: (1) vertices in D1, which are
clearly not in Wtie , thus no additional information is needed; and (2) vertices in
Dtie , for which the failure vertex and reason are the vertex itself [failDE].

As for the iteration, suppose we have Attr?i
1(G, ∅), with the additional infor-

mation attached to every vertex in it which is not in W1. We now compute the
set Attr?i+1

1 (G, ∅). Let v′ be a vertex that is added to Attr?i+1
1 (G, ∅). If v′ ∈W1,

then no information is needed. Otherwise, we do the following.

1. If v′ ∈ V1 and there exists a may edge v′
may

−→ v′′ s.t. v′′ ∈ W1, then v′ is a
failure state, with this edge being the reason [failP1].

2. If v′ ∈ V0 and has a may edge v′
may

−→ v′′ s.t. v′′ 6∈ Attr?i
1(G, ∅), then v′ is a

failure state, with this edge being the reason [failP0].

3. Otherwise, there exists a may (that is possibly also a must) edge v′
may

−→ v′′

s.t. v′′ ∈ Attr?i
1(G, ∅) \W1. The failure state and reason of v′ are those of

v′′.

Note that the order of the “if” statements in the algorithm determines the failure
state returned by the algorithm. Different heuristics can be applied regarding
their order. A careful analysis shows the following.

Lemma 7. The computation of failure vertices for n = 0 is well defined, mean-
ing that all the possible cases are handled. Furthermore, if the failure reason
computed by it is a may edge, then this edge is not a must edge.

Intuitively, during each iteration of the computation, if the vertex v′ ∈ Wtie

that is added to Attr?i+1
1 (G, ∅) is not responsible for introducing the indefinite

result (cases 1 and 2), then the computation greedily continues with a vertex in
Wtie that affects its indefinite classification (case 3).

There are three possibilities where we say that the vertex itself is responsible
for ? and consider it a failure vertex: failDE, failP1 and failP0. For a vertex in
Vtie (case failDE), the failure reason is clear. Consider case failP1. In this case
v′ ∈ V1 is considered a failure vertex, with the may edge to v′′ ∈ W1 being the
failure reason. By Lemma 7 we have that it is not a must edge. The intuition
for v′ being a failure vertex is that if this edge was a must edge, it would change
the classification of v′ to W1. If no such edge existed, then v′ would not be
added to Attr?i+1

1 (G, ∅) and thus to Wtie . Finally, consider case failP0. In this
case v′ ∈ V0 has a may edge to v′′ which is still unclassified at the time v′ is
added to Attr?1(G, ∅). This edge is considered a failure reason because if it was
a must edge rather than a may edge then v′ would remain unclassified as well
for at least one more iteration. Thus it would have a better chance to eventually
remain outside the set Attr?i

1(G, ∅) until the fixpoint is reached, changing the
classification of v′ to W0.

14

n ≥ 1: In this case the set Wtie is computed by V \ (Wσ̄ ∪Wσ). This equals
ComputeNoWin(G, σ, n, Wσ̄) \Wσ̄ , where Wσ̄ is already updated when the com-
putation of ComputeNoWin(G, σ, n,Wσ̄) starts. Similarly to the previous case, we
enrich the computation of ComputeNoWin(G, σ, n, Wσ̄), and remember a failure
vertex for each vertex which is not in Wσ̄ and thus will be in Wtie .

In each iteration of ComputeNoWin the vertices added to the computed set
are of three types: Xσ̄ , Yσ̄ and Ytie .

The set Xσ̄ is computed by Attr?σ̄(G,nowin). Thus in order to find failure
vertices for such vertices that are not in Wσ̄ we use an enriched computation of
the may-attractor set, as described in the case of n = 0. This time the role of W1

is replaced byWσ̄ , 0 is replaced by σ and 1 by σ̄. Furthermore, in the initialization
of the computation we now also have the set nowin from the previous iteration,
for which we already have the required information.

Vertices in Ytie already have a failure vertex and reason, recorded during the
computation of SolveGame(G[Y]).

We now explain how to handle vertices in Yσ̄ . Such vertices have the property
that Player σ̄ wins from them in G[Y]. Hence, as long as the play stays in G[Y],
Player σ̄ wins. Furthermore, Player σ̄ can always stay in G[Y] in his moves. Thus,
for a vertex v′ in Yσ̄ that is not in Wσ̄ it must be the case that Player σ can force
the play out of G[Y] and into (V \Y)\Wσ̄ (If the play reaches Wσ̄ then Player σ̄
can win after all). Thus, v′ ∈ Attr?σ(G, (V \Y)\Wσ̄). Let Ȳ = V \Y be the set of
vertices outside G[Y]. We get that Yσ̄ \Wσ̄ = Yσ̄ ∩Attr?σ(G, Ȳ \Wσ̄). Therefore,
to find the failure reason in such vertices, we compute Attr?σ(G, Ȳ \Wσ̄). During
this computation, for each vertex v′ in Yσ̄ that is added to the attractor set (and
thus will be in Wtie) we choose the failure vertex and reason based on the
reason for v′ being added to the set. This is because if the vertex was not in
Attr?σ(G, Ȳ \Wσ̄), it would be in Wσ̄ in G as well. The information is recorded
as follows.

In the initialization of the computation we have vertices in Dσ, Dtie or Ȳ \Wσ̄

which are clearly not in Yσ̄ , thus no additional information is needed.
As for the iteration, suppose we have Attr?i

σ(G, Ȳ \Wσ̄), with the additional
information attached to every vertex in it which is in Yσ̄ (by the above equality
such a vertex is not in Wσ̄). We now compute the set Attr?i+1

σ (G, Ȳ \Wσ̄). Let v′

be a vertex that is added to Attr?i+1
σ (G, Ȳ \Wσ̄). If v′ 6∈ Yσ̄ , then no information

is needed. Otherwise, we do the following.

1. If v′ ∈ Vσ and there exists a may edge v′
may

−→ v′′ which is not a must edge
s.t. v′′ ∈ Ȳ \Wσ̄ , then v′ is a failure state, with this edge being the reason.

2. If v′ ∈ Vσ and it has a must edge to v′′ ∈ Xσ̄ \Wσ̄ , then we set the failure
vertex and reason of v′ to be those of v′′ (which are already computed).

3. Otherwise, v′ has a may (possibly must) edge to a vertex v′′ ∈ Attr?i
σ(G, Ȳ \

Wσ̄) ∩ Yσ̄ . In this case the failure state and reason of v′ are those of v′′.

Lemma 8. The computation of failure vertices for n ≥ 1 is well defined, mean-
ing that all the possible cases are handled.

Intuitively, in case 1, v′ is considered a failure state, with the may (not must)
edge to v′′ ∈ Ȳ \Wσ̄ being the reason because if this edge did not exist, v′ would

15

not be added to the may-attractor set, and thus would remain in Wσ̄ in G. A
careful analysis shows that the only possibility where there exists such a must
edge to v′′ ∈ Ȳ \Wσ̄ is when this edge is to Xσ̄ \Wσ̄ . This is handled separately
in case 2. The set Xσ̄ \Wσ̄ is a subset of Wtie for which the failure was already
analyzed, and in case 2 we set the failure vertex and reason of v′ to be those
of v′′ ∈ Xσ̄ \Wσ̄ . This is because changing the classification of v′′ to Wσ̄ would
make a step in the direction of changing the classification of v′ ∈ Vσ to Wσ̄

as well. Similarly, since the edge from v′ to v′′ is a must edge, changing the
classification of v′′ to Wσ would change the classification of v′ ∈ Vσ to Wσ . In
all other cases, the computation recursively continues with a vertex in Yσ̄ that
was already added to the may-attractor set and that affects the addition of v′

to it (case 3).

This concludes the description of how SolveGame records the failure infor-
mation for each vertex in Wtie . A simple case analysis shows the following.

Theorem 6. Let vf be a vertex that is classified by SolveGame as a failure
vertex. The failure reason can either be the fact that vf ∈ Vtie , or it can be an

edge (vf , v
′) ∈

may

−→ \
must

−→.
Once we are given a failure vertex v′ = s′a ` ϕ′ and a corresponding reason

for failure, we guide the refinement to discard the cause for failure in the hope
for changing the model checking result to a definite one. This is done as in [18],
where the failure information is used to determine how the set of concrete states
represented by s′a should be split in order to eliminate the failure reason. A
criterion for splitting all abstract states can then be found by known techniques,
depending on the abstraction used (e.g. [4, 2]).

After refinement, one has to re-run the model checking algorithm on the
game graph based on the refined KMTS to get a definite value for sc and ϕ.
However, we can restrict this process to the previous Wtie . When constructing
the game graph based on the refined KMTS, every vertex s2a ` ϕ′ for which
a vertex sa ` ϕ′ (where s2a results from splitting sa) exists in W0 or W1 in
the previous game graph can be considered a dead end winning for Player 0 or
Player 1, respectively. In this way we avoid unnecessary refinement.

7 Conclusion

This work presents a game-based model checking for abstract models with re-
spect to specifications in µ-calculus, interpreted over a 3-valued semantics, to-
gether with automatic refinement, if the model checking result is indefinite.

The closest work to ours is [18], in which a game-based framework is suggested
for abstraction-refinement for CTL with respect to a 3-valued semantics. While
it is relatively simple to extend their approach to alternation-free µ-calculus, the
extension to full µ-calculus is not trivial. This is because, in the game graph for
alternation-free µ-calculus each strongly connected component can be uniquely
identified by a single fixpoint. For full µ-calculus, this is not the case any more,
thus a more complicated algorithm is needed in order to determine who has the
winning strategy.

16

References

1. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic
model checking: 1020 states and beyond. Information and Computation, 98(2):142–
170, June 1992.

2. E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement. In Computer Aided Verification (CAV), LNCS 1855, 2000.

3. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT press, Dec. 1999.
4. E. Clarke, A. Gupta, J. Kukula, and O. Strichman. SAT based abstraction-

refinement using ILP and machine leraning techniques. In CAV, 2002.
5. R. Cleaveland. Tableau-based model checking in the propositional mu-calculus.

Acta Inf., 27:725–747, 1990.
6. D. Dams, R. Gerth, and O. Grumberg. Abstract interpretation of reactive systems.

ACM Transactions on Programming Languages and Systems, 19(2), March 1997.
7. E. A. Emerson, and C. S. Jutla Tree automata, µ-calculus and determinacy. In

Proc. 32th Symp. on Foundations of Computer Science (FOCS’91), pp. 368–377,
1991, IEEE Computer Society Press.

8. E. A. Emerson and C.-L. Lei. Efficient model checking in fragments of the propo-
sitional mu-calculus. In Logic in Computer Science (LICS), 1986.

9. P. Godefroid and R. Jagadeesan. Automatic abstraction using generalized model
checking. In Computer-Aided Verification (CAV), LNCS 2404, pp. 137–150, 2002.

10. P. Godefroid and R. Jagadeesan. On the expressiveness of 3-valued models. In
VMCAI, LNCS 2575, pp. 206–222, 2003.

11. M. Huth, R. Jagadeesan, and D. Schmidt. Modal transition systems: A founda-
tion for three-valued program analysis. In European Symposium on Programming
(ESOP), LNCS 2028, pp. 155–169, 2001.

12. D. Kozen. Results on the Propositional µ-calculus. TCS, 27: 333-354, 1983.
13. W. Lee, A. Pardo, J.-Y. Jang, G. D. Hachtel, and F. Somenzi. Tearing based

automatic abstraction for CTL model checking. In ICCAD, pp. 76–81, 1996.
14. C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property preserving

abstractions for the verification of concurrent systems. Formal Methods in System
Design, 6:11–45, 1995.

15. D. Long, A. Browne, E. Clark, S. Jha, and W. Marrero. An improved algorithm
for the evaluation of fixpoint expressions. In CAV, LNCS 818, pp. 338–350, 1994.

16. A. Pardo and G. D. Hachtel. Automatic abstraction techniques for propositional
mu-calculus model checking. In Computer Aided Verification (CAV), 1997.

17. A. Pardo and G. D. Hachtel. Incremental CTL model checking using BDD sub-
setting. In Design Automation Conference (DAC), pp. 457–462, 1998.

18. S. Shoham and O. Grumberg. A game-based framework for CTL counterexam-
ples and 3-valued abstraction-refinemnet. In Computer Aided Verification (CAV),
LNCS 2725, pp. 275–287, 2003.

19. C. Stirling. Local model checking games. In Concurrency Theory (CONCUR),
LNCS 962, pp. 1–11, 1995.

20. C. Stirling and D. J. Walker. Local model checking in the modal mu-calculus. In
Theory and Practice of Software Development, LNCS, 1989.

21. A. Tarski. A lattice-theoretical fixpoint theorem and its application. Pacific
J.Math., 5:285–309, 1955.

22. G. Winskel. Model checking in the modal ν-calculus. In International Colloquium
on Automata, Languages, and Programming (ICALP), 1989.

23. W. Zielonka. Infinite games on finitely coloured graphs with applications to au-
tomata on infinite trees. Theoretical Computer Science, 200(1–2):135–183, 1998.

17

