
INFINITY 2004 Preliminary Version

Inference of Timed Transition Systems

Olga Grinchtein 1 Bengt Jonsson 2 Martin Leucker 3

IT Department

Uppsala University

Uppsala, Sweden

Abstract

We extend Angluin’s algorithm for on-line learning of regular languages to the
setting of timed transition systems. More specifically, we describe a procedure for
inferring systems that can be described by event-recording automata by asking a
sequence of membership queries (does the system accept a given timed word?) and
equivalence queries (is a hypothesized description equivalent to the correct one?).
In the inferred description, states are identified by sequences of symbols together
with timing information. The number of membership queries is polynomially in the
region graph and in the biggest constant of the automaton to learn.

Key words: model inference, model learning, timed systems

1 Introduction

Research during the last decades have developed powerful techniques for using
models of reactive systems in specification, automated verification (e.g., [9]),
test case generation (e.g., [12,25]), implementation (e.g., [17]), and validation
of reactive systems in telecommunication, embedded control, and related ap-
plication areas. Typically, such models are assumed to be developed a priori
during the specification and design phases of system development.

In practice, however, often no formal specification is available, or becomes
outdated as the system evolves over time. One must then infer a model that
describes the behavior of an existing system or implementation. In software
verification, techniques are being developed for generating abstract models
of software modules by static analysis of source code (e.g., [10,20]). However,
peripheral hardware components, library modules, or third-party software sys-
tems do not allow static analysis. In practice, such systems must be analyzed

1 Email: Olga.Grinchtein@it.uu.se
2 Email: Bengt.Jonsson@it.uu.se
3 Email: Martin.Leucker@it.uu.se
This author is supported by the European Research Training Network “Games”.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Grinchtein · Jonsson · Leucker

by observing their external behavior. In fact, techniques for constructing mod-
els by analysis of externally observable behavior (black-box techniques) can
be used in many situations.

• To create models of hardware components, library modules, that are part
of a larger system which, e.g., is to be formally verified or analyzed.

• For regression testing, a model of an earlier version of an implemented
system can be used to create a good test suite and test oracle for test-
ing subsequent versions. This has been demonstrated, e.g., by Hungar et
al. [16,21]).

• Black-box techniques, such as adaptive model checking [15], have been de-
veloped to check correctness properties, even when source code or formal
models are not available.

• Tools that analyze the source code statically depend heavily on the im-
plementation language used. Black-box techniques are easier to adapt to
modules written in different languages.

The inference of models from observations of system behavior can be seen
as a learning problem. For finite-state reactive systems, it means to construct
a (deterministic) finite automaton from the answers to a finite set of mem-
bership queries, each of which asks whether a certain word is accepted by the
automaton or not. There are several techniques (e.g., [4,13,22,24,5]) which use
essentially the same basic principles; they differ in how membership queries
may be chosen and in exactly how an automaton is constructed from the an-
swers. The techniques guarantee that a correct automaton will be constructed
if “enough” information is obtained. In order to check this, Angluin and oth-
ers also allow equivalence queries that ask whether a hypothesized automaton
accepts the correct language; such a query is answered either by yes or by a
counterexample on which the hypothesis and the correct language disagree.

In [14], we extended the learning algorithm of Angluin and others to the
setting of timed systems. We studied (a subclass of) event-recording automata
(ERAs). These are timed automata [2] that, for every action a, use a clock that
records the time of the last occurrence of a. Event-recording automata can be
determinized, and are sufficiently expressive to model many interesting timed
systems; for instance, they are as powerful as timed transition systems [18,3],
another popular model for timed systems.

For the approach presented in [14], however, we further restricted event-
recording automata to be event-deterministic in the sense that each state has
at most one outgoing transition per action (i.e., the automaton obtained by
removing the clock constraints is deterministic). Under this restriction, timing
constraints for the occurrence of an action depend only on the past sequence
of actions, and not on their relative timing.

The chosen approach was based on the idea to reuse the techniques of
learning regular systems instead of learning timed systems directly. Therefore,
we established a characterization of timed languages accepted by DERAs in

2

Grinchtein · Jonsson · Leucker

terms of regular word languages. Such a regular word language can be under-
stood as a symbolic representation of the timed language. As it is a regular
language, methods like Angluin’s algorithm can be used to estimate this sym-
bolic language, provided symbolic queries can be answered. To achieve this,
we described how symbolic words and timed words are related, and, more
important, how to learn a symbolic word by several queries of timed words.

In this paper, we extend our previous results to the full class of event-
recording automata (ERA). While we reuse the prosperous scheme developed
in [14], the details are different. We work out a characterization in terms of a
(symbolic) regular language for the language of ERAs. Furthermore, we show
that each symbolic word can be identified by a single timed word. Thus, one
query in Angluin’s algorithm relates to a single timed query.

We introduce the algorithm LSDERA for learning deterministic event-
recording automata. LSDERA learns a so-called simple deterministic event-
recording automaton. We show that every deterministic event-recording au-
tomaton can be transformed into a unique simple one with at most single expo-
nentially more locations. Our transformation is based on ideas used to derive
so-called region graphs. We show that the number of membership queries of
LSDERA is polynomial in the size of the biggest constant appearing in guards
and in the number n of locations of the simple deterministic event-recording
automaton. The number of equivalence queries is at most n.

Besides [14], we are not aware of any other work on learning of timed sys-
tems or timed languages. However, several papers are concerned with finding
a definition of timed languages which is suitable as a basis for learning. There
are several works that define determinizable classes of timed automata (e.g.,
[3,26]) and right-congruences of timed languages (e.g., [23,19,27]), motivated
by testing and verification.

The paper is structured as follows. After preliminaries in the next section,
we define event-recording automata (DERA) in Section 3, as well as, our
techniques for learning ERAs and their timing constraints. Section 5 gives a
short example.

2 Preliminaries

We write R
≥0 for the set of nonnegative real numbers, and N for the set of

natural numbers. Let Σ be a finite alphabet of size |Σ|. A timed word over Σ
is a finite sequence wt = (a1, t1)(a2, t2) . . . (an, tn) of symbols ai ∈ Σ that are
paired with nonnegative real numbers ti such that the sequence t1t2 . . . tn of
time-stamps is nondecreasing. We use λ to denote the empty word. A timed
language over Σ is a set of timed words over Σ.

An event-recording automaton contains for every symbol a ∈ Σ a clock xa,
called the event-recording clock of a. Intuitively, xa records the time elapsed
since the last occurrence of the symbol a. If there is no preceding occurrence
of a, then the value of clock xa is undefined, denoted by ⊥. We write CΣ for

3

Grinchtein · Jonsson · Leucker

the set {xa|a ∈ Σ} of event-recording clocks.

A clock valuation γ is a mapping from CΣ to R
≥0∪{⊥}. A clock constraint

is a conjunction of atomic constraints of the form x = ⊥, x ∼ n or x − y ∼ n

for x, y ∈ CΣ, ∼∈ {<,≤, >,≥}, and n ∈ N. We use γ |= ϕ to denote that the
clock valuation γ satisfies the clock constraint ϕ; we then use the convention
that ⊥ satisfies only clock constraint x = ⊥. A clock constraint is K-bounded
if it contains no constant larger than K. Sometimes, when convenient, we
identify all values greater than K and denote them by ∞. A clock constraint
ϕ identifies a |Σ|-dimensional polyhedron [[ϕ]] ⊆ (R≥0)|Σ| viz. the vectors of real
numbers satisfying the constraint. A clock guard is a clock constraint whose
conjuncts are only of the form x = ⊥ or x ∼ n (for x ∈ CΣ, ∼∈ {<,≤, >,≥}),
i.e., comparison between clocks is not permitted. The set of clock guards is
denoted by G. A clock guard g identifies a |Σ|-dimensional hypercube [[g]] ⊆
(R≥0)|Σ|. A simple clock guard is a clock constraint whose conjunctions are
only of the form x = ⊥, x = n, n < x < n + 1 or x > K (for x ∈ CΣ). A
region constraint is a clock constraint of the form

∧
x∈CΣ

c(x)∧
∧

x,y∈CΣ
d(x, y)

where c(x) is of the form x = n, n < x < n + 1, or x > K, and, d(x, y) is of
the form x − y = n or n < x − y < n + 1.

Clock constraints can efficiently and uniquely be represented using dif-
ference bound matrices (DBMs, [11]). Furthermore, DBMs allow efficient
operations on clock constraints like intersection, checking equality etc.

A clocked word wc is a sequence wc = (a1, γ1)(a2, γ2) . . . (an, γn) of sym-
bols ai ∈ Σ that are paired with event-clock valuations. Each timed word
wt = (a1, t1)(a2, t2) . . . (an, tn) can be naturally transformed into a clocked
word CW (wt) = (a1, γ1)(a2, γ2) . . . (an, γn) where for each i with 1 ≤ i ≤ n,

• γi(xa) = ⊥ if aj 6= a for 1 ≤ j < i,

• γi(xa) = ti − tj if there is a j with 1 ≤ j < i and aj = a, such that ak 6= a

for j < k < i.

A guarded word wg is a sequence wg = (a1, g1)(a2, g2) . . . (an, gn) of symbols
ai ∈ Σ that are paired with clock guards. We require that each gi may only
reference defined clocks, i.e., clocks xa such that a is among a1a2 . . . ai−1.
Note that we identify an empty conjunction with true. For a clocked word
wc = (a1, γ1)(a2, γ2) . . . (an, γn) we use wc |= wg to denote that γi |= gi for
1 ≤ i ≤ n. For a timed word wt we use wt |= wg to denote that CW (wt) |= wg.

ϕ ↑ is the condition ∃d.ϕ′, where d ranges over R
≥0 and where ϕ′ is obtained

from ϕ by replacing each clock y by y − d.

A guarded word wg = (a1, g1)(a2, g2) . . . (an, gn) is called a guard refinement
of a1a2 . . . an, and a1a2 . . . an is called the word underlying wg. The word w

underlying a timed word wt is defined in a similar manner.

For a guarded word wg, we introduce the strongest postcondition of wg,
denoted by sp(wg), as the constraint on clock values that are induced by
wg on any following occurrence of a symbol. Postcondition computation is
central in tools for symbolic verification of timed automata [8,6], and can be

4

Grinchtein · Jonsson · Leucker

done inductively as follows:

• sp(λ) = true,

• sp(wg(a, g)) = ((sp(wg) ∧ g)[xa 7→ 0]) ↑ if all clocks referenced in g are
defined by wg, otherwise sp(wg(a, g)) = false,

where for clock constraint ϕ and clock x,

• ϕ[x 7→ 0] is the condition x = 0 ∧ ∃x.ϕ,

• ϕ ↑ is the condition ∃d.ϕ′, where d ranges over R
≥0 and where ϕ′ is obtained

from ϕ by replacing each clock y by y − d.

A deterministic finite automaton (DFA) A = 〈Γ, L, l0, L
f , δ〉 over the al-

phabet Γ consists of states L, initial state l0, a set Lf ⊆ L of accepting states
and a partial transition function δ : L × Γ → L. A run of A over the word
w = a1a2 . . . an is a finite sequence l0

a1→ l1
a2→ · · ·

an−→ ln of states li ∈ L

such that l0 is the initial state and δ(li−1, ai) is defined for 1 ≤ i ≤ n, with
δ(li−1, ai) = li. In this case, we write δ(l0, w) = ln, thereby extending the
definition of δ in the natural way. The language L(A) comprises all words
a1a2 . . . an over which an accepting run exists, where a run is accepting iff
δ(l0, w) ∈ Lf .

3 Event-recording automata

Definition 3.1 An event-recording automaton (ERA) D = 〈Σ, L, l0, L
f , δ〉

consists of a finite input alphabet Σ, a finite set L of locations, an initial
location l0 ∈ L, a set Lf of accepting locations, a transition function δ :
L × Σ × G → L, which is a partial function that for each location, input
symbol and guard potentially prescribes a target location.

We call an ERA time-deterministic iff δ(l, a, g1) = l1 and δ(l, a, g2) =
l2 implies [[g1]] ∩ [[g2]] = ∅ or l1 = l2 Thus, while a location l might have two
different a successors, these can be distinguished by the guard.

Theorem 3.2 ([3]) Every ERA can be transformed into an equivalent time-
deterministic ERA.

Therefore we will concentrate on time-deterministic ERAs, or TDERAs
for short, in the following.

In order to define the language accepted by a TDERA, we first understand
it as a DFA.

Given a TDERA D = 〈Σ, L, l0, L
f , δ〉, we define dfa(D) to be the DFA

AD = 〈Γ, L, l0, L
f , δ′〉 over the alphabet Γ = Σ × G where δ′ : L × Γ → L is

defined by δ′(l, (a, g)) = δ(l, a, g) if and only if δ(l, a, g) is defined, otherwise
δ′(l, (a, g)) is undefined. Note that D and dfa(D) have the same number of
locations/states. Further, note that this mapping from TDERAs over Σ to
DFAs over Σ × G is injective, meaning that for each DFAs A over Σ × G,
there is a unique (up to isomorphism) ERA over Σ, denoted tdera(A), such

5

Grinchtein · Jonsson · Leucker

that dfa(tdera(A)) is isomorphic to A.

The language L(D) accepted by a TDERA D is defined to be the set of
timed words wt such that wt |= wg for some guarded word wg ∈ L(dfa(D)).
We call two TDERAs D1 and D2 equivalent iff L(D1) = L(D2), and denote
this by D1 ≡t D2, or just D1 ≡ D2. A TDERA is K-bounded if all its guards
are K-bounded.

Definition 3.3 A TDERA D is simple if for all guarded words wg(a, g) ∈
L(dfa(D)), we have that g is simple and g ∧ sp(wg) is satisfiable.

We remark that whether or not a TDERA is simple depends only on
L(dfa(D)). A consequence of this definition is the following.

Lemma 3.4 If wg(a, g) ∈ L(dfa(D)), where D is a simple TDERA, then
there is a timed word wt(a, t) ∈ L(D) such that wt(a, t) |= wg(a, g).

Proof. The claim follows easily from the definition of simple. 2

Every TDERA can be transformed into an equivalent TDERA that is
simple using the region-graph construction [1].

Lemma 3.5 For every TDERA there is an equivalent TDERA that is simple.

Proof. Let the TDERA D = 〈Σ, L, l0, L
f , δ〉 be K-bounded. We define an

equivalent simple TDERA D′ = 〈Σ, L′, l′0, L
f ′

, δ′〉 based on the so-called region
automaton for D. We sketch the construction, details can be found in [1,7].

The set of locations of D′ comprises pairs (l, ϕ) where l ∈ L and ϕ is a
K-bounded region constraint. However, (l, ϕ) has a slightly different interpre-
tation than in the region graph construction. It should be understood as D

is in location l and the time starts in some point given by ϕ. In other words,
we think of ϕ ↑ rather than of ϕ.

To turn the region graph into an automaton, we have to add a transition
function and final states. Intuitively, we proceed from (l, ϕ) to (l′, ϕ′) by an
action a and a simple guard g, if D can proceed from l to l′ by a, respecting
some constraint ĝ given in D. Then, ϕ′ is the region obtained by constraining
ϕ ↑ with g and resetting the clock for a. In other words, for every symbol
a and simple guard g, let δ′((l, ϕ), a, g) be defined as (l′, ϕ′) if there exists
a guard ĝ that implies g and for which δ(l, a, ĝ) is defined and is l′, and
ϕ′ = (ϕ ↑ ∧ g)[xa 7→ 0], and ϕ′ 6= false. Otherwise, it is undefined. The final
states are given by: (δ(l, a, g), ϕ′′) ∈ Lf ′

iff δ(l, a, g) ∈ Lf .

It is routine to show that the part of the automaton reachable from the
initial location (l0, true) is simple. 2

The important property of simple TDERAs is that equivalence coincides
with equivalence on the corresponding DFAs.

Definition 3.6 We call two simple TDERAs D1 and D2 dfa-equivalent, de-
noted by D1 ≡dfa D2, iff dfa(D1) and dfa(D2) accept the same language (in
the sense of DFAs).

6

Grinchtein · Jonsson · Leucker

Lemma 3.7 For two simple TDERAs D1 and D2, we have

D1 ≡t D2 iff D1 ≡dfa D2

Proof. The direction from right to left follows immediately, since L(Di) is
defined in terms of L(dfa(Di)). To prove the other direction, assume that
D1 6≡dfa D2. Then there is a shortest wg such that wg ∈ L(dfa(D1)) but
wg 6∈ L(dfa(D2)) (or the other way around). By Lemma 3.4 this implies
that there is a timed word wt such that wt ∈ L(D1) but wt 6∈ L(D2), i.e.,
D1 6≡t D2. 2

We can now prove the central property of simple TDERAs.

Theorem 3.8 For every TDERA there is a unique equivalent minimal simple
TDERA (up to isomorphism).

Proof. By Lemma 3.5, each TDERA D can be translated into an equivalent
TDERA D′ that is simple. Let Amin be the unique minimal DFA which
is equivalent to dfa(D′) (up to isomorphism). Since (as was remarked after
Definition 3.3) whether or not a TDERA is simple depends only on L(dfa(D)),
we have that Dmin = tdera(Amin) is simple. By Lemma 3.7, Dmin is the unique
minimal simple TDERA (up to isomorphism) such that Dmin ≡ D′, i.e., such
that Dmin ≡ D. 2

4 Learning event-recording automata

Learning a DFA

Angluin’s learning algorithm is designed for learning a regular (untimed)
language, L(A) ⊆ Γ∗, accepted by a minimal deterministic finite automaton
(DFA) A (when adapted to the case that L(A) is prefix-closed). In this
algorithm a so called Learner , who initially knows nothing about A, is trying
to learn L(A) by asking queries to a Teacher , who knows A. There are two
kinds of queries:

• A membership query consists in asking whether a string w ∈ Γ∗ is in L(A).

• An equivalence query consists in asking whether a hypothesized DFA H is
correct, i.e., whether L(H) = L(A). The Teacher will answer yes if H is
correct, or else supply a counterexample w, either in L(A) \ L(H) or in
L(H) \ L(A).

The Learner maintains a prefix-closed set U ⊆ Γ∗ of prefixes, which are can-
didates for identifying states, and a suffix-closed set V ⊆ Γ∗ of suffixes, which
are used to distinguish such states. The sets U and V are increased when
needed during the algorithm. The Learner makes membership queries for all
words in (U ∪UΓ)V , and organizes the results into a table T which maps each
u ∈ (U ∪UΓ) to a mapping T (u) : V 7→ {accepted, not accepted}. In [4], each
function T (u) is called a row. When T is closed (meaning that for each u ∈ U ,
a ∈ Γ there is a u′ ∈ U such that T (ua) = T (u′)) and consistent (meaning

7

Grinchtein · Jonsson · Leucker

0 1 2

a [xa = ⊥] a [xa = 0]

a [xa ≥ 1]

a [xa = 0]

Fig. 1. Automaton A1

that T (u) = T (u′) implies T (ua) = T (u′a)), then the Learner constructs a
hypothesized DFA H = 〈Γ, L, l0, δ〉, where L = {T (u) | u ∈ U} is the set of
distinct rows, l0 is the row T (λ), and δ is defined by δ(T (u), a) = T (ua), and
submits H in an equivalence query. If the answer is yes, the learning proce-
dure is completed, otherwise the returned counterexample is used to extend
U and V , and perform subsequent membership queries until arriving at a new
hypothesized DFA, etc.

For Angluin’s algorithm it is known that the number of membership queries
can be bounded by O(kn2m), where n is the number of states, k is the size of
the alphabet, and m is the length of the longest counterexample. The rough
idea is that for each entry in the table T a query is needed, and O(knm) is
the number of rows, n the number of columns.

Learning a TDERA

Given a timed language that is accepted by a TDERA D, we can assume
without loss of generality that D is the unique minimal and simple one that
exists due to Theorem 3.8. Then D is uniquely determined by its symbolic
language of A = dfa(D), which is a regular (word) language. Thus, we can
learn A using Angluin’s algorithm and return tdera(A). However, L(A) is a
language over simple guarded words, but the Teacher in the timed setting is
supposed to deal with timed words rather than guarded words.

Let us therefore extend the Learner in Angluin’s algorithm by an Assistant ,
whose role is to answer a membership query for a simple guarded word, posed
by the Learner , by asking a membership query for timed word to the (timed)
Teacher . Furthermore, it also has to answer equivalence queries, consulting
the timed Teacher .

For a simple guarded word w = (a1, g1) . . . (an, gn) each simple guard g

that extends w together with an action a defines exactly one region. Thus, if
w is accepted, it is enough to check a in a single point in this region defined by
g and the postcondition of w. In other words, it suffices to check an arbitrary
timed word wt |= w to check whether w is in the symbolic language or not.

The number of successor regions that one region can have is O(|Σ|K).
Then the complexity of the algorithm is O(|Σ|2n2mK).

8

Grinchtein · Jonsson · Leucker

T1 λ

λ 1

a(xa = ⊥) 0

(a)

T2 λ

λ 1

(a, xa = ⊥) 0

(a, xa = ⊥)(a, xa = 0) 1

(a, xa = ⊥)(a, 0 < xa < 1) 0

(a, xa = ⊥)(a, xa = 1) 1

(a, xa = ⊥)(a, xa > 1) 1

(b)

Table 1

0 1

a [xa = ⊥]

a [xa = 0]

a [xa = 1]

a [xa > 1]
a [0 < xa < 1]

Fig. 2. Atomaton A2

5 Example

Let us explain the algorithm by showing how to learn the language of the
automaton A1 depicted in Figure 1. Initially, the algorithm asks membership
queries for λ and (a, xa = ⊥). This yields the initial observation table T1

shown in Table 1(a). 4 It is consistent but not closed, since row((a, xa = ⊥))
is distinct from row(λ). Following Angluin’s algorithm, we can construct
a closed and consistent table T2 shown in Table 1(b). Then the Learner
constructs a hypothesized TDERA A2 shown in Figure 2 and submits A2 in
an equivalence query. Assume that the counterexample (a, xa = ⊥)(a, xa =
0)(a, xa = 0)(a, xa = 0) is returned. It is accepted by A1 but rejected by
A2. The algorithm processes the counterexample and finally produces the
observation table T3 given in Table 2. The automaton A3 visualized in Figure 3
corresponds to the observation table T3 and accepts the same language as A1.

6 Conclusion

In this paper, we presented a technique for learning timed transitions sys-
tems based on their representation as event-recording automata (ERA). We
show that the timed language of every ERA can uniquely be represented by
a regular language of guarded words, using ideas of the so-called region graph

4 0 represents non-accepting while 1 represents accepting.

9

Grinchtein · Jonsson · Leucker

T3 λ wg

λ 1 0

(a, xa = ⊥) 0 0

(a, xa = ⊥)(a, xa = 0) 1 1

(a, xa = ⊥)(a, xa = 0)(a, xa = 0) 0 0

(a, xa = ⊥)(a, xa = 0)(a, xa = 0)(a, xa = 0) 1 1

(a, xa = ⊥)(a, 0 < xa < 1) 0 0

(a, xa = ⊥)(a, xa = 1) 1 0

(a, xa = ⊥)(a, xa > 1) 1 0

(a, xa = ⊥)(a, xa = 0)(a, 0 < xa < 1) 0 0

(a, xa = ⊥)(a, xa = 0)(a, xa = 1) 0 0

(a, xa = ⊥)(a, xa = 0)(a, xa > 1) 0 0

(a, xa = ⊥)(a, xa = 0)(a, xa = 0)(a, xa = 0) 0 0

(a, xa = ⊥)(a, xa = 0)(a, xa = 0)(a, 0 < xa < 1) 0 0

(a, xa = ⊥)(a, xa = 0)(a, xa = 0)(a, xa = 1) 0 0

(a, xa = ⊥)(a, xa = 0)(a, xa = 0)(a, xa > 1) 0 0

(a, xa = ⊥)(a, xa = 0)(a, xa = 0)(a, xa = 0)(a, xa = 0) 0 0

(a, xa = ⊥)(a, xa = 0)(a, xa = 0)(a, xa = 0)(a, 0 < xa < 1) 0 0

(a, xa = ⊥)(a, xa = 0)(a, xa = 0)(a, xa = 0)(a, xa = 1) 0 0

(a, xa = ⊥)(a, xa = 0)(a, xa = 0)(a, xa = 0)(a, xa > 1) 0 0

Table 2
wg = (a, xa = 0)(a, xa = 0)

0 1 2

a [xa = ⊥]

a [0 < xa < 1]

a [xa = 1]

a [xa > 1] a [xa = 0]

a [xa = 0]

a [xa = 1]

a [0 < xa < 1]

a [xa > 1]

Fig. 3. Automaton A3

construction. This allows us to adapt existing algorithms for learning regu-
lar languages to the timed setting. The main additional work is to learn the
guards under which individual actions will be accepted.

The complexity of our learning algorithm is polynomial in the size of the
region graph. In general, this can be exponentially larger than a minimal
deterministic ERA automaton representing the same language. It would in-
teresting to establish lower bounds of the learning problem for timed systems.

10

Grinchtein · Jonsson · Leucker

References

[1] R. Alur. Timed automata. In Proc. 11th International Computer Aided

Verification Conference, volume 1633 of Lecture Notes in Computer Science,
pages 8–22. Springer-Verlag, 1999.

[2] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer

Science, 126:183–235, 1994.

[3] R. Alur, L. Fix, and T. Henzinger. Event-clock automata: A determinizable
class of timed automata. Theoretical Computer Science, 211:253–273, 1999.

[4] D. Angluin. Learning regular sets from queries and counterexamples.
Information and Computation, 75:87–106, 1987.

[5] J. L. Balcázar, J. Dı́az, and R. Gavaldá. Algorithms for learning finite automata
from queries: A unified view. In Advances in Algorithms, Languages, and

Complexity, pages 53–72. Kluwer, 1997.

[6] J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson, and W. Yi. UPPAAL:
a tool suite for the automatic verification of real-time systems. In R. Alur,
T. A. Henzinger, and E. D. Sontag, editors, Hybrid Systems III, volume 1066
of Lecture Notes in Computer Science, pages 232–243. Springer-Verlag, 1996.

[7] P. Bouyer. Untameable timed automata. In H. Alt and M. Habib, editors,
Symp. on Theoretical Aspects of Computer Science, volume 2607 of Lecture

Notes in Computer Science, pages 620–631. Springer Verlag, 2003.

[8] M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine. Kronos:
A model-checking tool for real-time systems. In A. J. Hu and M. Y. Vardi,
editors, Proc. 10th International Conference on Computer Aided Verification,

Vancouver, Canada, volume 1427 of Lecture Notes in Computer Science, pages
546–550. Springer-Verlag, 1998.

[9] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, Dec. 1999.

[10] J. Corbett, M. Dwyer, J. Hatcliff, S. Laubach, C. Pasareanu, Robby, and
H. Zheng. Bandera : Extracting finite-state models from java source code.
In Proc. 22nd Int. Conf. on Software Engineering, June 2000.

[11] D. Dill. Timing assumptions and verification of finite-state concurrent systems.
In J. Sifakis, editor, Automatic Verification Methods for Finite-State Systems,
volume 407 of Lecture Notes in Computer Science. Springer Verlag, 1989.

[12] J.-C. Fernandez, C. Jard, T. Jéron, and C. Viho. An experiment in automatic
generation of test suites for protocols with verification technology. Science of

Computer Programming, 29, 1997.

[13] E. M. Gold. Language identification in the limit. Information and Control,
10:447–474, 1967.

11

Grinchtein · Jonsson · Leucker

[14] O. Grinchtein, B. Jonsson, and M. Leucker. Learning of event-recording
automata. In Proceedings of the Joint Conferences FORMATS and FTRTFT,
Lecture Notes in Computer Science, Sept. 2004. to appear

[15] A. Groce, D. Peled, and M. Yannakakis. Adaptive model checking. In J.-
P. Katoen and P. Stevens, editors, Proc. TACAS ’02, 8th Int. Conf. on Tools

and Algorithms for the Construction and Analysis of Systems, volume 2280 of
Lecture Notes in Computer Science, pages 357–370. Springer Verlag, 2002.

[16] A. Hagerer, H. Hungar, O. Niese, and B. Steffen. Model generation by
moderated regular extrapolation. In R.-D. Kutsche and H. Weber, editors, Proc.

FASE ’02, 5th Int. Conf. on Fundamental Approaches to Software Engineering,
volume 2306 of Lecture Notes in Computer Science, pages 80–95. Springer
Verlag, 2002.

[17] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, A. Shtull-
Trauring, and M. Trakhtenbrot. STATEMATE: A working environment for
the development of complex reactive systems. IEEE Trans. on Software

Engineering, 16(4):403–414, April 1990.

[18] T. Henzinger, Z. Manna, and A. Pnueli. Temporal proof methodologies for
timed transition systems. Information and Computation, 112:173–337, 1994.

[19] T. Henzinger, J.-F. Raskin, and P.-Y. Schobbens. The regular real-time
languages. In K. Larsen, S. Skuym, and G. Winskel, editors, Proc. ICALP

’98, 25th International Colloquium on Automata, Lnaguages, and Programming,
volume 1443 of Lecture Notes in Computer Science, pages 580–591. Springer
Verlag, 1998.

[20] G. Holzmann. Logic verification of ANSI-C code with SPIN. In K. Havelund,
J. Penix, and W. Visser, editors, SPIN Model Checking and Software

Verification: Proc. 7th Int. SPIN Workshop, volume 1885 of Lecture Notes in

Computer Science, pages 131–147, Stanford, CA, 2000. Springer Verlag.

[21] H. Hungar, O. Niese, and B. Steffen. Domain-specific optimization in automata
learning. In Proc. 15th Int. Conf. on Computer Aided Verification, 2003.

[22] M. Kearns and U. Vazirani. An Introduction to Computational Learning

Theory. MIT Press, 1994.

[23] O. Maler and A. Pnueli. On recognizable timed languages. In Proc.

FOSSACS04, Conf. on Foundations of Software Science and Computation

Structures, Lecture Notes in Computer Science. Springer-Verlag, 2004.
Available from http://www-verimag.imag.fr/PEOPLE/Oded.Maler/.

[24] R. Rivest and R. Schapire. Inference of finite automata using homing sequences.
Information and Computation, 103:299–347, 1993.

[25] M. Schmitt, M. Ebner, and J. Grabowski. Test generation with autolink and
testcomposer. In Proc. 2nd Workshop of the SDL Forum Society on SDL and

MSC - SAM’2000, June 2000.

12

Grinchtein · Jonsson · Leucker

[26] J. Springintveld and F. Vaandrager. Minimizable timed automata. In
B. Jonsson and J. Parrow, editors, Proc. FTRTFT’96, Formal Techniques

in Real-Time and Fault-Tolerant Systems, Uppsala, Sweden, volume 1135 of
Lecture Notes in Computer Science, pages 130–147. Springer Verlag, 1996.

[27] T. Wilke. Specifying timed state sequences in powerful decidable logics
and timed automata. In H. Langmaack, W. P. de Roever, and J. Vytopil,
editors, Proc. FTRTFT’94, Formal Techniques in Real-Time and Fault-Tolerant

Systems, Lübeck, Germany, volume 863 of Lecture Notes in Computer Science,
pages 694–715. Springer Verlag, 1994.

13

	Introduction
	Preliminaries
	Event-recording automata
	Learning event-recording automata
	Example
	Conclusion
	References

