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Abstract

In this paper we summarize parallel algorithms for enu-
merative model checking of properties formulated in linear
time temporal logic (LTL) as well as a fragment of theµ-
calculus which naturally subsumes the branching time logic
CTL (computation tree logic). We also indicate how to pro-
vide parallel model checking applications as services for
integrated modelling, analysis, and verification using the
FMICS-jETI platform.

1 Introduction

Conventional model checking techniques have high
memory requirements and are very computationally inten-
sive; they are thus unsuitable for handling real-world sys-
tems that exhibit complex behaviors which cannot be cap-
tured by simple models having a small or regular state
space. Various authors have proposed ways of solving this
problem by either using powerful shared-memory multi-
processors (e.g. multi-core machines) or by distributing the
memory requirements over several machines (e.g. on a clus-
ter of workstations).

The work on parallel verification is quite extensive,
growing in recent years. There are attempts to consider
both the symbolic as well as the enumerative techniques,
theorem-provers as well as sat-solvers, etc. In this paper we
focus on enumerative model-checking of temporal proper-
ties. More specifically, we summarize model checking of
properties formulated in linear time temporal logic (LTL)
as well as a fragment of theµ-calculus which naturally
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subsumes the branching time logic CTL (computation tree
logic).

The model-checking problem can always be represented
as a problem on a directed graph. We suppose the graph is
given implicitly by the functionFinit returning the initial
state and the functionFsucc returning the set of immedi-
ate successors of a given state. This representation allows
solving the problem in the “on-the-fly” manner, hence it is
often possible to get the answer to the verification problem
without actually explicitly generating the entire state space
(graph). This is in particular useful in attacking large scale
systems.

Model checking traditionally terms the task of verifying
an implementation, typically given in terms of a finite-state
system, with respect to its specification, typically given as
a temporal formula. However, model checking could and
probably should also be considered as a flexible analysis
tool—as long as the object to analyze is representable as
a finite-state system and the analysis can be formulated in
a suitable temporal logic. In consequence, model checkers
are at the heart of many modelling and analysis tools and
will be in the future. It is therefore important to offer easy
means for integrating model checkers into other tools.

On a different line, powerful parallel computers are
only available at dedicated locations. Nevertheless, paral-
lel model checking applications or the tools built on top
of model checkers should be easily usable as conventional
desktop applications. Therefore, it is desirable to provide
parallel model checking applications as services for direct
use and simple integration to customized modelling, analy-
sis, and verification tools.

jETI is a framework that offers such integration capabil-
ities and we discuss how to offer parallel model checking
applications with jETI in mind.



2 Parallel Reachability Analysis

The basic verification technique is reachability. Reach-
ability is also more amenable for parallelization than the
other verification problems and most of the pioneering work
in parallel model-checking has been focused on algorithms
for verification of safety properties. At the heart of reach-
ability analysis as well as model-checking in general is the
state space generation.

Parallel state space generation has been initially studied
in the context of Petri nets, stochastic Petri nets, discrete-
time and continuous-time Markov chains [32, 19, 38].
Later on, distributed state space exploration algorithms
for SPIN [42], Muprhi [53], CADP [30], UPPAAL [6],
DIV INE [4], and other tools have been suggested as well.
Algorithms for distributed-memory architecture became
dominant, primarily due to the easy access of networks of
workstations.

All these approaches share a common idea: each ma-
chine in the network explores a subset of the state space.
The subset is defined using thepartition function. The func-
tion Partition(s,N)returns the identifier of the machine to
which the states is assigned, an integer between 0 and N-1.
Assuming we have N machines, this function partitions the
state space into N classesSi, one assigned to each machine.

The Algorithm 1([18]) gives the overall idea of the dis-
tributed state space generation. The algorithm is supposed
to be run on the machinei and the same algorithm is per-
formed on each other machine involved in the distributed
computation. The data structureSi

new maintains already
generated but not yet processed states. The meaning of
other functions and structures is obvious.

The individual algorithms mentioned above differ in a
number of design principles and implementation choices
such as: the use of internal structures for storing the states
(e.g. hash tables or B-trees), the way of partitioning the state
space using either static hash functions or dynamic ones that
allow dynamic load balancing, etc. Experimental evalua-
tions demonstrate good scalability and speedups obtained
are close to linear. Moreover, adaptation to shared-memory
architectures does not bring any additional complications
and e.g. the SPIN model checker is already expected to
provide support for model-checking of safety properties on
multi-core machines from its version 4.3.

3 Parallel LTL Model Checking

The automata-theoretic approach to model checking
finite-state systems against linear-time temporal logic (LTL)
uses automata on infinite words to represent both the sys-
tem and the property to be checked. Both automata are syn-
chronized and the emptiness check for the resulting automa-
ton is performed. The emptiness check problem essentially

Algorithm 1 (Distributed State Space Generation)

1: if Partition(Initial,N)=ithen
2: Si := {Initial}
3: else
4: Si := ∅
5: end if
6: Si

new := Si

7: while not received terminationdo
8: while ∃s ∈ Si

new do
9: Si

new := Si
new\{s}

10: for each u ∈ Fsuccs(s) do
11: j := Partition(u,N)
12: if i 6= j then
13: SendState(j, u)
14: else
15: if u /∈ Si then
16: Si

new := Si
new ∪ {u}

17: Si := Si ∪ {u}
18: end if
19: end if
20: end for
21: end while
22: Si

rec := ReceiveStates\Si

23: Si := Si ∪ Si
rec

24: Si
new := Si

new ∪ Si
rec

25: end while

breaks down to finding reachable accepting cycles in a di-
rected graphG with A as the subset of accepting vertices.

The optimal sequential algorithms for accepting cycle
detection use depth-first search strategies to detect accept-
ing cycles. The individual algorithms differ in their space
requirements, length of the counter example produced, and
other aspects. For a recent survey we refer to [54]. The
well-knownNested DFSalgorithm is used in many model
checkers and is considered to be the best suitable algorithm
for enumerative sequential LTL model checking. The al-
gorithm was proposed by Courcoubetis et al. [22] and its
main idea is to use two interleaved searches to detect reach-
able accepting cycles. The first search discovers accepting
states while the second one, the nested one, checks for self-
reachability. Several modifications of the algorithm have
been suggested to remedy some of its disadvantages [31].
The time complexity of the algorithm is linear in the size of
the graph, i.e.O(m + n), wherem is the number of edges
andn is the number of vertices.

The effectiveness of the algorithmNested DFSis
achieved due to the particular order in which the graph is ex-
plored and which guarantees that vertices are not re-visited
more than twice. In fact, all the best-known algorithms rely
on the same exploring principle, namely on thepostorderas



computed by the DFS. It is a well-known fact that the pos-
torder problem is P-complete and, consequently, any paral-
lel algorithm which would be directly based on DFS pos-
torder is unlikely to be efficiently parallelized.

In [34, 35] G. Holzmann and D. Bošnački proposed an
adaptation of the Nested DFS algorithm for dual-core ma-
chines. The idea is to utilize the independence of the first
and the nested search in the Nested DFS algorithm. The al-
gorithm keeps its linear time complexity. On the downside,
the algorithm is unable to scale to more than two cores. It is
still an open problem to do scalable verification of general
liveness properties on N-cores with linear time complexity.

Efficient parallel solution of many problems often re-
quires approaches radically different from those used to
solve the same problems sequentially. It seems, that it is ex-
tremely difficult to ground parallel LTL model checker on
extending the Nested DFS algorithm or any other postorder
based algorithm. As we have seen in the previous section,
the reachability analysis is a verification problem with effi-
cient parallel solutions. The reason is that the exploration
of the state space does not rely on any specific order, the
vertices can be visited independently and in any order. The
exploration can thus be implemented e.g. using breadth-first
search. This gives hope to find good practical solutions for
LTL model checking that, though not theoretically optimal,
will scale well.

In the following, we overview several other parallel al-
gorithms for enumerative LTL model checking that are all,
more or less, based on performing repeated parallel reacha-
bility to detect accepting cycles. These algorithms have the
potential to scale well, there time complexity is however in-
creased in the general case. The reader is kindly asked to
consult the original sources for the details of the presented
algorithms.

Algorithm 2 (MAP)

1: while A 6= ∅ do
2: computeMap /* max. accepting predecessors*/

3: if (∃u ∈ A : map(u) = u) then
4: return cycle
5: else
6: G := delacc(G) /* unmark acc. predeces-

sors*/
7: end if
8: end while
9: return no cycle

The driving idea of theMaximal Accepting Predeces-
sor Algorithm (MAP) [11, 12] is based on the fact that ev-
ery accepting vertex lying on an accepting cycle is its own
predecessor. An algorithm that is directly derived from this

idea, would require expensive computation as well as space
to store all proper accepting predecessors of all (accepting)
vertices. To remedy this obstacle, the MAP algorithm stores
only a single representative of all proper accepting prede-
cessor for every vertex.

The representative is chosen as themaximal accepting
predecessoraccordingly to a presupposed linear ordering
≺ of vertices (given e.g. by their memory representation).
Clearly, if an accepting vertex is its own maximal accepting
predecessor, it lies on an accepting cycle. Unfortunately,it
can happen that all the maximal accepting predecessor lie
outside of accepting cycles.

Such vertexes can be safely deleted from the set of ac-
cepting vertexes (by applying thedeleting transformation
delacc(G)) and the accepting cycle still remains in the re-
sulting graph. Whenever the deleting transformation is ap-
plied to the graph it shrinks the set of accepting vertices by
those vertices that do not lie on any cycle.

As the set of accepting vertices can change after the
deleting transformation has been applied, maximal accept-
ing predecessors must be recomputed. It can happen that
even in the graphdelacc(G) the maximal accepting pre-
decessor function is still not sufficient for cycle detection.
However, after a finite number of applications of the delet-
ing transformation an accepting cycle is certified. For a
graph without accepting cycles the repetitive applicationof
the deleting transformation results in a graph with an empty
set of accepting vertices.

Time complexity of the algorithm isO(a2 ·m), wherea
is the number of accepting vertices. Here the factora · m
comes from the computation of theMap function and the
factora relates to the number of iterations.

One of the key aspects influencing the overall perfor-
mance of the algorithm is the underlying ordering of ver-
tices used by the algorithm. In order to optimize the com-
plexity one aims to decrease the number of iterations by
choosing an appropriate vertex ordering. Ordering≺ is op-
timal if the presence of an accepting cycle can be decided
in one iteration. It can be easily shown that for every (au-
tomaton) graph there is an optimal ordering. Moreover, an
optimal ordering can be computed in linear time.

An example of an optimal ordering is the depth-first
search postorder. Unfortunately, theoptimal ordering prob-
lem, which is to decide for a given graph and two accept-
ing verticesu, v whetheru precedesv in every optimal
ordering of graph vertices, is P-complete [11], hence un-
likely to be computed effectively in a distributed environ-
ment. Therefore, several heuristics for computing a suitable
vertex ordering are used. The trivial one orders vertices
lexicographically according to their bit-vector representa-
tions. The more sophisticated heuristics relate vertices with
respect to the order in which they were traversed. How-
ever, experimental evaluation has shown that none of the



heuristics significantly outperforms the others. On average,
the most reliable heuristic is the one based on breadth-first
search order followed by the one based on (random) hash-
ing.

Algorithm 3 (OWCTY)

1: while not finisheddo
2: computeReachability /* remove vertices which

are not reachable from accepting vertices*/
3: computeElimination /* remove vertices which

are not contained in any cycle (have in-degree 0)*/
4: end while

The inspiration for the next parallel algorithm for detec-
tion of accepting cycles is taken from symbolic algorithms
for cycle detection, namely from SCC hull algorithms. SCC
hull algorithms compute the set of vertices containing all ac-
cepting components. The algorithms maintain the approx-
imation of the set and successively remove non-accepting
components until they reach a fixpoint. Different strategies
to remove non-accepting components lead to different algo-
rithms. An overview, taxonomy, and comparison of sym-
bolic algorithms can be found in independent reports [29]
and [49].

The presented algorithm [15] is an adaptation of theOne
Way Catch Them Young Algorithm (OWCTY) [29] to
the enumerative setting. The enumerative algorithm works
on individual vertices rather than on sets of vertices as is
the case in symbolic approach. A component is removed
by removing its vertices. The idea of the algorithm is to
repeatedly remove vertices from the graph that cannot lie on
any accepting cycle. The two removal rules are as follows:

• if a vertex is not reachable from any accepting vertex
then the vertex does not belong to any accepting com-
ponent and

• if a vertex has in-degree zero then the vertex does not
belong to any accepting component.

Note that an alternative set of rules can be formulated as

• if no accepting vertex is reachable from a vertex then
the vertex does not belong to any accepting component
and

• if a vertex has out-degree zero then the vertex does not
belong to any accepting component.

This second set of rules results in an algorithm which works
in abackwardmanner and we will not describe it explicitly
here.

The algorithm performs removal steps as far as there are
vertices to be removed. In the end, either there are some ver-
tices left in the graph meaning that the original graph con-
tains an accepting cycle, or all vertices have been removed

meaning that the were no accepting cycles in the original
graph.

The presented algorithm requires the entire automaton
graph to be generated first. Moreover, the backward version
actually needs to store the edges to be able to perform back-
ward reachability. This is however payed out by relaxing
the necessity to compute successors, which is in fact a very
expensive operation in practice.

Time complexity of the algorithm isO(h · m) whereh
is the height of the SCC quotient graph. Here the factor
m comes from the computation ofReachabilityandElim-
ination functions and the factorh relates to the number of
external iterations. In practice, the number of external itera-
tions is very small even for large graphs. This observation is
supported by experiments in [29] with the symbolic imple-
mentation and hardware circuits problems. Similar results
are communicated in [47] where heights of quotient graphs
were measured for several models. As reported, 70% of the
models has height smaller than 50.

A positive aspect of the algorithm is its effectiveness for
weak automaton graphs. A graph is weak if each SCC com-
ponent ofG is either fully contained inA or is disjoint with
A. For weak graphs one iteration of the algorithm is suffi-
cient to decide existence of accepting cycles. The studies of
temporal properties [24, 16] reveal that verification of up to
90% of LTL properties leads to weak automaton graphs.

The algorithm can be effortlessly extended to automaton
graphs for other types of nondeterministic word automata
like generalized Büchi automata and Streett automata.

Algorithm 4 (BLEDGE)

1: for each level = 0 to . . .do
2: L= all current BL edges
3: for (s, t) ∈ L do in parallel
4: test cycle(s,t,| L |)
5: end for
6: end for

1: Proc test cycle
2: propagates
3: if s propagated to itselfthen
4: return cycle
5: else if current BL passed>| L | then
6: return cycle
7: end if

An edge(u, v) is called aback-level edgeif it does not
increase the distance of the target vertexv form the initial
vertex of the graph. The key observation connecting the cy-
cle detection problem with the back-level edge concept, as
used in theBack-Level Edges Algorithm (BLEDGE) [2],
is that every cycle contains at least one back-level edge.



Back-level edges are, therefore, used as triggers to start a
procedure that checks whether an edge is a part of an ac-
cepting cycle. However, this is too expensive to be done
completely for every back-level edge. Therefore, several
improvements and heuristics have been suggested and inte-
grated within the algorithm to decrease the number of tested
edges and speed-up the cycle test.

The BFS procedure which detects back-level edges runs
in timeO(m + n). In the worst case, each back-level edge
has to be checked to be a part of a cycle, which requires
linear timeO(m+n) as well. Since there is at mostm back-
level edges, the overall time complexity of the algorithm is
O(m.(m + n)).

The algorithm performs well on graphs with small num-
ber of back-level edges. In such cases the performance of
the algorithm approaches the performance of reachability
analysis, although, the algorithm performs full LTL model
checking. On the other hand, a drawback shows up when
a graph contains many back-level edges. In such a case,
frequent re-visiting of vertices in the second phase of the
algorithm causes the time of the computation to be high.

The level-synchronized BFS approach also allows to
involve BFS-based Partial Order Reduction (POR) tech-
nique [20] in the computation. POR technique prevents
some vertices of the graph from being generated while pre-
serving result of the verification. Therefore, it allows anal-
ysis of even larger systems. The standard DFS-based POR
technique strongly relies on DFS stack and as such it is in-
applicable to cluster-based environment [14].

Algorithm 5 (NEGC)

1: while not finisheddo
2: Scan vertices
3: if successor vertex is acceptingthen
4: run walk to root (WTR)
5: if WTR reaches initial vertexthen
6: continue
7: else
8: return cycle
9: end if

10: end if
11: end while

Considermaximal numberof accepting vertices on a
path from the vertex to a vertex, where the maximum is
being taken over all such paths. For vertices on an accept-
ing cycle the maximum does not exist because extending
a path along the cycle adds at least one accepting vertex.
This opens an idea to detect accepting cycles via maximal
numbers of accepting predecessors.

For computing the maximal number of accepting prede-
cessors the algorithm maintains for every vertexv its (cur-

rent) maximumd(v) giving the maximal number of (so far
discovered) accepting predecessors, parent vertexp(v), and
statusS(v) ∈ {unreached , labeled , scanned}. Initially,
d(v) = ∞, p(v) = nil , andS(v) = unreached for every
vertexv. The method starts by settingd(s) = 0, p(s) = nil

andS(s) = labeled , wheres is the initial vertex. At every
step alabeledvertex is selected and scanned. When scan-
ning a vertexu, all its outgoing edges arerelaxed(imme-
diate successors are checked). Relaxation of an edge(u, v)
means that ifd(v) is an accepting vertex thend(v) is set to
d(u) + 1 andp(v) is set tou. The status ofu is changed
to scannedwhile the status ofv is changed tolabeled. If
all vertices are eitherscannedor unreachedthen d gives
the maximal number of accepting predecessors. Moreover,
theparent graphGp is the graph of these “maximal” paths.
More precisely, the parent graph is a subgraphGp of G in-
duced by edges(p(v), v) for all v such thatp(v) 6= nil .

Different strategies for selecting a labeled vertex to be
scanned lead to different algorithms. When using FIFO
strategy to select vertices, the algorithm runs inO(m · n)
time in the worst case. For graphs with reachable accepting
cycles there is no “maximal” path to the vertices on an ac-
cepting cycle and the scanning method must be modified to
recognize such cycles. The algorithm employs thewalk to
root strategy which traverses theparent graph. The walk to
root strategy is based on the fact (see e.g. [17]) that a cycle
in the parent graphGp corresponds to an accepting cycle in
the original graph and vice-versa.

The walk to root method tests whetherGp is acyclic.
Suppose the parent graphGp is acyclic and an edge(u, v)
is relaxed, i.e.d(v) is decreased. This operation creates a
cycle inGp if and only if v is an ancestor ofu in the current
Gp. Before applying the operation, we follow the parent
pointers fromu until we reach eitherv or s. If we stop at
v a cycle is detected. Otherwise, the relaxation does not
create a cycle. However, since the path to the initial ver-
tex can be long, the cost of edge relaxation becomesO(n)
instead ofO(1). In order to optimize the overall compu-
tational complexity, amortization is used to pay the cost of
checkingGp for cycles. More precisely, the parent graph
Gp is tested only after the underlying scanning algorithm
performsΩ(n) relaxations. The running time is thus in-
creased only by a constant factor. The worst case time com-
plexity of the algorithm is thusO(n · m).

All the algorithms allow for an efficient implementation on
a parallel architecture. The implementation is based on par-
titioning the graph (its vertices) into disjoint parts. Suitable
partitioning is important to benefit from parallelization.

One particular technique, that is specific to automata
based LTL model checking, iscycle locality preserving
problem decomposition [3, 41]. The graph (product au-
tomaton) originates from synchronous product of the prop-



erty and system automata. Hence, vertices of product au-
tomaton graph are ordered pairs. An interesting observation
is that every cycle in the product automaton graph emerges
from cycles in the system and the property graphs. LetA, B
be Büchi automata andA ⊗ B their synchronous product.
If C is a strongly connected component in the automaton
graph ofA ⊗ B, thenA-projection ofC andB-projection
of C are (not necessarily maximal) strongly connected com-
ponents in automaton graphs ofA andB, respectively.

As the property automaton origins from the LTL for-
mula to be verified, it is typically quite small and can be
pre-analyzed. In particular, it is possible to identify all
strongly connected components of the property automaton
graph. A partition function may then be devised, that re-
spects strongly connected components of the property au-
tomaton and therefore preserves cycle locality. The parti-
tioning strategy is to assign all vertices that project to the
same strongly connected component of the property au-
tomaton graph to the same sub-problem. Since no cycle is
split among different sub-problems it is possible to employ
localized Nested DFS algorithm to perform local accepting
cycle detection simultaneously.

Yet another interesting information can be drawn from
the property automaton graph decomposition. Maximal
strongly connected components can be classified into three
categories:

Type F: (Fully Accepting) Any cycle within the compo-
nent contains at least one accepting vertex. (There is
no non-accepting cycle within the component.)

Type P: (Partially Accepting) There is at least one accept-
ing cycle and one non-accepting cycle within the com-
ponent.

Type N: (Non-Accepting) There is no accepting cycle
within the component.

Realizing that a vertex of the product graph is accept-
ing only if the corresponding vertex in the property automa-
ton graph is accepting it is possible to characterize types of
strongly connected components of product automaton graph
according to types of components in the property automa-
ton graph. This classification of components into typesN ,
F , andP can be used to gain additional improvements that
may be incorporated into the above given algorithms.

All the presented algorithms are implemented in the par-
allel enumerative LTL model-checker DIV INE [4].

4 Parallel Branching-Time Model-Checking

Famous logics for expressing branching time specifica-
tions are both Computation-Tree Logic (CTL, [27]) and
Kozen’s µ-calculus [39]. Theµ-calculus offers boolean

combination of formulas and, especially, labellednext-state,
minimal, and maximal fixpoint quantifiers.

For practical applications, it suffices to restrict theµ-
calculus in order to gain tractable model checking proce-
dures. The alternation-free fragment, denoted byL1

µ, re-
stricts the nesting of minimal and maximal fixpoint opera-
tors. Still, it allows the formulation of manysafetyas well
as livenessproperties. While this fragment is already im-
portant on its own, it subsumesCTL [27].

Model checking this fragment is linear in the length of
the formula as well as the size of the underlying transition
system, and several sequential model checking procedures
are given in the literature [21, 1, 40, 8]. At the same time,
the model checking problem was proven to be P-complete
[55, 10], limiting our enthusiasm for finding a (theoreti-
cally) good parallel model checking algorithm.

The algorithms can be classified intoglobal and local
algorithms. Global algorithms require that the underlying
transition system is completely constructed while local al-
gorithms compute the necessary part of a transition system
on-the-fly.In plain words, global algorithms typically com-
pute the fixpoints in an inductive manner while the local
algorithms decide the problem by a depth-first-search.

Typical on-the-fly model checking algorithms for theµ-
calculus [37] are based on a characterization of this problem
in terms of two-player games [28, 52]. Then, model check-
ing boils down to establishing the winner when playing on
so-called game graphs, which are and-or-graphs enriched
with so-called parities. For the alternation-freeµ-calculus,
these game graphs have a simple structure that allows to de-
termine the winner in parallel efficiently.

A different characterization of the model checking prob-
lem can be given in terms of so-called 1-letter-simple-weak-
alternating-Büchi automata [40]. However, these are related
to games in a straightforward manner [43]. On the same
line, one can understand the the model checking problem as
solving a boolean equation system [45].

The first parallel model checking algorithm forL1
µ was

presented in [9, 10] and formulated in terms of games. Sim-
ilar algorithms appeared also in [13] and, reformulated in
terms of solving alternating boolean equation systems, in
[36]. A slightly different approach for parallel CTL model
checking was presented in [7].

The game graph combines states of the transition sys-
tem and subformulas of the property to check to so-called
configurations. Furthermore, plays, which are paths in the
game graph, correspond to (tableau-kind) proofs or refuta-
tions for the property to check. Plays are either finite or
represent an infinite unwinding of a fixpoint formula. Sim-
ilar as in tableaus, the winner of a finite play is immediate.
For example, when reaching a configuration with states and
formulatrue, the play is one by the protagonist. For infinite
plays, an infinite unwinding of minimal fixpoint refutes a



property while an infinite unwinding of a maximal fixpoint
proofs the property [52].

The main observation in all parallel algorithms is that
the game graph (or the boolean equation system) has a so-
calledweakstructure: It can be partitioned into components
of a single fixpoint type (either maximal or minimal). These
components can be partially ordered and edges of the game
graph stay either in the same component or leave the com-
ponent towards a larger one wrt. the partial order. Thus,
every play in this graph gets trapped in a unique compo-
nent.

The problem of determining whether a play is winning
is then divided into two independent problems: One is
whether the player wins when entering a component and the
second is whether the player can force the play to a specific
component.

Thus, one source of parallelism is to determine for each
component in bottom-up fashion in parallel the winner for
the respective component. This is indicated in Algorithm 6,
in which speak of coloring the game graph’s configurations
into either winning for the protagonist (typically indicated
by greenor winning for the antagonist (indicated byred)
and use the symbol≺ to denote the order of the compo-
nents.

Algorithm 6 Main procedure, parallel bottom-up version
1: for each componentQj ∈ Q in bottom-up order do
2: for each processorPi in parallel do
3: colorizeComponenti(Qj)
4: recolorComponenti(Qj)
5: Propagate colors from initial configurations

⌈Qj⌉ to {Q | Q ≺ Qj}.
6: end for
7: end for

For the configurations of a single component, the winner
can be determined as follows: In each terminal configura-
tion, the winner is immediate. Thus, a simple backwards
propagation within the and-or graph in the expected man-
ner gives for most configurations a definite answer. The
crucial observation made in [10] is that for all remaining
configurations, one player can force to stay on a cycle, on
which a fixpoint formula is unwinded. Due to weakness of
the game graph, this implies that either a minimal or a max-
imal fixpoint is unwinded. Thus, all configurations either
satisfy the formula or violate the formula at hand. This al-
lows to classify the winner for each configuration in parallel
without the need of any communication. Thus, the second
source of parallelism is given by distributing each compo-
nent over the cluster and to first propagate winning infor-
mation from terminal configuration backwards, in parallel,
and then to color all remaining configurations according the
component’s type.

Algorithm 7 colorizeComponenti(Qj)

Colorize those configurations of component owned by pro-
cessori.

1: /* start with initial configurations ofQj */
2: for each conf ∈ ⌈Qj⌉ do
3: processSuccessors(conf , Qj)
4: end for
5: repeat
6: msg := get(Work i)
7: if msg = EXPAND(pred , conf ) then
8: if conf 6∈ Conf i then
9: processSuccessors(conf , Qj)

10: initializeConfiguration(conf )
11: λ(conf ) := color(conf )
12: end if
13: if λi(conf ) 6= WHITE then
14: put COLOR(pred , λi(conf )),Workh(pred)

15: end if
16: →i := →i ∪ {(pred , conf )}
17: else if msg = COLOR(conf , color) then
18: decrementcount(conf , color ) /* update color

information*/
19: color ′ := color(conf )
20: if color ′ 6= λi(conf ) then
21: λi(conf ) := color ′

22: for each pred ∈ prei(conf ) ∩ Qj do
23: /* only work on current component*/
24: put COLOR(pred , λi(conf )),Workh(pred)

25: end for
26: end if
27: end if
28: until msg = COMPONENTCOMPLETED

In a practical algorithm, the processes of generating the
game graph as well as determining the winner for each com-
ponent are interviewed. The heart of the algorithm is the
processing of a single game-graph componentQj as de-
picted in Algorithm 7. Given a component (number), it ex-
pands all configurations of the component and is called by
the main function. As the color information of a terminal
node is always immediate, a coloring process is initiated, if
a terminal configuration is reached. Colors are then propa-
gated backwards.

The algorithm is designed for a distributed setting. Each
processor runs an unmodified copy, and we can only assume
a local view of all data structures as explained in Section 2.
Thus, we index the local part of a data structure with the
number of its “owning” processor (indexi for processorPi).

For processors to communicate among each other, each
Pi uses a queueWork i where processors can deposit re-
quests, for example via some message passing mechanism.
The algorithm then continually processes requests from its



queue until the handling of the current component is com-
pleted. The locally known configurations of a game graph
are stored in setConf i.

In lines 1–4, the component’s initial configurations⌈Qj⌉
(the ones with incoming edges from smaller components)
are expanded consulting the functionFsucc (see Section 1).
The idea of processSuccessors (line 3, not depicted here)
is that if a configurationconf is not yet known, its succes-
sorspost(conf ) are calculated and put on respective work
queues. Then the algorithm enters a loop (lines 5–28),
where it retrieves the next requestmsg, and processes it.

In case of a request EXPAND(pred , conf ) (lines 7–16)
to expand more of the game graph, we check whether the
to-be-expanded configurationconf has not yet been seen
(line 8). It is then expanded (line 9) and initialized (line 10).
A color labelλ(conf ) is determined (line 11). It is then
possibly propagated to predecessorpred (lines 13–15). This
request is put on the queue of the processorPh(pred) who is
responsible for configurationpred . A new game graph edge
(pred , conf ) is then added (line 16). It is later needed to
propagate color changes to predecessor configurations.

We process a coloring request COLOR(conf , color )
(lines 17–27) by recording that some successor of configu-
rationconf has just obtained colorcolor (line 18). Then, it
is determined whether that color change has impact onconf

and its color is updated accordingly (lines 19–21). Also, on
color update, the new color is propagated backwards to each
predecessorprei(conf )∩Qj of conf in the current compo-
nent (lines 22–25).

The processing continues until none of the processors
has any requests left to handle, in which the algorithm
finishes. This situation is detected by an termination
check algorithm (not depicted here) which then inserts a
message COMPONENTCOMPLETED into every processor’s
work queue.

When all processes terminate in line 28, the remaining
configurations can be colored in parallel independently by
every process (line 4 of the main routine).

While parts of the algorithm sketched above ([10]) are
similar to a (sequential) solution of the model checking
problem described in [40], it avoids explicit detection of
cycles, which is believed hard in parallel. Nevertheless,
it meets the optimal linear time bounds of sequential algo-
rithms [10].

The algorithm has been implemented and has been ex-
amined by checking live-locks on large industrial examples,
which could not be checked before [33].

The algorithm of [10] has been extended in [44] to the
richer fragment of theµ-calculus allowing one alternation,
denoted byL2

µ. This fragment is of practical importance
since it subsumesLTL [48], as well asCTL∗ [25], which
follows by (unpublished) results from Wolper and [26], and
was shown in a direct manner in [23].

The parallel algorithm forL2
µ employs the algorithm for

L1
µ as a subroutine. Thus, it promises a simple and efficient

approach to check formulas ofLTL, CTL∗, andL2
µ, though

empirical evidence is still future work.

5 Parallel Model Checking and jETI

While traditionally model checking is mainly used for
verification of hard- and software systems, it could and
probably should also be considered as a flexible analysis
tool: The object to analyze is given as a finite-state system
and the analysis can be formulated in a suitable temporal
logic. Program analysis as model checking [50] or the use
of model checking for analyzing biochemical processes [5]
are just two examples.

In consequence, model checkers are the heart of many
modelling and analysis tools. Furthermore, when design-
ing new applications comprising an analysis that can be for-
mulated as a model checking problem, a cost effective ap-
proach will be to integrate a model checker rather than to
work out a customized analysis algorithm. It is therefore
important to offer the easy integration of model checkers
into other tools.

Powerful shared-memory multiprocessor systems and
especially powerful clusters of workstations are typically
found only at dedicated locations, with skilled administra-
tors maintaining the systems. However, for a user of a
model checker, regardless whether she is using the model
checker directly or whether she is using a tool built on top of
a model checker, it is convenient that the application looks
and feels like a typical desktop application: She should not
be bothered by running a distributed application, updating
to new versions of distributed model checkers, or maintain-
ing a parallel computer. Thus, it is desirable to provide par-
allel model checking applications as services for direct use
and, even more important, integration to customized mod-
elling, analysis, and verification tools.

jETI [51] is a framework that offers such integration ca-
pabilities. With jETI, users are able to combine function-
alities of tools of different providers, and even from dif-
ferent application domains to solve complex problems that
a single tool typically is not able to handle. jETI follows a
service-oriented approach that combines heterogeneous ser-
vices provisioned in different technologies.

Instead of physically integrating tools or libraries in
other tools, jETI’s integration philosophy is to publish a
service that is running remotely at the providers location.
Whenever the service is needed, the corresponding provider
is consulted. This is ideally for offering distributed model
checkers as maintenance of the software as well as of the
whole parallel machine is left to the provider of the model
checker. Yet, the user of a tool that uses the distributed
model checker via jETI may not be aware of using highly



sophisticated and highly maintained systems.
An example for integrating a (sequential) model checker

into the jETI framework is given in [46]. Due to jETI’s in-
tegration philosophy, the integration scheme stays the same
even when the model checker is distributed and running re-
motely on a parallel computer. Thus, using jETI it will be
possible to develop high-performance analysis tools based
on parallel model checkers, which will also open up a new
age for using distributed model checkers.
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[47] R. Pelánek. Typical structural properties of state spaces. In
Proc. of SPIN Workshop, volume 2989 ofLNCS, pages 5–
22. Springer, 2004.

[48] A. Pnueli. The temporal logic of programs. InProceedings
of the 18th IEEE Symposium on the Foundations of Com-
puter Science (FOCS-77), pages 46–57, Providence, Rhode
Island, Oct. 31–Nov. 2 1977. IEEE Computer Society Press.

[49] K. Ravi, R. Bloem, and F. Somenzi. A Comparative Study of
Symbolic Algorithms for the Computation of Fair Cycles. In
Proc. Formal Methods in Computer-Aided Design, volume
1954 ofLNCS, pages 143–160. Springer, 2000.

[50] D. Schmidt and B. Steffen. Program analysis as model
checking of abstract interpretations. In G. Levi, editor,
Proc. 5th Static Analysis Symposium, volume 1503 ofLec-
ture Notes in Computer Science, pages 351–381. Springer,
1998.

[51] B. Steffen, T. Margaria, and R. Nagel. jeti: A tool for remote
tool integration. In N. Halbwachs and L. D. Zuck, editors,
Proc. of 11th Int. Conf. on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS’05), volume 3440
of LNCS, Edinburgh, UK, April 2005. Springer Verlag.

[52] C. Stirling. Games for bisimulation and model checking,
July 1996. Notes for Mathfit Workshop on finite model the-
ory, University of Wales, Swansea,.

[53] U.Stern and D. L. Dill. Parallelizing the murϕ verifier. In
O. Grumberg, editor,Proceedings of Computer Aided Veri-
fication (CAV ’97), volume 1254 ofLNCS, pages 256–267.
Springer, 1997.

[54] M. Vardi. Automata-Theoretic Model Checking Revisited.
In Proceedings of the 8th International Conference on Veri-
fication, Model Checking, and Abstract Interpretation (VM-
CAI 2007), volume 4349 ofLNCS. Springer, 2007.

[55] S. Zhang, O. Sokolsky, and S. A. Smolka. On the parallel
complexity of model checking in the modal mu-calculus. In
Proceedings of the 9th Annual IEEE Symposium on Logic in
Computer Science, pages 154–163, Paris, France, 4–7 July
1994. IEEE Computer Society Press.


	Introduction
	Parallel Reachability Analysis
	Parallel LTL Model Checking
	Parallel Branching-Time Model-Checking
	Parallel Model Checking and jETI

