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Abstract

This work presents a novel game-based approach to abstraction-refinement for the full �-calculus, interpreted over
3-valued semantics. A novel notion of non-losing strategy is introduced and exploited for refinement. Previous works on
refinement in the context of 3-valued semantics require a direct algorithm for solving a 3-valued model checking game. This
was necessary in order to have the information needed for refinement available on one game board. In contrast, while still
considering a 3-valued model checking game, here we reduce the problem of solving the game to solving two 2-valued model
checking (parity) games. In case the result is indefinite (don’t know), the corresponding non-losing strategies, when combined,
hold all the information needed for refinement. This approach is beneficial since it can use any solver for 2-valued parity
games. Thus, it can take advantage of newly developed such algorithms with improved complexity.
© 2007 Elsevier Inc. All rights reserved.

1. Introduction

Abstraction is one of the most successful techniques for fighting the state explosion problem in model check-
ing [1]. Abstractions hide some of the details of the verified system, thus result in a smaller model. Usually, they
are designed to be conservative for true, meaning that if a formula is true of the abstract model then it is also
true of the concrete (precise) model of the system. However, if it is false in the abstract model then nothing can
be deduced of the concrete one.

In order to obtain more precise results, temporal logics can be interpreted over abstract models with respect
to the 3-valued semantics [2–4]. This semantics evaluates a formula to either true, false, or indefinite. Abstract
models can then be designed to be conservative for both true and false. Only if the value of a formula in the
abstract model is indefinite, its value in the concrete model is unknown. In this case, a refinement is needed in
order to make the abstract model more precise.
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Refinement of indefinite results has been suggested for CTL in [5] and for the �-calculus in [6]. In both cases,
the refinement is based on finding a cause for the indefinite result by following the run of an algorithm that
solves a corresponding 3-valued model checking game. Being based on an especially tailored algorithm, a similar
approach is not applicable when the 3-valued model checking game is solved via a reduction to two 2-valued
model checking games.

In this work, we present a novel approach, which shows that refinement information can be extracted from
two 2-valued model checking games, provided that they are defined over the full game board of the 3-valued
game. Our refinement is based on the new notion of non-losing rather then winning strategies. This approach
is beneficial since it can take advantage of any game-based model checking algorithm for the �-calculus with
respect to the 2-valued semantics [7,8].

We will now explain our new approach in more detail. We consider the �-calculus [9], which is a powerful
formalism for expressing properties of transition systems using fixpoint operators. Many verification procedures
can be solved by translating them into �-calculus model checking [10]. Such problems include (fair) CTL model
checking, LTL model checking, bisimulation equivalence and language containment of deterministic ω-regular
automata.

Many algorithms for �-calculus model checking with respect to the 2-valued semantics have been suggested
[11–15]. An elegant solution to this problem is the game-based approach [16], in which two players, the verifier
∃loise (denoted ∃) and the refuter ∀belard (denoted ∀), try to win a game. A formula ϕ is true in a model M iff
the verifier has a winning strategy, meaning that she can win any play, no matter what the refuter does. The
game is played on a game board, consisting of configurations s �  , where s is a state of the model M and  is
a subformula of ϕ. The players make moves between configurations in which they try to verify or refute  in s.
These games can also be seen and studied as parity games [7,8] and we follow this approach as well.

In model checking games for the 2-valued semantics, exactly one of the players has a winning strategy, thus
the model checking result is either true or false. For the 3-valued semantics, a third value should also be possible.
Following [5], we change the definition of a game for �-calculus so that a tie is also possible. We can now consider
for each player, in addition to a winning strategy also a non-losing strategy, which guarantees that each play will
end with either a win for this player or a tie, no matter what the other player does.

To simplify the presentation, we transform the 3-valued model checking game into an equivalent 3-valued
parity game with players 0 and 1. In order to determine the winner, if there is one, we then reduce this game to
two 2-valued parity games, G0 and G1. Player 0 has a winning strategy on game G0 iff Player 0 has a winning
strategy on the original 3-valued game G. Furthermore, Player 0 has a winning strategy on G1 iff she has a
non-losing strategy on G. The dual facts hold for Player 1.

When the game G results in a tie, and a refinement is needed, non-losing strategies become extremely helpful.
In this case none of the players have a winning strategy, which means that considering winning strategies does
not provide a witness for the tie result. Non-losing strategies, however, take exactly this role: when the result
is a tie, each player has a non-losing strategy (which corresponds to a winning strategy on one of the 2-valued
games). These strategies can be combined to one play along which a cause for the tie can be found. A refinement
criterion is then suggested and abstract states are refined (split) accordingly. The refinement is applied only to
parts of the model from which a tie is possible. Vertices from which there is a winning strategy for one of the
players are not changed. Thus, the refined abstract models do not grow unnecessarily. If the concrete model is
finite then our abstraction-refinement is guaranteed to terminate with a definite result.

We note that the 3-valued model checking game still has an important role. Namely, a similar approach
for refinement is not applicable when the 3-valued model checking problem itself is reduced to two 2-valued
model checking problems (e.g., [4]), each solved by a separate 2-valued game. This is because then each of
the 2-valued games considers a different part of the game board: one considers the part required for proving
the formula, while the other considers the part required for proving its negation. For refinement purposes, on
the other hand, it is important to consider the full game board of the 3-valued game (see Section 6 for more
details).

Organization of the paper. Abstract models are defined in the next section. The �-calculus with its 3-valued
semantics is introduced in Section 3. In Section 4, a 3-valued model checking game for �-calculus is shown
and is proved to be correct with respect to the 3-valued semantics. Section 5 presents 3-valued parity games
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Fig. 1. (a) A concrete Kripke structure, and (b) an abstract KMTS for it.

and translates 3-valued model checking games into such games. It also suggests an algorithm for solving these
games by reducing them to two, 2-valued parity games. Section 6 then presents our new refinement algorithm.
We conclude in Section 7.

2. Abstraction

Let P be a set of propositional constants, and A be a set of action names. Every a ∈ A is associated with a
so-called must-action a! and a may-action a?. Let A! = {a! | a ∈ A} and A? = {a? | a ∈ A}.

We use Kripke Modal Transition Systems (KMTS) [3,17] as abstract models that preserve satisfaction and
falsification of 3-valued �-calculus formulae. A KMTS is a tuple T = (S , { x−→ | x ∈ A! ∪ A?},L) where S is a
set of states, and x−→ ⊆ S × S for each x ∈ A! ∪ A? is a binary relation on states, s.t. for all a ∈ A: a!−→ ⊆ a?−−→.
L : S → P → M for some complete latticeM assigns to each pair of states and propositions a truth value. Here,
we use the lattice �3 consisting of elements {⊥, ?, �} denoting falsity, uncertainty and truth, respectively. They
are partially ordered by ⊥ ≤ ? ≤ �.

A Kripke structure in the usual sense can be regarded as a KMTS by setting a!−→ = a?−−→ for all a ∈ A and
not distinguishing them anymore. Furthermore, its states labelling is over {⊥, �}.

Let TC = (SC , { a−→C | a ∈ A},LC) be a (concrete) Kripke structure. Let SA be a set of abstract states and
� : SA → 2SC a total concretization function that maps each abstract state to the set of concrete states it rep-
resents. An abstract model, in the form of a KMTS TA = (SA, { x−→A | x ∈ A! ∪ A?},LA), can then be defined as
follows.

The labelling of an abstract state is defined in accordance with the labelling of all the concrete states
it represents. For p ∈ P : LA(sa)(p) = � (⊥) only if ∀sc ∈ �(sa) : LC(sc)(p) = � (⊥). In the remaining cases
LA(sa)(p) = ?.

The may-transitions in an abstract model are computed such that every concrete transition between two
states is represented by them: for every action a ∈ A, if ∃sc ∈ �(sa) and ∃s′c ∈ �(s′a) such that sc

a−→C s
′
c, then

there exists a may transition sa
a?−−→A s

′
a. Note that it is possible that there are additional may transitions as well.

The must-transitions, on the other hand, represent concrete transitions that are common to all the concrete
states that are represented by the source abstract state: a must-transition sa

a!−→A s
′
a exists only if ∀sc ∈ �(sa)

∃s′c ∈ �(s′a) such that sc
a−→C s

′
c. Note that it is possible that there are less must transitions than allowed by this

rule. That is, the may and must transitions do not have to be exact, as long as they maintain these conditions.

Example 1. Consider the concrete system shown in Fig. 1a, employing a single action a and a single proposition
p . Joining s00 and s10 and, respectively, s01 and s11 yields the KMTS shown in Fig. 1b, where may-transitions are
shown as dotted arrows only when no must-transitions are present.

Other constructions of abstract models can be used as well. For example, if � is a part of a Ga-
lois Connection [18] (� : SA → 2SC ,� : 2SC → SA) from (2SC , ⊆) to (SA, �), then an abstract model can be
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constructed as described in [19] within the framework of Abstract Interpretation [18,20,19]. It is then not
guaranteed that the must transitions are a subset of the may transitions, which complicates our further
development.

3. The 3-valued �-calculus

Syntax. We present our logic in positive normal form. Let V be a set of propositional variables. Formulae of
the 3-valued modal �-calculus in positive normal form are given by

ϕ ::= q | ¬q | Z | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈a〉ϕ | [a]ϕ | �Z.ϕ | �Z.ϕ

where q ∈ P , a ∈ A, and Z ∈ V . Let 3−L� denote the set of closed formulae generated by the above grammar,
where the fixpoint quantifiers � and � are variable binders. We will also write 	 for either � or �. Furthermore,
we assume that formulae are well-named, i.e., no variable is bound more than once in any formula. Thus, every
variable Z identifies a unique subformula fp(Z) = 	Z. of ϕ, where the set Sub(ϕ) of subformulae of ϕ is defined
in the usual way.

Given variables Y ,Z we write Y ≺ϕ Z if Z occurs freely in fp(Y) in ϕ, and Y <ϕ Z if (Y ,Z) is in the transitive
closure of ≺ϕ . The alternation depth ad (ϕ) of ϕ is the length of a maximal <ϕ-chain of variables in ϕ s.t. ad-
jacent variables in this chain have different fixpoint types. A variable is called outermost if it is maximal w.r.t.
<ϕ .

Semantics. Let �3 be the complete lattice consisting of elements {⊥, ?, �} denoting falsity, uncertainty and truth,
respectively, ordered by ⊥ ≤ ? ≤ �. We use �3 not only to interpret the meaning of propositional constants in
states of a KMTS but also for the semantics of formulae of the 3-valued �-calculus. Negation in �3 is defined
such that � and ⊥ are complementary to each other (as usual), while ?̄ =? (i.e., the complement of “don’t know”
is also a “don’t know”).

Note that �3 is not a boolean lattice since every finite boolean lattice is isomorphic to the subset lattice of
some finite set. Hence, the size of a boolean lattice must be a power of 2. But having only 2 values deprives us of
uncertainty while having at least 4 elements would ultimately force us to introduce multiple types of uncertainty.
But then uncertainty would carry more information than simply “don’t know”. Instead, �3 forms a DeMorgan
lattice.1

With logical conjunctions interpreted as meets in this lattice we obtain a seemingly strange effect: if you do
not know whether q holds you also do not know whether ¬q holds. Hence, you do not know whether or not
q ∧ ¬q holds. This is desired though. The formula q ∧ ¬q having truth value ? can simply be read as: we do not
know whether everything inside of an abstract state is labelled with q nor whether everything is labelled with
¬q.

Remember that the conventional �-calculus interprets formulae over the boolean lattice (�S , ⊆) of sets
of states of a transition system. Similarly, the semantics of a 3−L� formula is an element of �S

3 – the
functions from S to �3 – which forms a complete (but not boolean) lattice when equipped with the fol-
lowing partial order: let f , g : S → �3. f � g iff ∀s ∈ S : f(s) ≤ g(s). Joins and meets in this lattice are
denoted by f � g and f � g. Since, we introduce formulae in positive normal form directly, we do not
need to define a general negation symbol. Instead, the definition of the complement on a ground level
suffices.

Then the semantics [[ϕ]]T
 of a 3−L� formula ϕ w.r.t. a KMTS T = (S , { x−→ | x ∈ A! ∪ A?},L) and an environ-
ment 
 : V → �S

3 , which explains the meaning of free variables in ϕ, is an element of �S
3 , defined as follows. We

assume T to be fixed and do not mention it explicitly anymore. With 
[Z �→ f ] we denote the environment that
maps Z to f and agrees with 
 on all other arguments. Later, when only closed formulae are considered, we will
also drop the environment from the semantic brackets.

1 In a DeMorgan lattice every element x has a unique complement x̄ in the lattice such that ¯̄x = x, DeMorgan’s laws hold, and x ≤ y

implies ȳ ≤ x̄.
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[[q]]
 := �s.L(s)(q)

[[¬q]]
 := �s.L(s)(q)

[[Z]]
 := 
(Z)

[[ϕ ∨  ]]
 := [[ϕ]]
 � [[ ]]

[[ϕ ∧  ]]
 := [[ϕ]]
 � [[ ]]


[[〈a〉ϕ]]
 := �s.

⎧⎪⎨
⎪⎩

� , if ∃t ∈ S , s.t. s a!−→ t and [[ϕ]]
(t) = �
⊥ , if ∀t ∈ S , if s a?−−→ t then [[ϕ]]
(t) = ⊥
? , otherwise

[[[a]ϕ]]
 := �s.

⎧⎪⎨
⎪⎩

� , if ∀t ∈ S , if s a?−−→ t then [[ϕ]]
(t) = �
⊥ , if ∃t ∈ S , s.t. s a!−→ t and [[ϕ]]
(t) = ⊥
? , otherwise

[[�Z.ϕ]]
 := ⊔{f | [[ϕ]]
[Z �→f ] � f }
[[�Z.ϕ]]
 := ⊔ {f | f � [[ϕ]]
[Z �→f ]}

Note that s a!−→ t implies s a?−−→ t.
The functionals �f.[[ϕ]]
[Z �→f ] : �S

3 → �S
3 are monotone w.r.t. � for any Z ,ϕ and S . According to [21], least

and greatest fixpoints of these functionals exist.
Approximants of 3−L� formulae are defined w.r.t. an environment 
 in the usual way: if fp(Z) = �Z.ϕ then

Z0

 := �s.⊥, Z�+1


 := [[ϕ]]
[Z �→Z�
 ] for any ordinal �, and Z�
 := ⊔
�<� Z�
 for any limit ordinal �. Dually, if

fp(Z) = �Z.ϕ then Z0

 := �s.�, Z�+1


 := [[ϕ]]
[Z �→Z�
 ], and Z�
 := ⊔�<� Z�
 .
The next theorem is a standard consequence of the Knaster-Tarski Theorem [21].

Theorem 2. For all KMTS T with state set S , and all environments 
 there is an ordinal � s.t. for all s ∈ S we have:

if [[	Z.ϕ]]
(s) = x then Z�
 (s) = x.

The following theorem relates the 3-valued semantics of the �-calculus over an abstract KMTS with the
conventional semantics over the concrete Kripke structure it represents.

Theorem 3. [17] Let T be a Kripke structure and let T ′ be a KMTS obtained from T with the abstraction process
described in Section 2. Let s be a state of T and s′ its corresponding abstract state in T ′. For all closed ϕ ∈ 3−L� :

[[ϕ]]T ′
(s′) /= ? implies [[ϕ]]T (s) = [[ϕ]]T ′

(s′).

4. Model checking games for 3− Lμ

The model checking game�T (s0,ϕ0) on a KMTS T with state set S , initial state s0 ∈ S and a 3−L� formula ϕ0
is played by Players ∃ and ∀ in order to determine the truth value of ϕ0 in s0, cf. [22]. Configurations are elements
of C ⊆ S × Sub(ϕ0), and written t �  . Each play of �T (s0,ϕ0) is a maximal sequence of configurations that
starts with s0 � ϕ0. The game rules are presented in Fig. 2. Each rule is marked by ∃ / ∀ to indicate which player
makes the move. A rule is applied when the player is in configuration Ci , which is of the form of the upper part
of the rule. Ci+1 is then the configuration in the lower part of the rule. The rules shown in the first and third
lines present a choice which the player can make. Since, no choice is possible when applying the rules shown in
the second line, we arbitrarily assign one player, let us say ∃, and call the rules deterministic. If no rule can be
applied, the play terminates.
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Fig. 2. The model checking game rules for 3−L� .

Definition 4. A player is said to play eagerly2 if she or he never chooses a transition of type a?−−→ \ a!−→ for some
a ∈ A. A play is called ∃-eager, resp. ∀-eager, if Player ∃, resp. Player ∀, plays eagerly.

Player ∃ wins an ∃-eager play C0,C1, . . . , iff

(1) there is an n ∈ �, s.t. Cn = t � q with L(t)(q) = � or Cn = t � ¬q with L(t)(q) = ⊥, or
(2) there is an n ∈ �, s.t. Cn = t � [a] and there is no t′ ∈ S s.t. t a?−−→ t′, or
(3) the outermost variable that occurs infinitely often is of type �.

Player ∀ wins a ∀-eager play C0,C1 . . ., iff

(4) there is an n ∈ �, s.t. Cn = t � q with L(t)(q) = ⊥ or Cn = t � ¬q with L(t)(q) = �, or
(5) there is an n ∈ �, s.t. Cn = t � 〈a〉 and there is no t′ ∈ S s.t. t a?−−→ t′, or
(6) the outermost variable that occurs infinitely often is of type �.

In all other cases, the result of the play is a tie.

Example 5. For the model checking problem of the formula

�Z.(〈a〉(�Y.((Z ∧ p) ∨ 〈a〉Y))),

in the state s0 of the abstract KMTS from Fig. 1b all possible moves are shown in Fig. 3. Configurations in which
∃ is to choose are drawn as circles while ∀-configurations are shown as squares. Moves based on may-transitions
are not shown when the same move is possible using a must-transition.

The result of the play v00v01v02v03v04v05v06v08 is a tie: while the play ends in a configuration in whichp evaluates
to �, ∃ does not win since choosing the edge from v02 to v03 violates ∃-eagerness. v00v01v02v13v14v15v16v11v12v13, . . .,
on the other hand, is an ∃-eager play in which the outermost variable occurring infinitely often is of type �. Thus,
it is won by ∃.

Definition 6. The truth value of a configuration t �  in the context of 
 is the value of [[ ]]
(t). The value �
improves both ? and ⊥, while ? only improves ⊥. On the other hand, x worsens y iff y improves x. A configuration
with truth value x under the environment 
 will also be called an x
-configuration. We say that a move, i.e., an
application of a game rule between configurations C and C ′ is a x
–y
′ -improvement if C is an x
-configuration,
C ′ is an y
′ -configuration and y improves x. Similarly we define a x
–y
′ -worsening and a x
–y
′ -preservation.
In the latter case we obviously have x = y .

An inspection of the game rules and the semantics together with Theorem 2 proves the following.

2 The notion of ‘eagerness’ replaces the notion of ‘consistency’ from [5,6].
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Fig. 3. All possible moves in the game over the KMTS from Fig. 1b.

Lemma 7. For all environments 
, and all truth values x, y we have:

(a) Player ∃ cannot eagerly make a move that is a x
–y
-improvement, but can always eagerly make a �
–�


-preservation.
(b) Player ∀ cannot eagerly make a move that is a x
–y
-worsening, but can always eagerly make a ⊥
–⊥
-pres-

ervation.
(c) There is an ordinal � s.t. the deterministic rule for a fixpoint formula 	Z.ϕ is a x
–x
′ -preservation when


′ := 
[Z �→ Z�
 ].
(d) Let Z be an 	-variable and 
(Z) = Z�
i for some environment 
i and some ordinal � > 0. There is an ordinal

 < � s.t. the deterministic rule for unfolding Z is an x
–x
′ -preservation when 
′ := 
[Z �→ Z


i ].

A strategy for Player p is a partial function � : C → C, such that its domain is the set of configurations where
Player p moves and for all configurations C and C ′: �(C) = C ′ implies that there is a move from C to C ′. Player
p plays a game according to a strategy � if all his choices agree with �. A strategy for Player p is called a winning
strategy if Player p wins every play where he plays according to this strategy. Note that we restrict ourselves to
so-called memoryless strategies. This will be justified in Section 5 together with Appendix A.

Lemma 8. Let ϕ ∈ 3−L� be closed.Player ∃ does not have a winning strategy for the game�T (s,ϕ) if [[ϕ]]T (s) /= �.
Proof . Suppose that on one hand [[ϕ]]T (s) /= � but Player ∃ has a winning strategy � for �T (s,ϕ). Take the
partial game tree induced by this strategy, i.e. the tree of all plays in which all of Player ∀’s choices are preserved
but only those of Player ∃’s choices which agree with �.

First, we show that this tree contains at least one play C0,C1, . . . , for which there is a corresponding sequence
of environments 
0, 
1, . . . , s.t. for all i ∈ �, Ci is not a �
i -configuration. Let 
0 be the empty environment.
Since ϕ is closed, the root of this tree is not a �
0 -configuration. According to Lemma 7, deterministic rules
preserve the truth value of a configuration—possibly extending the environments—and Player ∃’s choices do
not improve the truth value when considering the same environment, as she is playing eagerly (being that � is
a winning strategy for her). This can only be done by Player ∀. However, suppose there is a configuration Ci
in which Player ∀ makes a choice and which has a truth value other than � under 
i . Then Ci is of the form
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t �  0 ∧  1 or t � [a] . For the former case note that the truth value of Ci under 
i is the infimum in �3 of
its two successor’s truth values under 
i . Thus, it is not � only if there is a successor which has a truth value
other than � under the same environment 
i—which will also define 
i+1 (that is, 
i+1 = 
i). For the latter
case consider [[[a] ]]
i (t). It can only differ from � if there is a t′ s.t. t a?−−→ t′ and [[ ]]
i (t′) /= �. But t′ �  is a
possible successor configuration of Ci . Thus, it is included in the tree and has a truth value which is not � under

i—which will again define 
i+1 (i.e., 
i+1 = 
i).

This argument can be iterated yielding a path C0,C1, . . . , and a sequence 
0, 
1, . . . , in which 
i /= 
i+1 only if
the move from Ci to Ci+1 is deterministic. C0,C1, . . . , is a path on which no �-configuration under the according

i occurs. Now, this path can either be finite or infinite. The first case immediately leads to a contradiction since
finite paths won by Player ∃ necessarily end in a �-configuration under any environment.

Suppose therefore that the path represents a play which is won by Player ∃’s winning condition 3. Then there
is an outermost variable Z of fixpoint type � which occurs infinitely often in this play. Take the last occurrence
of a configuration t � �Z.ϕ and name itCi . By assumption, [[�Z.ϕ]]
i (t) = x for some x /= � and 
i as constructed
above.

According to Lemma 7, 
i+1 interprets Z as an approximant with some index � /= 0. That is, 
i+1(Z) = Z�
i .
Lemma 7 also shows that subsequent environments 
j , j > i interpret Z as approximants Z
i with decreasing
indices . But the ordinals are well-founded. Hence, there is a j s.t. Cj = t � Z for some t and 
j(Z) = Z0


i
, mean-

ing that [[Z]]
j (t) = �. But on the other hand, since Cj appears on the above path, we know that Cj is not a
�
j -configuration. This is a contradiction. We conclude that Player ∃ cannot have a winning strategy. �

Lemma 9. Let ϕ ∈ 3−L� be closed. Player ∃ has a winning strategy for the game �T (s,ϕ) if [[ϕ]]T (s) = �.
Proof . Suppose [[ϕ]]T (s) = �. According to Lemma 7, Player ∃ can play eagerly in such a way that every reached
configuration has truth value � under some environment which is constructed successively using Lemma 7 and
starting with the empty environment. Note that ϕ is assumed to be closed.

Player ∀ cannot help but to make moves that result in �
-configurations under the corresponding 
 as well.
This defines a strategy for Player ∃. It remains to be seen that this strategy guarantees her to win every resulting
play. First, by Lemma 7 again, every resulting play is ∃-eager. By preservation of the truth value, a finite play
must end in a �-configuration under an irrelevant environment. But then it is won by Player ∃ with winning
condition 1 or 2.

Suppose therefore that the play C0,C1, . . . , at hand is of infinite length. By Player ∃’s strategy that uses the
construction of environments in Lemma 7, there are 
0, 
1, . . ., s.t. Ci is a �
i -configuration for all i ∈ �.

Any infinite play has a unique outermost variable Z that occurs infinitely often, cf. [22]. This variable has a
unique fixpoint type 	 ∈ {�, �}. Assume for the sake of contradiction that fp(Z) = �Z. for some  . Then take
the last occurrence of a configurationCi = t � �Z. . Since Z is outermost, it is guaranteed to exist, for otherwise
there would be another fixpoint formula that generated �Z. infinitely often.

According to the construction of the strategy, there is an ordinal � s.t. 
i+1 interprets Z in the following config-
uration Ci+1 = t � Z by Z�
i . Again, by the construction of the strategy using Lemma 7, the next time Z occurs it
is interpreted as Z
i for some  < �. By the well-foundedness of the ordinals, there will eventually be a �
k -con-
figuration Ck = t′ � Z s.t. 
k(Z) = Z0


i
which is impossible since Z0


i
= �s.⊥, provided that the fixpoint type of Z

is �. Thus, the fixpoint type of Z must have been � which makes Player ∃ the winner of the play at hand. �
Lemma 10. Let ϕ ∈ 3−L� be closed. Player ∀ has a winning strategy for the game �T (s,ϕ) iff [[ϕ]]T (s) = ⊥.
Proof . This is the dual to Lemmas 8 and 9. Hence, it is proved in the same way exchanging � and ⊥, “improve”
and “worsen”, � and �, Player ∃ and ∀. �
Theorem 11. Given a KMTS T = (S , { x−→ | x ∈ A! ∪ A?},L), an s ∈ S , and a closed ϕ ∈ 3−L�, we have:

(a) [[ϕ]]T (s) = � iff Player ∃ has a winning strategy for �T (s,ϕ),
(b) [[ϕ]]T (s) = ⊥ iff Player ∀ has a winning strategy for �T (s,ϕ),
(c) [[ϕ]]T (s) = ? iff neither Player ∃ nor Player ∀ has a winning strategy for �T (s,ϕ).
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Proof . Parts (a) and (b) are proved in Lemmas 8, 9, and 10. For part (c) suppose that [[ϕ]]T (s) = ?. Then none of
the players can have a winning strategy because using parts (a) and (b) one would immediately contradict the
assumption. Conversely, suppose that none of them has a winning strategy but [[ϕ]]T (s) /= ?. Again, using (a) or
(b) one obtains an immediate contradiction. �
Theorem 12. Let T = (S , { x−→ | x ∈ A},L) be a Kripke structure with s ∈ S and T ′ = (S ′, { x−→ | x ∈ A! ∪ A?},L′)
be an abstraction of T with concretization function �. Let s′ ∈ S ′ with s ∈ �(s′).

(a) If Player ∃ has a winning strategy for �T ′(s′,ϕ) then T ,s |= ϕ.

(b) If Player ∀ has a winning strategy for �T ′(s′,ϕ) then T ,s �|= ϕ.

Proof . Suppose Player ∃ wins �T ′(s′,ϕ). According to Theorem 11, we have [[ϕ]]T ′
(s′) = �. Applying Theorem

3 we get [[ϕ]]T (s) = �, i.e. T , s |= ϕ. Part (b) is proved analogously. �

5. Deciding the model checking problem for 3− Lμ

The previous section relates model checking games with the semantics of 3−L�. An algorithm estimating the
winner of the game and a winning strategy is yet to be given. Note that the result of the previous section also
holds for infinite-state systems. From now on, however, we restrict to finite KMTS.

For the sake of readability we will deal with parity games. Instead of Player ∃ and ∀, we talk of Player 0 and
Player 1, resp., and use � to denote Player 0 or 1 and �̄ = 1 − � for the opponent.3

Parity games are traditionally used to describe the model checking game for the �-calculus [7]. For simplicity,
we consider parity games with dead-end vertices (see Remark 14). In order to describe our game for 3−L�, we
need to generalize them in the following ways: (1) we have two types of edges: must edges and may edges, where
every must edge is also a may edge, (2) terminal configurations (dead-ends) are classified as either winning for
one player, or as tie-configurations, and (3) an eagerness requirement is added to the winning conditions.

5.1. Three-valued parity games

A Three-valued parity game G = (A,�) has an arena A = (V0, V1, Vtie ,
must−→,

may−→) s.t. V0, V1 and Vtie are dis-

joint sets of vertices. Let V := V0 ∪ V1 ∪ Vtie . Then
must−→⊆ may−→⊆ (V \ Vtie)× V , meaning that every v ∈ Vtie is a

dead-end. � : V → � is a priority function that maps each vertex v ∈ V to a priority.
A play from v0 ∈ V is a maximal sequence of vertices v0, . . ., where Player �moves from vi to vi+1 when vi ∈ V�

and (vi , vi+1) ∈ may−→. It is called �-eager iff Player � chooses only moves that are (also) in
must−→. A �-eager play

is winning for Player � if

• it is finite and ends in V�̄ , or
• it is infinite and the minimal priority occurring infinitely often is even when � = 0 or odd when � = 1.

All other plays are a tie.
A strategy for player � in the 3-valued parity gameG = (A,�) is a function � : V� → V such that for all v ∈ V�

and v′ ∈ V : �(v) = v′ implies that Player � can move from v to v′. A play v0v1, . . . , is said to conform to � if for
all k ∈ �, s.t. vk ∈ V� : vk+1 = �(vk).

A strategy � for player � is a winning strategy from V ′ ⊆ V if every play that starts from a vertex in V ′ and
conforms to � is won by player �. It is called a non-losing strategy from V ′ if every play from v ∈ V ′ conforming
to � is either won by player � or a tie.

3 The numbers 0 and 1 have parities and this is more intuitive for this notion of game.
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Note that as in Section 4, we restrict ourselves to memoryless strategies. For ordinary parity games, it is
well-known that a player has a winning strategy iff he or she has a memoryless winning strategy [23]. In the ap-
pendix, we will show that the result carries over to 3-valued parity games: memoryless strategies suffice for three
valued parity games as well. Because of this, we restrict ourselves to memoryless strategies for both 3-valued
and ordinary parity games in the following without mentioning this explicitly every time.

5.2. Model checking games as parity games

Just as the model checking games for the modal �-calculus can be seen as ordinary parity games [7], the model
checking games of the previous section can be transformed into 3-valued parity games.

Let T = {S , { x−→ | x ∈ A! ∪ A?},L) be a KMTS with starting state s0 ∈ S and let ϕ0 ∈ 3−L�. We associate
with these a 3-valued parity game whose vertices are the configurations of the model checking game, and whose
edges are applications of the model checking game rules. The set V0 consists of all configurations in which Player
∃ nominally makes a choice together with configurations in which the play terminates and ∀ wins. Similarly, the
set V1 consists of all configurations in which Player ∀ nominally makes a choice together with configurations in
which the play terminates and ∃ wins. The remaining configurations, i.e., the ones of the form t � q or t � ¬q
with L(t)(q) = ? are set to Vtie . An edge is a genuine may-edge if in its corresponding model checking game

rule, the player at hand chooses a transition s a?−−→ t rather than s a!−→ t. All other game rule applications lead to
must-edges.

Let X1, . . . ,Xn be all the variables occurring in ϕ0. They are partially ordered by the relation ≤ϕ0 . Note that it
is possible to assign to each variable a number �(Xi) s.t. for all i, j = 1, . . . , n:

• �(Xi) is even iff Xi is of type �;
• �(Xi) ≥ �(Xj) whenever Xi ≤ϕ0 Xj .

Let m := max{�(X1), . . . ,�(Xn)}. The priorities on the parity game vertices are assigned as follows:

�(s �  ) :=
{
�(X) if  = X

m o.w.

The following theorem then follows from the fact that the 3-valued parity game is simply a different view
onto the model checking game.

Proposition 13. Player ∃, resp. ∀ wins the model checking game �T (s,ϕ) iff Player 0, resp. 1 wins the associated
3-valued parity game from the vertex s � ϕ. Moreover, the strategies used in both games are the same.

Along with the fact that memoryless strategies suffice to determine the result of a 3-valued parity game (see
Appendix A), this proposition justifies our restriction to memoryless strategies in the setting of model checking
games as well.

Remark 14. Since, the graph of a model checking game need not be total, the corresponding 3-valued parity
game might have dead-end vertices. These can be eliminated by applying the following simple transformations.

(1) For a dead-end vertex in V� (in which V� loses), set the priority to �̄ and add a must-edge back to itself.
(2) For a (dead-end) vertex v ∈ Vtie , arbitrarily choose � ∈ {0, 1} and add v to V� , setting its priority to � and

adding a may-edge back to itself.

Note that these changes make the parity game total, i.e. for every v ∈ V there is a w ∈ V s.t. v
may−→ w, and in

particular there are no vertices in Vtie . Moreover, a play looping in the additional edges is won by player � iff
the corresponding play in the original game is won by the same player. In case (1) this is because of the assigned
priority; in case (2) this is because the assigned priority which repeats infinitely often is associated with a player
who is forced to move along a may-edge. Hence, the play is going to be a tie.
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Moreover, this construction preserves the set of vertices of the game. It also preserves the winner (if any)
from each vertex, and the same strategies can be used in both games (with the exception that to get a strategy
for Player � in the total game from a strategy in the original game, one has to add to the strategy the self loops
that were added to dead-end vertices of Player �).

5.3. Model checking by solving 3-valued parity games

Proposition 13, along with Theorem 11, implies that the model checking problem for a state s of a KMTS and
a formula ϕ ∈ 3−L� reduces to determining the winner (if any) in the corresponding 3-valued parity game from
s � ϕ.

In the remainder of this section, we discuss solving 3-valued parity games, which means determining the
winner (if any) from every vertex. Note that there are three different outcomes for every vertex: either Player 0
or Player 1 or none of them has a winning strategy. By the definition of a winning strategy it is obviously not
possible for both players to have a winning strategy.

Therefore, solving the game amounts to partitioning its set of vertices into three winning sets: W0,W1,Wtie ,
where for � ∈ {0, 1}, the set W� consists of all the vertices from which Player � has a winning strategy and the
set Wtie consists of all the vertices from which none of the players has a winning strategy.

It is not hard to see that solving a 3-valued parity game can be reduced to solving two ordinary parity games:
first try to find a winning strategy for Player 0 disregarding her genuine may-edges and treating dead-end ver-
tices in Vtie as losing for her. If the result is negative then try to find a winning strategy for Player 1 disregarding
his genuine may-edges and treating tie dead-ends as losing for him. This is reminiscent of the approach of [2],
where a 3-valued interpretation of a formula in a partial model is computed by considering a pessimistic and
an optimistic interpretation.

More precisely, in order to find the winning set of Player �, we reduce G into an ordinary parity game denot-
ed G� by (1) removing all the outgoing genuine may-edges of vertices of Player �, (2) ignoring the distinction
between may and must edges in the remaining edges, and (3) adding Vtie to V� (meaning that Player �̄ wins in
these vertices). Note that we do not change the set of vertices, nor the priority function. Formally, G� is defined
as follows.

Definition 15. Let G = (A,�) be a 3-valued parity game with arena A = (V0, V1, Vtie ,
must−→,

may−→). For � ∈ {0, 1}, the
�-reduced game is an ordinary parity game G� = (A� ,�) with arena A� = (V �0 , V �1 , −→), where V �� = V� ∪ Vtie ,

V ��̄ = V�̄ , and −→ = may−→ \{(v, v′) | v ∈ V� and v � must−→ v′}.
G� might contain dead-end vertices, some of which result from dead-end vertices in G and some result

from vertices of V� that had only genuine may-edges in G. This means that they become dead-ends in G� .
However, G� can be transformed into a game whose underlying graph is total as described in Remark
14.

Proposition 16. LetG be a 3-valued parity game. Then Player � has a winning strategy from set V ′ ⊆ V inG iff she
has a winning strategy from V ′ in G�. Moreover, a winning strategy for Player � from V ′ in G� is also a winning
strategy for her in G.

We conclude that for � ∈ {0, 1}, the winning set of Player � in G, W� , is exactly the winning set of Player � in
G� and Wtie = V \ (W0 ∪ W1). Therefore, solving the 3-valued parity game reduces to solving the two ordinary
parity games G0 and G1:

Algorithm SolveThreeValuedGame (G)

(1) (W 0
0 , W 0

1 ) := SolveOrdinaryGame (G0);
(2) (W 1

0 , W 1
1 ) := SolveOrdinaryGame (G1);

(3) (W0, W1, Wtie) := (W 0
0 , W 1

1 , V \ (W 0
0 ∪ W 1

1 ));

(4) return (W0, W1, Wtie);
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Fig. 4. Game graph of the parity game corresponding to the game from Fig. 3.

Solving G0 and G1 can be done using any of the existing algorithms for solving ordinary parity games, main-
taining their complexity. Moreover, winning strategies in the 3-valued game can be easily obtained from winning
strategies in the ordinary games, since a winning strategy for Player � inG� is also a winning strategy for Player
� in G.

Remark 17. Note that even if the graph of the original game G is connected, the underlying graph of G� might
not be connected. Thus, depending on the algorithm for solving ordinary parity games, if we wish to classify all
the vertices of G, it might be necessary to invoke the algorithm for every connected component in G� separately
(for example, if the algorithm has an on-the-fly nature and it considers only reachable vertices).

Applied to the model checking problem for a state s and a 3−L� formula ϕ this means: after solving the corre-
sponding 3-valued game we check whether v = s � ϕ is in W0, W1, or Wtie and conclude true, false, or indefinite,
respectively.

Example 18. In terms of a parity game, the model checking game in Fig. 3 can be visualized as shown in Fig.
4. Round vertices denote vertices of Player 0, whereas square vertices are of Player 1. Vertex v18 is shaped as
a rotated square to denote that it is a (dead-end) tie vertex. The numbers labelling the vertices denote their
priorities.

The reduction to two games, G0 and G1 is shown in Fig. 5. Note that genuine may edges of Player 0 vertices
are removed in G0 and that v18 is declared as a Player 0 vertex in G0 (meaning that Player 1 wins in it) and a
Player 1 vertex in G1 (meaning that Player 0 wins in it).

We see that the only vertex from which Player 0 has a winning strategy in G0 is v08. In G1, Player 1 has no
winning strategy regardless of which vertex the game starts in. We conclude that W0 = {v08}, W1 = ∅, and that
all remaining vertices form the set Wtie .

6. Refinement

Assume, we are interested in knowing whether a concrete state sc, described by an abstract state sa, satisfies
a given formula ϕ. Let (W0,W1,Wtie) be the winning sets computed for the 3-valued parity game obtained by the
model checking game�T (sa,ϕ) for sa and ϕ. By Theorems 12 and 13 if the vertex v = sa � ϕ is inW0 orW1 then the
answer to the model checking problem is clear: sc |= ϕ if v ∈ W0 (meaning that Player 0 has a winning strategy
from v in the parity game, hence, Player ∃ is the winner of the underlying model checking game). Similarly,
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a b

Fig. 5. Game graphs of the reduced games of the parity game from Fig. 4.

sc �|= ϕ if v ∈ W1. However, if v ∈ Wtie , the result is don’t know and we have to refine the abstraction to get the
answer.

This means that a refinement step is required if none of the players has a winning strategy from v. Based on
this property, it was stated in [5,6] that rather than calling a 2-valued parity games solver twice it is more helpful
for refinement purposes to combine the two runs. This is because combining both runs carries more information
about the cause for the lack of winning strategies.

But even in a combined fashion of two ordinary runs, the above approach in which the algorithm looks
for winning strategies bears a significant disadvantage: if the algorithm looks for winning strategies it produces
witnesses for its answer only in those cases in which no refinement is needed. Some notion of witness to its answer
is, however, needed if the answer is that none of the players has a winning strategy. This is why we suggest to
consider non-losing strategies instead.

6.1. Using non-losing strategies to solve the game

Lemma 19. Let G be a 3-valued parity game. Player � has a non-losing strategy from v in G iff player �̄ does not
have a winning strategy from v in G.

The first direction of the lemma is quite clear as it is impossible that Player � has a non-losing strategy and at
the same time Player �̄ has a winning strategy. For the other direction, we use the following proposition that also
provides a construction of a non-losing strategy for Player �̄ in case Player � does not have a winning strategy.
Recall that in order to compute winning sets and strategies in a three valued parity game G we considered in
Section 5.3 the reduced (ordinary) games G0 and G1. We now note that the same approach can also be used
to compute non-losing strategies for the players. This is formalized by the following proposition, which is in a
sense the dual of proposition 16.

Proposition 20. Let G be a 3-valued parity game. Then Player � has a non-losing strategy from V ′ ⊆ V in G iff
she has a winning strategy from V ′ in G�̄. Moreover, a winning strategy for Player � from V ′ in G�̄ is in itself a
non-losing strategy for her in G.

We now return to the proof of Lemma 19.

Proof (Lemma 19). Proposition 20 states that Player � has a non-losing strategy from v inG iff she has a winning
strategy from v inG�̄ . By determinacy of ordinary parity games this happens iff Player �̄ does not have a winning
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a b

Fig. 6. Winning strategies of the reduced games of the parity game from Fig. 4.

strategy from v in G�̄ and by Proposition 16 this is iff Player �̄ does not have a winning strategy from v in G.
This concludes the proof of Lemma 19. �

Lemma 19 implies that a non-losing strategy for a player can be used as a witness to explain why the opponent
does not win. Moreover, unlike winning strategies, where it is possible that no player has one, the above lemma
implies that at least one player has a non-losing strategy, thus such an explanatory information always exists
(at least for one player). This is formalized in the following lemma.

Lemma 21. LetG be a 3-valued parity game and v a vertex in the game.At least one of the players has a non-losing
strategy from v in G.

Proof . Suppose none of the players has a non-losing strategy from v in G. According to Lemma 19 both players
would have to have a winning strategy in the game G which is clearly impossible. �
Lemma 21 holds the key for refinement: if we use an algorithm that computes non-losing strategies then we will
always have a witness.

Furthermore, Lemmas 19 and 21 also provide an alternative approach for solving the 3-valued game by
considering non-losing strategies rather than winning strategies, as they imply that for a 3-valued parity game:

(1) v ∈ W� iff only Player � has a non-losing strategy from v.
(2) v ∈ Wtie iff both players have non-losing strategies from v.

In particular, Proposition 20 used in the proof of Lemma 19 provides a way to compute non-losing strategies
using the reduction approach: to compute a strategy that is non-losing for Player � from V \ W�̄ inGwe compute
a strategy that is winning for Player � from V \W�̄ in the ordinary game G�̄ .

Thus, in comparison to the previous reduction approach (from Section 5.3), we use here the same reduced
ordinary parity games, but now in the reduced game G� , we are interested in a winning strategy of Player �̄
rather than of �. As stated earlier, this approach is particularly helpful when refinement is needed. Here, again
it might be necessary to invoke the solver of each ordinary parity game several times in case the resulting game
graph is not connected (see Remark 17).

Example 22. Let us reconsider the games shown in Fig. 5, where we are now interested in non-losing (rather
than winning) strategies of the players in the original game. In G0, Player 1 has a winning strategy from all the
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vertices except v08, which is shown in Fig. 6a by bold edges. This strategy constitutes a non-losing strategy for
him in the original game G from the same vertices. Similarly, Player 0 has a strategy to win every play in G1,
regardless of where the play starts (see Fig. 6b). Consequently, she also has a non-losing strategy from every
vertex in the original game G. We conclude that v08, for which only Player 0 has a non-losing strategy in G, is in
W0, whereas the rest of the vertices are in Wtie since both players have non-losing strategies from them. As can
be expected, this is consistent with Example 18, where winning strategies were considered.

6.2. Refinement with non-losing strategies

When using an algorithm that solves the 3-valued parity game by computing non-losing strategies, refinement
is needed in the case where both players have non-losing strategies from v = sa � ϕ (meaning that v ∈ Wtie).

As in most cases, our refinement consists of two parts. First, we choose a criterion that tells us how to split
the abstract states. We then construct the refined abstract model, using the refined abstract state space. In the
rest of this section, we refer to the first part.

Given that v ∈ Wtie , our goal in the refinement is to find and eliminate at least one of the causes of the indefinite
result. Thus, the criterion for splitting the abstract states is obtained from a failure vertex. Intuitively, this is a
vertex vf = s′a � ϕ′ such that (1) vf ∈ Wtie; (2) the classification of vf toWtie affects the indefinite result of v; and
(3) the indefinite classification of vf can be changed by splitting it. The latter requirement means that the vertex
vf itself is responsible for introducing (some) uncertainty. The other requirements demand that this uncertainty
is relevant to the result in v.

Recall that from each vertex in Wtie both players have non-losing strategies. They can be combined into one
strategy for each player. Thus, each player � ∈ {0, 1} has a strategy that is non-losing for him from each vertex
in V \W�̄ and in particular from Wtie . Let �0 and �1 be the corresponding strategies of Player 0 and Player 1,
respectively. These strategies can be computed using the reduction approach, as explained in Section 6.1.

We use the non-losing strategies �0 and �1 for the failure search. Our failure search basically follows the unique
play obtained by letting the players play against each other using their non-losing strategies until it identifies
a failure vertex v′ and a cause for the failure. More specifically, the failure search proceeds from one tie-vertex
(i.e., vertex in Wtie) to the next along this play, guided by the non-losing strategies: from v ∈ V� it proceeds to
��(v). This continues until one of three possibilities occurs:

(1) The search reaches a (dead-end) vertex in Vtie .
(2) The search reaches a vertex in W� for � ∈ {0, 1}.
(3) The search reaches a vertex that was already visited.

Note the following facts regarding the play:

• The play is uniquely determined by �0 and �1.
• The play is a tie, as it is non-losing for both players (conforms to a non-losing strategy of each of them).
• The play is a simple regular path if |G| = n < ∞ is finite, and one of the three possibilities occurs after at

most n steps in this play.

Now, in the first possibility v ∈ Vtie is considered a failure vertex, since changing its classification to V0 or V1
(by splitting it) would make one of the players closer to winning.

As for the second and third possibilities, in each of them there exists one player that is “closer” to winning the
play. In the second possibility this is Player �, for which the play reached a vertex in W� . In the third possibility
this is the player � that corresponds to the parity of the minimal priority that appears in the loop that results
from the two occurrences of the same vertex. Note that having identified a loop in the play means that the rest
of the play will be an infinite unwinding of the loop. Thus, the minimal priority that will occur infinitely often
in the play will be the minimal priority that appears on the loop, whose parity corresponds to �.

Having that Player � is “closer" to winning the play, and yet knowing that the play is a tie, implies that there
has to exist a genuine may-edge used by Player � in the prefix of the play (otherwise Player � would win). All
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of these genuine may-edges of player � are candidates to be considered a failure cause with their source vertex
being the failure vertex. This is because changing the may-edge into a must-edge (by splitting the source vertex)
would make Player � closer to winning and on the other hand removing the edge altogether would make Player
�̄ closer to winning. The choice of one failure vertex from this set of candidates is a matter of heuristics.

To sum up, given a partition of the vertices of G to (W0,W1,Wtie) and given non-losing strategies �0 and �1 for
Player 0 and 1 resp., the algorithm FindFailure(v) returns a failure vertex vf and cause for v ∈ Wtie .

Algorithm FindFailure (v)

(1) if v ∈ Vtie then return (v, tie);
(2) else if v ∈ W� then return choose(visited · v, �);
(3) else if v ∈ visited then return choose(visited · v, parity(visited , v));
(4) else // continue with the search

add v to visited ;
let � be such that v ∈ V� ;
let w := ��(v);
FindFailure(w);

where the function parity (sequence, v) returns 0 if the minimal priority that appears in the sequence starting
from the vertex v is even, and 1 if it is odd. The function choose (sequence, �) chooses a vertex from V� that
appears in the sequence and has a genuine may-edge to its successor in the sequence. It returns the chosen vertex
and the corresponding may-edge.

This concludes the description of how FindFailure looks for a failure vertex and cause. A simple case
analysis shows the following.

Theorem 23. Let vf be a vertex that is returned by FindFailure(v) as a failure vertex. The failure cause can

either be the fact that vf ∈ Vtie , or it can be a genuine may-edge (vf , v′) ∈ may−→ \ must−→.

Once we are given a failure vertex vf = s′a � ϕ′ and a corresponding reason for failure, we guide the refine-
ment to discard the cause for failure in the hope for changing the model checking result to a definite one. This
is done as in [5], where the failure information is used to determine how the set of concrete states represented
by s′a should be split in order to eliminate the failure cause. A criterion for splitting all abstract states can then
be found by known techniques, depending on the abstraction used (e.g., [24,25]).

After refinement, one has to re-run the model checking algorithm on the game graph based on the refined
KMTS to get a definite value for sc and ϕ. However, we can restrict this process to the previous Wtie . When
constructing the game graph based on the refined KMTS, every vertex s2a �  for which a vertex sa �  (where
s2a results from splitting sa) exists in W0 or W1 in the previous game graph can be considered a dead-end winning
for Player 0 or Player 1, respectively. This way we avoid unnecessary refinement.

Example 24. Reconsider the game shown in Fig. 4, where v00 ∈ Wtie (see Examples 18 and 22), and the non-los-
ing strategies of the players discussed in Example 22 (see Fig. 6). Following both non-losing strategies in G will
guide the play starting in v00 to vertex v18 through non-winning vertices for both players. Consequently, the
state underlying v18 should be refined, which is s1 (see Fig. 3).

Now, assume that v18 is a Player 0 vertex (for example after refinement). This means that v18 is now winning
for Player 1 in G. As before, Player 1 has a winning strategy in G0, and thus a non-losing strategy in G, by
forcing the play to v18. But also Player 0 can still win in G1, and thus not lose in G, by choosing in v02 the edge
leading to v03 (instead of the edge leading to v13). Now, the combined non-losing strategies would give a loop
v00v01v02v03v04v05v06v01, which asks for refining the may edge from v02 to v03.

This also demonstrates the importance, in terms of the refinement, of not limiting the computation of winning
strategies in the reduced graphs G0 and G1 to vertices that are reachable from the vertex of interest. Namely,
v03 is unreachable in G0 from v00. Yet, the non-losing strategy of Player 0 takes the play to v03. Thus, the infor-
mation about a non-losing strategy of Player 1 from v03 is essential in order to follow the tie play that guides
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the refinement. This information is only available provided that v03 was considered during the computation of
a winning strategy for Player 1 in G0.

7. Conclusion

In this work, we present a game-based model checking for abstract models with respect to specifications in
�-calculus, interpreted over a 3-valued semantics. We also suggest an automatic refinement, in case the model
checking result is indefinite.

In contrast to [6], model checking is determined by solving two model checking games for �-calculus with
respect to the 2-valued semantics. However, these games are based on the full board for the 3-valued game. This
is particularly important for refinement, for which the board for the 3-valued game holds more information
than the two boards of the 2-valued games.

The refinement is based on the novel notion of a non-losing strategy. In case the model checking result is
indefinite, both players have non-losing strategies. Combining these strategies of the two players comprises a
play, resulting with a tie. From this play, a failure node and a cause are derived and exploited for refinement.

A non-losing strategy for Player � can easily be extracted by computing a winning strategy for Player � on
the 2-valued game G�̄ . This can be done using any algorithm for solving 2-valued model checking games. Thus,
our approach can take advantage of efficient algorithms for this problem, such as Jurdzinski’s algorithm for
parity games [8].

Recently, there has been an active research on completeness and precision of abstractions for branching time
logics (e.g., [26–30]). Various abstract models which are more expressive than KMTSs were suggested. These
models add some kind of disjunctiveness to the model: for example, [28] introduces focus operations, and [27,
29] uses hyper-transitions (first introduced by [31]) to model the abstract transitions. Some of these models (e.g.,
[28,30]) also consider fairness conditions. While fairness requires different techniques (e.g., in order to deter-
mine how to refine the fairness conditions), disjunctiveness can be handled by the approach suggested in this
paper. This simply requires to define a 3-valued model checking game for such models (see for example [29] for
hyper-transitions) and to encode the game as a 3-valued parity game (e.g., [28,29] use 2-valued parity games).

Appendix.

A. History-dependent versus memoryless strategies

We obtained all results in this paper using only so-called memoryless strategies, for model-checking games
as well as for 3-valued and ordinary 2-valued parity games.

While in the setting of model-checking games and ordinary parity games the notion of history-dependent
strategies does not change results on existence of winning strategies, the same result is a priori not clear for
3-valued games. Although this result can be obtained as a generalization from the according result for ordinary
parity games [23], we prefer to give a simple proof based on [23] and the results of the previous sections.

A history-dependent strategy for Player � in the 3-valued parity game G = (A,�) is a function � : V ∗V� → V

such that for all w ∈ V ∗, v ∈ V� and v′ ∈ V : �(wv) = v′ implies that Player � can move from v to v′. It is called
memoryless if for all w,w′ ∈ V ∗, v ∈ V� : �(wv) = �(w′v). A play v0v1, . . . , is said to conform to � if for all k ∈ �,
s.t. vk ∈ V� : vk+1 = �(v0, . . . , vk).

Theorem 25. Player � has a (history dependent) winning, resp. non-losing strategy in a 3-valued parity game G iff
she has a memoryless winning, resp. non-losing strategy.

Proof . Let us first consider winning strategies. As a memoryless strategy is also a history-dependent one, the
implication from right to left is trivial.

Assume that Player � has a (history-dependent) winning strategy � : V ∗V� → V inG, which is not necessarily
a memoryless one. As every play conforming to � is winning for Player �, it is necessarily �-eager. In other words,
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for all k ∈ �, s.t. vk ∈ V� and vk+1 = �(v0, . . . , vk), there is a must-edge from vk to vk+1. Thus, � is a strategy for
G� . Now observe that every play in G� conforming to � is winning, meaning that � is a (history-dependent)
winning strategy for G� .

Thus, Player � has a winning strategy for G� . By [23], this implies that Player � has a memoryless winning
strategy for G� . Due to Proposition 16, this shows the existence of a memoryless winning strategy for Player �
in G.

Similarly, for non-losing strategies, the implication from right to left is trivial.
Assume that Player � has a history-dependent non-losing strategy � : V ∗V� → V inG, which is not necessarily

a memoryless one.
We show that � is a (history-dependent) winning strategy for Player � in G�̄ . By [23], this implies that Player

� has a memoryless winning strategy for G�̄ . Due to Proposition 20, this shows the existence of a memoryless
non-losing strategy for Player � in G.

As every play conforming to � is non-losing for Player �, it is either (1) winning for Player �, (2) ending in a
vertex from Vtie , or (3) not �̄-eager. This implies that every play of G�̄ conforming to � is either a play in G, in
which case it is one of (1) or (2) and thus winning for Player �, or, a finite play ending in a vertex of Player �̄ and
thus also winning for Player �. Hence, Player � has a winning strategy in G�̄ . �
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