
A Hierarchy of Implementable MSC Languages

Benedikt Bollig1 and Martin Leucker2

1 Lehrstuhl für Informatik II, RWTH Aachen, Germany
bollig@informatik.rwth-aachen.de

2 Institut für Informatik, TU Munich, Germany
leucker@in.tum.de

Abstract. We develop a unifying theory of message-passing automata
(MPAs) and MSC languages. We study several variants of regular as well
as product MSC languages, their closure under finite union and their
intersection. Furthermore, we analyse the expressive power of several
variants of MPAs and characterize the language classes of interest by the
corresponding classes of MPAs.

1 Introduction

A common design practice when developing communicating systems is to start
with drawing scenarios showing the intended interaction of the system to be.
The standardized notion of message sequence charts (MSCs, [ITU99]) is widely
used in industry to formalize such typical behaviors.

A message sequence chart defines a set of processes and a set of communi-
cation actions between these processes. In the visual representation of an MSC,
processes are drawn as vertical lines and interpreted as time axes. A labeled
arrow from one line to a second corresponds to the communication event of
sending a message from the first process to the second. Collections of MSCs are
used to capture the scenarios that a designer might want the system to follow
or to avoid. Figure 1 shows four simple MSCs.

The next step in the design process is to come up with a high-level model of
the system to be. Such a model is usually formalized as a state machine or as
an automaton. In the setting of MSCs, where the notion of distributed processes
is central, one asks for distributed automata models. The components of such
a distributed automaton should communicate by message passing to reflect the
message flow indicated by MSCs. Thus, we are after message-passing automata
(MPA) realizing or implementing the behavior given in form of scenarios.

In the setting of finite words, there has been an extensive study of several
classes of languages and corresponding characterizations by means of automata.
Algebraic and logical characterizations have been obtained as well.

In the setting of MSCs, however, a correspondence of languages and char-
acterizing automata models or characterizing logical specifications is still at the
beginning. In this paper, we provide a comprehensive study of MSC languages
and message-passing automata. Our work can be summarized in two pictures,
Figure 2 and Figure 3, which we explain in the rest of this introduction.

1 2

M1:

1 2

M2:

3 4

M3:

1 2 3 4

M4:

Fig. 1. The language of a finite MPA

When realizing communicating systems, two dimensions are important: finite-
ness and independence.

Finiteness Most often, the intended system is required to have a finite set of
(control) states. In the case of words, regular languages admit a characterization
in terms of finite state machines. In general, the notion of regularity aims at
finite representations. Thus, as in the word case, one is interested in regular
MSC languages. While for the word case a consensus is reached for the notion
of a regular language, this is not the case for MSC languages.

There have been several proposals for the right notion of regularity for MSC
languages. Henriksen et al. started in [HMKT00], proposing that an MSC lan-
guage is regular when its set of linearizations is regular. We denote this class of
languages by R (see Figure 2).

One could likewise argue to call a set of MSCs regular, when it is definable
by monadic second-order (MSO) logic (adjusted to MSCs), since this important
property for verification holds for regular sets of words. This view was also
pursued in [HMKT00] and it is shown that this class coincides with R when
formulas are supposed to define bounded MSC languages. Intuitively, an MSC
language is bounded iff its structure exhibits a bound on the number of send
events that have not been received yet by the receiving process. For example,
the MSC language {M1}

∗ (where M1 is taken from Figure 1) is not bounded
and hence not regular. It induces the set of MSCs that send arbitrarily many
messages from process 1 to process 2. The set of all its linearizations gives rise to
the set of all words that have the same number of send and receive events, where,
for every prefix, the number of send events is larger or equal to the number of
receive events. This language is not regular, since, intuitively, we would need an
unbounded counter for the send events. In [GMK04], a more general notion of
regularity was studied, which gives rise to existentially bounded MSC languages.
Those languages require any MSC to exhibit at least one linearization that is
compatible with a fixed channel capacity.

Independence On the other hand, the systems exemplified by MSCs are dis-
tributed in nature and the notion of a process is central. It is therefore natural
to consider every process to be represented as a single state machine or tran-
sition system. Furthermore, one defines a notion of communication, describing
the way these parallel systems work together.

Languages defined by finite transition systems working in parallel are known
as product languages and were initially studied in [Thi95] for Mazurkiewicz
traces. That paper discusses finite-state systems. There is a common initial state

2

RP0

EP0

P0

RP

EP

P

R

E

M

Fig. 2. The hierarchy of regular and product MSC languages

and two different notions of acceptance condition. Either the acceptance condi-
tion is local, i.e. every process decides on its own when to stop, or it is global,
which allows to select certain combinations of local final states to be a valid
point for termination. It is clear that (provided the system has a single initial
state) the latter notion of acceptance is more expressive than local acceptance.

In the context of MSC languages, [AEY00] studied classes of MSCs taking
up the idea of product behavior. Languages of MSCs are required to be closed
under inference. The idea can be described looking at the setting in Figure 1.
When realizing the behavior described by M2 and by M3, it is argued that the
behavior of M4 is also a possible one: Since processes 1 and 2 do not synchronize
with processes 3 and 4, the four processes do not know whether the behavior of
M2 should be realized or that of M3. We call the class of MSC languages that
is closed under such inference weak product MSC languages and denote it by P0

(see Figure 2). Note that, in [AEY00], no finiteness condition was studied.

In simple words, product languages respect independence.

Extensions Let us study extensions of the two existing approaches. When think-
ing about an automata model realizing MSC languages, the allowance of different
initial states or global final states will give us classes of languages closed under
finite union. For example, one could realize exactly the set consisting of M2 and
M3 (without M4). Thus, when considering finite unions of sets of P0 languages,
one obtains the richer class of product MSC languages, denoted by P . Combining
the ideas of independence and finiteness, we get RP0 or RP .

The drawback of the regularity notion used for R is that the simple language
{M1}∗ is not regular, as mentioned before. Let us once again turn to the logical
point of view. Recall that MSO logic interpreted over bounded MSCs captures
regular and, thus, bounded behavior. It was shown in [BL04] that MSO logic
interpreted over the whole class of MSCs turns out to be too expressive to be
compatible with certain finite message-passing automata as introduced beneath.
These automata, though they employ finite state spaces for each process (but
not globally), are capable of generating unbounded behavior using a priori un-
bounded channels. In [BL04], existential MSO, a fragment of MSO was shown to
be expressively equivalent to finite message-passing automata. We therefore in-
troduce the class of EMSO-definable languages (E), which lifts the boundedness

3

L(MPA`)

L(MPAf

`)

L(bMPAf

`)

RP
0 =

L(1-bMPAf

`)

L(1-MPAf

`)

P
0 =

L(1-MPA`)

RP =
L(1-bMPAf)

L(1-MPAf)

P =
L(1-MPA)

EP
0

EP
R =

L(bMPAf)

E =
L(MPAf)

L(MPA)

L(2-MPAf

`)

L(3-MPAf
`)

L(2-MPAf)

L(3-MPAf)

L(2-bMPAf

`)

L(3-bMPAf

`)

L(2-bMPAf)

L(3-bMPAf)

L(2-MPA`)

L(3-MPA`)

L(2-MPA)

L(3-MPA)

finite union =
from local to global

synchronisation
avoids product
behaviour

no boundedness

infinite state space

Fig. 3. A Hierarchy of MSC Languages

restriction without abandoning the existence of a finite automata-theoretic coun-
terpart. Together with independence, we obtain the class EP or, when starting
from RP0, the class, EP0.

This completes the explanation of the languages shown in Figure 1, and, one
main result of the paper is to show that languages actually form the hierarchy
that is suggested in the figure.

Automata models So let us exhibit corresponding machine models and call our
attention to Figure 3. We study several variants of message-passing automata
(MPA), which consist of components that communicate through channels. All

studied systems have a single initial state. We use (variations of) n-bMPAf
` to

indicate several classes of MPAs. Dropping the requirement that the local state
spaces are finite is indicated by the missing superscript f . When considering
finite unions of languages, we have to move towards global acceptance conditions
(rather than local), indicated by a missing `.

When extending the expressiveness from regularity to EMSO-definable lan-
guages, we drop the boundedness condition of MSCs. This is represented in
Figure 3 by a missing b. It can be shown that, when realizing regular languages,
one needs so-called synchronization messages that are used to tell other compo-
nents which transition was taken. They are used in [HMKT00] and [GMSZ02] to
extend expressiveness. We show that the more of these messages are allowed, the
more expressive power we have. The restriction to n synchronization messages
is described by a preceding n- in Figure 3.

4

MPAs are subject to active research. However, there is no agreement which
automata model is the right one to make an MSC language implementable:
While, for example, [GMSZ02] is based on MPAf

`, [AEY00,Mor02] focus on
1-MPA`. In [HMKT00], though a priori unbounded channels are allowed, the

bounded model bMPAf
` suffices to implement regular MSC languages. We pro-

vide a unifying framework and classify automata models according to their state-
space, synchronization behavior, acceptance mode, and, on a rather semantical
level, whether they generate bounded or unbounded behavior.

Our second main result is to show the correspondence indicated in Figure 3.

2 Preliminaries

Let us recall some basic definitions and let Σ be an alphabet. A finite Σ-labeled
partial order is a triple P = (E,≤, `) where E is a finite set, ≤ is a partial-order
relation on E, i.e., it is reflexive, transitive, and antisymmetric, and ` : E → Σ
is a labeling function. For e, e′ ∈ E, we write e l e′ if both e < e′ and, for
any e′′ ∈ E, e < e′′ ≤ e′ implies e′′ = e′. A linearization of P is an extension
(E,≤′, `) of P such that ≤′ ⊇ ≤ is a linear order. As we will identify isomorphic
structures in the following, a linearization of P will be seen as a word over Σ.
The set of linearizations of P is denoted by Lin(P).

Let us fix a finite set Proc of at least two processes, which communicate with
one another via message passing.1 Communication proceeds through channels
via executing communication actions. We denote by Ch the set {(p, q) | p, q ∈
Proc, p 6= q} of reliable FIFO channels. Given a process p ∈ Proc, we further-
more set Cp to be {send(p, q) | (p, q) ∈ Ch} ∪ {rec(p, q) | (p, q) ∈ Ch}, the set of
actions of process p. The action send(p, q) is to be read as “p sends a message to
q”, while rec(q, p) is the complementary action of receiving a message sent from
p to q. Accordingly, we set Com := {(send(p, q), rec(q, p)) | (p, q) ∈ Ch}. More-
over, let C stand for the union of the Cp. Observe that an action pθq (θ ∈ {!, ?})
is performed by process p, which is indicated by P (pθq) = p. A message sequence
chart (MSC) (over Proc) is a tuple (E, {≤p}p∈Proc, <c, `) such that

– E is a finite set of events,
– ` is a mapping E → C,
– for any p ∈ Proc, ≤p is a linear order on Ep := `−1(Cp),
– <c ⊆ E ×E such that both, for any e ∈ E, there is e′ ∈ E satisfying e <c e′

or e′ <c e and, for any (e1, e
′
1) ∈ <c, there are p, q ∈ Proc satisfying

• `(e1) = send(p, q)
• `(e′1) = rec(q, p)
• for any (e2, e

′
2) ∈ <c with `(e1) = `(e2), it holds e1 ≤p e2 iff e′1 ≤q e′2,

– ≤ :=
(

<c ∪
⋃

p∈Proc
≤p

)∗

is a partial-order relation on E.

The set of MSCs is denoted by MSC. (As Proc will be fixed in the following,
a corresponding reference is omitted.) Let M = (E, {≤p}p∈Proc, <c, `) ∈ MSC.

1 In proofs, we sometimes silently assume the existence of more than two processes.

5

The behavior of M might be split into its components M � p := (Ep,≤p, `|Ep
),

p ∈ Proc, each of which represents the behavior of one single agent and can be
seen as a word over Cp. In turn, given a collection of words wp ∈ C∗

p , there is
at most one MSC M such that, for any p ∈ Proc, wp = M � p. We will write
Lin(M) to denote Lin((E,≤, `)), which extends to sets of MSCs as usual. Given
a set of words L′ ⊆ C∗, we say L′ is an MSC word language if L′ = Lin(L) for
some L ⊆ MSC. In turn, a set L ⊆ MSC is uniquely determined by Lin(L).

Let B ≥ 1. We call a word w ∈ C∗ B-bounded if, for any prefix v of w
and any (p, q) ∈ Ch , |v|send(p,q) − |v|rec(q,p) ≤ B where |v|σ denotes the number
of occurrences of σ in v. An MSC M ∈ MSC is called B-bounded if, for any
w ∈ Lin(M), w is B-bounded. The set of B-bounded MSCs is denoted by MSCB .
An MSC language L ⊆ MSC is called B-bounded if L ⊆ MSCB . Moreover, we
call L bounded if it is B-bounded for some B. In other words, boundedness
is safe in the sense that any possible execution sequence does not claim more
memory than some given upper bound (whereas existential boundedness, which,
however, is not considered in this paper, allows an MSC to be executed even if
this does not apply to each of its linear extensions [GMK04]).

3 Implementable MSC Languages

3.1 Regular MSC Languages

There have been several proposals for the right notion of regularity for MSC
languages. In their seminal work [HMKT00,HMK+04], Henriksen et al. consider
an MSC language to be regular if its set of linearizations forms a regular word
language. For example, the MSC language {M1}∗ (where M1 is taken from Fig-
ure 1), which allows to concatenate M1 arbitrarily often2, is not bounded and
hence cannot be regular. It induces the set of MSCs that send arbitrarily many
messages from process 1 to process 2. The corresponding set of linearizations
gives rise to a set of words that show the same number of send and receive
events. This language is not recognizable in the free word monoid. In contrast,
the language {M1 ·M2}∗ is regular, as its word language can be easily realized by
a finite automaton. Thus, regularity aims at finiteness of the underlying global
system, which incorporates the state of a communication channel.

Definition 1 ([HMKT00]). A set L ⊆ MSC is called regular if Lin(L) is a
regular word language over C.

The class of regular MSC languages is denoted by R.

Corollary 1 ([HMKT00]). Any regular MSC language is bounded.

As mentioned above, {M1}∗ with M1 again taken from Figure 1 is not regular.
However, it is existentially-bounded [GMK04] and, as we will see in the next
section, there is a simple finite message-passing automaton accepting {M1}

∗.
Thus, we are looking for another, extended notion of regularity.

2 Here, concatenation is meant to be asynchronous.

6

3.2 (E)MSO-definable MSC Languages

Formulas from monadic second-order (MSO) logic (over Proc) involve first-order
variables x, y, . . . for events and second-order variables X, Y, . . . for sets of events.
They are built up from the atomic formulas `(x) = σ (for σ ∈ C), x ∈ X , x lp y
(for p ∈ Proc), x <c y, and x = y and furthermore allow the connectives ¬, ∨,
∧, →, ↔ as well as the quantifiers ∃, ∀, which can be applied to either kind of
variable. Formulas without free variables, which do not occur within the scope of
a quantifier, are called sentences. Given an MSC M = (E, {≤p}p∈Proc, <c, `) and
an MSO sentence ϕ, the validity of the satisfaction relation M |= ϕ is defined
canonically with the understanding that first-order variables range over events
from E and second-order variables over subsets of E. The language of ϕ, denoted
by L(ϕ), is the set of MSCs M with M |= ϕ. The class of subsets of MSC that can
be defined by some MSO sentence ϕ is denoted by MSO. An important fragment
of MSO logic is captured by existential MSO (EMSO) formulas, which are of
the form ∃X1 . . . ∃Xnϕ where ϕ does not contain any set quantifier. In many
cases, the restriction to EMSO formulas suffices to characterize recognizability
in terms of automata, e.g., in the domains of words, trees, and Mazurkiewicz
traces. Sometimes, however, we even have to restrict to EMSO formulas not
to exceed recognizability in terms of automata, because full MSO logic is too
expressive in general. In fact, the latter applies to MSCs [BL04]. The class of
EMSO-definable MSC languages will be denoted by E .

3.3 Product MSC Languages

Languages defined by finite transition systems working in parallel are known
as product languages and were initially studied by Thiagarajan in [Thi95] in
the domain of Mazurkiewicz traces where distributed components communicate
executing actions simultaneously rather than sending messages. Taking up the
idea of product behavior, [AEY00] considers MSC languages that are closed
under inference, which can be described by the setting depicted in Figure 1.
Attempting to realize the MSC language {M2, M3}, one might argue that the
behavior of M4 is a feasible one, too. As processes 1 and 2 do not get in touch with
processes 3 and 4, it is not clear to a single process whether to realize the behavior
of M2 or that of M3 so that, finally, M4 might be inferred from {M2, M3}. We
call a set of MSCs that is closed under such an inference a weak product MSC
language. Let us be more precise and, given L ⊆ MSC and M ∈ MSC, write
L `Proc M if ∀p ∈ Proc : ∃M ′ ∈ L : M ′ �p = M �p.

Definition 2. A set L ⊆ MSC is called a weak product MSC language if, for
any M ∈ MSC, L `Proc M implies M ∈ L [AEY00]. The finite union of weak
product MSC languages is called a product MSC language.

We let P0 and P denote the classes of weak product languages and, respectively,
product languages.

In other words, an MSC language L is a weak product MSC language if every
MSC that agrees on each process line with some MSC from L is contained in

7

RP0

EP0

P0

RP

EP

P

R

E

M

// 4

//1

3 \\

2 \\

1 {M2, M3}

2 {M2}
∗

3 [BL04]

4 LN+1 with N ≥ 1
(cf. Lemma 10)

Fig. 4. Strictness and incomparability in the hierarchy

L, too. Getting back to Figure 1, M4 agrees with M2 on the first two process
lines and with M3 on the remaining two. Thus, M4 belongs to any weak product
language containing both M2 and M3. As global knowledge of an underlying
system, one often allows several global initial or final states. This is the reason for
considering finite unions of weak product languages. For example, {M2, M3} is a
product MSC language, while {M4}

∗ is not. Let us bring together the concepts
of product behavior and regularity.

Definition 3. We call R ∩ P0 the class of weak regular product MSC languages
and denote it by RP0. Furthermore, an MSC language L is a regular product
MSC language, denoted by L ∈ RP, if it is the finite union of sets from RP0.

Let us now extend our study towards product languages in combination with
EMSO-definable languages. As the class of EMSO-definable languages turned
out to capture exactly the class of languages implementable in terms of a fi-
nite message-passing automaton, we rather concentrate on EMSO-definable lan-
guages than on MSO-definable ones [BL04].

Definition 4. We call E ∩ P0 the class of weak EMSO-definable product MSC
languages and denote it by EP0. An MSC language L is an EMSO-definable
product MSC language (L ∈ EP) if it is the finite union of sets from EP0.

Theorem 1. The classes of languages proposed so far draw the picture shown
in Figure 2. The hierarchy is strict.

Proof. R ⊆ E has been shown, for example, in [BL04]. The other inclusions
are straightforward. It remains to show strictness and incomparability. Consider
the MSCs M2 and M3 from Figure 1. For a (crossed) arrow from a class of
MSC languages C1 to a class C2 in Figure 4, the tabular aside specifies an MSC
language L with L ∈ C1 and L 6∈ C2.

8

3.4 Product MSC Languages vs. Product Trace Languages

Product languages have been introduced first in the framework of (Mazurkiewicz)
traces. So let us compare traces and MSCs in the scope of regular MSC languages
and justify that, in this respect, we have chosen the same terminology for traces
and MSCs. In particular, we raise the hope that results and logics regarding
product trace languages are amenable to MSCs, such as the local temporal logic
PTL, which is tailored to systems that support product behavior [Thi95].

Like MSCs, traces preserve some partial-order properties of a distributed
system. Given a set [K] := {1, . . . , K} of agents, K ≥ 1, they are based on a dis-
tributed alphabet (Σ1, . . . , ΣK), a tuple of (not necessarily disjoint) alphabets.
Elements from Σi are understood to be actions that are performed by agent i.
Let in the following Σ̃ = (Σ1, . . . , ΣK) be a distributed alphabet, let Σ stand
for the union of alphabets Σi, and let, for a ∈ Σ, loc(a) := {i ∈ [K] | a ∈ Σi}
denote the set of agents that are involved in the action a. A distributed alphabet
Σ̃ determines a dependence relation DΣ̃ = (Σ, D) where D = {(a, b) ∈ Σ × Σ |
loc(a) ∩ loc(b) 6= ∅} is a reflexive and symmetric binary relation on Σ. Thus,
actions a and b are understood to be dependent if they can both be performed
by one and the same sequential agent.

A (Mazurkiewicz) trace over Σ̃ is a Σ-labeled partial order (E,≤, `) such
that, for any e, e′ ∈ E, e l e′ implies (`(e), `(e′)) ∈ D and (`(e), `(e′)) ∈ D
implies e ≤ e′ or e′ ≤ e. The set of traces over Σ̃ is denoted by TR(Σ̃). As in
the MSC case, the behavior of a trace T ∈ TR(Σ̃) can be split into components
T � i := (Ei,≤ ∩ (Ei × Ei), `|Ei

) (where Ei := `−1(Σi)), each of which can be
seen as a word over Σi and represents the behavior of one single agent. Also,
given a collection of words wi ∈ Σ∗

i , there is at most one trace T such that,
for any i ∈ [K], wi = T � i. A set L ⊆ TR(Σ̃) is called regular if Lin(L) is a
regular word language over Σ. The class of regular trace languages over Σ̃ is
denoted by R

TR(Σ̃). Let L ⊆ TR(Σ̃) and T ∈ TR(Σ̃). Similarly to MSCs, we

write L `Σ̃ T if, for any i ∈ [K], there is T ′ ∈ L such that T ′ � i = T � i. A

set L ⊆ TR(Σ̃) is called a weak product trace language (over Σ̃) (L ∈ P0
TR(Σ̃)

)

if, for any T ∈ TR(Σ̃), L `Σ̃ T implies T ∈ L. A set L ⊆ TR(Σ̃) is called a
product trace language (L ∈ P

TR(Σ̃)) if it is the finite union of weak product trace

languages [Thi95]. The classes RP0
TR(Σ̃)

and RP
TR(Σ̃) are defined as expected.

We now recall in how far bounded MSC languages can be seen as trace
languages over an appropriate alphabet [Kus03]. Let B be a positive natu-
ral. We define DB to be the dependence alphabet (C × {1, . . . , B}, DB) where
(σ1, n1)DB(σ2, n2) if P (σ1) = P (σ2) or ((σ1, σ2) ∈ Com ∪Com−1 and n1 = n2).
Setting Co to be {(σ, τ, n) | (σ, τ) ∈ Com, n ∈ {1, . . . , B}}, let Σ̃B be the
distributed alphabet (Cγ)γ∈Proc∪Co where, for p ∈ Proc, Cp := Cp × {1, . . . , B}
and, for (σ, τ, n) ∈ Co, C(σ,τ,n) := {(σ, n), (τ, n)}. Note that, given B ≥ 1,
DΣ̃B

= DB . To an MSC M = (E, {≤p}p∈Proc, <c, `) ∈ MSCB , we assign the
Mazurkiewicz trace TrB(M) := (E,≤, `′) where for each e ∈ E, we define `′(e)
to be the new labeling (`(e), |{e′ ∈ EP (`(e)) | e′ ≤ e}| mod B). According to

[Kus03], TrB(M) is a trace over Σ̃B for any M ∈ MSCB . Note that the map-

9

ping TrB : MSCB → TR(Σ̃B) is injective. It is canonically extended towards
MSC languages. Thus, involving some relabeling, an MSC language L ⊆ MSCB

can be converted into some trace language TrB(L) ⊆ TR(Σ̃B).
To make clear in the following when we address a class of MSC languages

rather than trace languages, we write, for example, RMSC instead of simply R.

Lemma 1 ([Kus02]). For any B ≥ 1 and any L ⊆ MSCB , L ∈ RMSC iff
TrB(L) ∈ R

TR(Σ̃B).

We now show that the above correspondence carries over to product behavior.

Lemma 2. For any B ≥ 1 and L ⊆ MSCB , L ∈ RP0
MSC iff TrB(L) ∈ RP0

TR(Σ̃B)
.

Proof. According to Lemma 1, TrB and its inverse both preserve regularity.
“only if”: Suppose L ⊆ MSCB to be a weak regular product MSC language.

Recall that TrB(L) is a regular trace language over Σ̃B = (Cγ)γ∈Proc∪Co . More-

over, let T ∈ TR(Σ̃B) such that, for any γ ∈ Proc ∪ Co, there is a trace
Tγ ∈ TrB(L) satisfying Tγ � γ = T � γ. Then, T ∈ TrB(MSCB) and, in par-
ticular, we have Tp � p = T � p and, thus, Tr−1

B (Tp) � p = Tr−1
B (T) � p for any

p ∈ Proc, which implies Tr−1
B (T) ∈ L and T ∈ TrB(L).

“if”: Suppose L ⊆ MSCB to generate a weak regular trace language over
Σ̃B , i.e., TrB(L) ∈ RP0(Σ̃B), and let M ∈ MSCB such that, for any p ∈ Proc,
there is Mp ∈ L with Mp � p = M � p. Trivially, we have that, for any p ∈ Proc,
TrB(Mp) � p = TrB(M) � p. Moreover, for any γ = (send(p, q), rec(q, p), n) ∈
Co, TrB(Mp) � γ = TrB(M) � γ (note that also TrB(Mq) � γ = TrB(M) � γ).
This is because, in the trace of a B-bounded MSC, the n-th receipt of a message
through (p, q) is ordered before sending from p to q for the (n + B)-th time.
Altogether, we have TrB(M) ∈ TrB(L) and, consequently, M ∈ L. �

Corollary 2. For any B ≥ 1 and any L ⊆ MSCB, L ∈ RPMSC iff TrB(L) ∈
RP

TR(Σ̃B).

4 Message-Passing Automata

We now introduce and study message-passing automata (MPAs), our model of
computation, which is is close to a real-life implementation of a message-passing
system. MPAs can be considered to be the most common computation model
for MSCs. An MPA is a collection of state machines that share one global initial
state and several global final states. The machines are connected pairwise with a
priori unbounded reliable FIFO buffers. The transitions of each component are
labeled with send or receive actions. Hereby, a send action p!q puts a message
at the end of the channel from p to q. A receive action can be taken provided
the requested message is found in the channel. To extend the expressive power,
MPAs can send certain synchronization messages. Let us be more precise:

Definition 5 (Message-Passing Automaton). A message-passing automa-
ton (MPA) is a structure A = ((Ap)p∈Proc,D, sin , F) such that

10

send(1, 2), a

rec(2, 1), b

rec(1, 2), a

send(2, 1), asend(1, 2), b rec(1, 2), a

rec(2, 1), a send(2, 1), a

A1: A2:

Fig. 5. A message-passing automaton

– D is a nonempty finite set of synchronization messages,
– for each p ∈ Proc, Ap is a pair (Sp, ∆p) where Sp is a nonempty set of

(p-)local states and ∆p ⊆ Sp ×Cp ×D×Sp is the set of (p-)local transitions,
– sin ∈

∏

p∈Proc
Sp is the global initial state, and

– F ⊆
∏

p∈Proc
Sp is a finite set of global final states.

An MPA A = ((Ap)p∈Proc,D, sin , F), Ap = (Sp, ∆p), is called

– an N -MPA, N ≥ 1, if |D| = N ,
– finite if, for each p ∈ Proc, Sp is finite, and
– locally-accepting if there are sets Fp ⊆ Sp such that F =

∏

p∈Proc
Fp.

The class of MPAs is denoted by MPA, the class of finite MPAs by MPAf .
Furthermore, for a set C of MPAs, we denote by N -C the class of N -MPAs A
and by C` the class of locally-accepting MPAs A with A ∈ C, respectively. A
locally-accepting finite 2-MPA with set of synchronization messages {a, b} is
illustrated in Figure 5.

In defining the behavior of an MPA, we adopt the view taken, for example,
in [HMKT00,Mor02,GMSZ02], who suppose an MPA to run on linearizations of
MSCs rather than on MSCs to reflect an operational behavior. Usually, such a
view relies on the global transition relation of A, which, in turn, defers to the
notion of a configuration. Let us be more precise and consider an MPA A =
((Ap)p∈Proc ,D, sin , F), Ap = (Sp, ∆p). The set of configurations of A, denoted
by ConfA, is the cartesian product SA × CA where CA := {χ | χ : Ch → D∗} is
the set of possible channel contents of A. Now, the global transition relation of
A, =⇒A ⊆ ConfA × C ×D × ConfA, is defined as follows:

– ((s, χ), send(p, q), m, (s′, χ′)) ∈ =⇒A if (s[p], send(p, q), m, s′[p]) ∈ ∆p, χ′ =
χ[(p, q)/m · χ((p, q))] (i.e., χ′ maps (p, q) to m · χ((p, q)) and, otherwise,
coincides with χ), and for all r ∈ Proc \ {p}, s[r] = s′[r].

– ((s, χ), rec(p, q), m, (s′, χ′)) ∈ =⇒A if there is a word w ∈ D∗ such that
(s[p], rec(p, q), m, s′[p]) ∈ ∆p, χ((q, p)) = w ·m, χ′ = χ[(q, p)/w], and for all
r ∈ Proc \ {p}, s[r] = s′[r].

Let χε : Ch → D∗ map each channel onto the empty word. When we set (sin , χε)
to be the initial configuration and F ×{χε} to be the set of final configurations,

11

A defines in the canonical way an MSC word language Lw(A) ⊆ C∗. The cor-
responding MSC language will be denoted by L(A) and is called the language
of A. Given a class C of MPAs, let furthermore L(C) := {L ⊆ MSC | there is
A ∈ C such that L = L(A)} denote the class of languages of C.

For configurations (s, χ), (s′, χ′) ∈ ConfA, we write (s, χ) =⇒A (s′, χ′) if
((s, χ), σ, m, (s′, χ′)) ∈ =⇒A for some σ ∈ C and m ∈ D. We call a configu-
ration (s, χ) ∈ ConfA reachable from another configuration (s′, χ′) ∈ ConfA if
(s′, χ′) =⇒∗

A (s, χ). Moreover, we say (s, χ) ∈ ConfA is productive if there is a
final configuration that is reachable from (s, χ).

For B ≥ 1, an MPA A is called B-bounded if, for any (p, q) ∈ Ch and any con-
figuration (s, χ) that is productive and reachable from the initial configuration,
it holds |χ((p, q))| ≤ B. According to [HMKT00], who use a slightly different
notion of bounded MPAs, we call an MPA A strongly-B-bounded for some B ≥ 1
if, for any (p, q) ∈ Ch and any configuration (s, χ) that is reachable from the
initial configuration, |χ((p, q))| ≤ B. Furthermore, A is called (strongly) bounded
if it is B-bounded (strongly-B-bounded, respectively) for some B ≥ 1. Given a
class C of MPAs, let bC (sbC) denote the set of (strongly, respectively) bounded
MPAs A with A ∈ C.

Sometimes, it is more convenient to consider MPAs with a set of global initial
states instead of one global initial state. So let an extended MPA be an MPA
A = ((Ap)p∈Proc,D, Sin , F) where, though, Sin ⊆

∏

p∈Proc
Sp is a finite set of

global initial states. The language of A is defined analogously to the MPA case.

Lemma 3. Let N ≥ 1 and L be an MSC language. Then L is the language of a
(bounded/finite/bounded and finite) N -MPA iff it is the language of an extended
locally-accepting (bounded/finite/bounded and finite, respectively) N -MPA.

Proof. “only if”: Let A = ((Ap)p∈Proc,D, sin , F), Ap = (Sp, ∆p), be an MPA.
For each state s ∈ F , introduce a global initial state running a distinct copy
A(s) of A with local state spaces Ss

p (in the following, a copy of a local state

s ∈ Sp in A(s) is denoted by ss). The set of global final states is henceforth the
cartesian product

∏

p∈Proc

⋃

s∈F {s[p]s}. The resulting MPA is locally-accepting
and, obviously, recognizes the same language as A without having affected the
number of messages, boundedness, or finiteness properties.

“if”: Let A = ((Ap)p∈Proc,D, Sin , F), Ap = (Sp, ∆p), be an extended MPA
where F is the product

∏

p∈Proc
Fp of sets Fp ⊆ Sp. The basic idea is to create

a copy Ss0

p = Sp × {s0} of Sp for any global initial state s0 ∈ Sin . Starting

in some new global initial state sin and switching to some state (s, s0) now
settles for simulating a run of A from s0 by henceforth allowing to enter no
other copy than Ss0

p . In a global final state, it is then checked whether the other
processes agree in their choice of s0. More formally, we may have local transitions
((s, s0), σ, m, (s′, s0)) with s0 ∈ Sin if (s, σ, m, s′) is a local transition of A.
Moreover, we add kind of initial transitions (sin [p], σ, m, (s, s0)) if (s0[p], σ, m, s)
is some p-local transition of A with s0 ∈ Sin . It remains to reformulate the
acceptance condition: s is a global final state if there is s0 ∈ Sin such that, for
any p ∈ Proc, either s[p] = sin [p] and s0[p] ∈ Fp or s[p] ∈ Fp × {s0}. �

12

Lemma 4 ([AEY00]). P0 = L(1-MPA`)

Corollary 3. P = L(1-MPA)

Proof. “⊇”: According to Lemma 3, a 1-MPA can be transformed into an equiv-
alent extended locally-accepting 1-MPA ((Ap)p∈Proc ,D, Sin , F), which then rec-
ognizes

⋃

s∈Sin L(((Ap)p∈Proc ,D, s, F)). The assertion follows from Lemma 4 and
Definition 2.

“⊆”: Similarly, any MSC language L ∈ P is the union of finitely many
languages L1, . . . , Lk ∈ P0, which, according to Lemma 4 are recognized by
locally-accepting 1-MPAs A1, . . . ,Ak (each employing, say, a as synchroniza-
tion message) with global initial states s1, . . . , sk and sets of global final states
F 1, . . . , F k, respectively, where, for each i ∈ {1, . . . , k}, F i =

∏

p∈Proc
F i

p for

some F i
p ⊆ Si

p (let hereby Si
p be the set of p-local states of Ai). Without loss of

generality, A1, . . . ,Ak have mutually distinct local state spaces. The extended
locally-accepting 1-MPA recognizing L processwise merges the state spaces and
transitions of A1, . . . ,Ak, employs {s1, . . . , sk} being the set of global initial
states, and, similarly to the proof of Lemma 3, sets the set of global final states
to be

∏

p∈Proc

⋃

i∈{1,...,k} F i
p. The assertion then follows from Lemma 3. �

Lemma 5. RP0 = L(1-bMPAf
`)

Proof. “⊇”: This direction directly follows from Lemma 4 and Lemma 7 below.
“⊆”: Let L ∈ RP0 and, for p ∈ Proc, Ap = (Sp, ∆p, s

in

p , Fp) be a finite
automaton over Cp satisfying L(Ap) = L � p := {M � p | M ∈ L}. Consider
the MPA A = ((A′

p)p∈Proc ,D, sin , F) with D = {a}, sin = (sin
p)p∈Proc, F =

∏

p∈Proc
Fp, and A′

p = (Sp, ∆
′
p) where, for any s, s′ ∈ Sp and σ ∈ Cp, (s, σ, a, s′) ∈

∆′
p if (s, σ, s′) ∈ ∆p. We claim that both A ∈ 1-bMPAf

` and L(A) = L. First, it
is easy to see that L ⊆ L(A). Now assume an MSC M to be contained in L(A).
For each p ∈ Proc, M � p ∈ L(Ap) = L � p so that there is an MSC M ′ ∈ L with
M ′ � p = M � p. From the definition of P0, it then immediately follows that M
is contained in L, too. Clearly, A is finite, locally-accepting, and bounded. �

Lemma 6. RP0 % L(1-sbMPAf
`)

Proof. It remains to show strictness. Let L = {M1}
∗ ∪ {M2}

∗ with M1 and M2

given by Figure 6, and suppose there is an MPA A ∈ 1-MPAf
` with L(A) = L.

Then, for each natural n ≥ 1, the word

send(1, 2)2
(

send(3, 1) rec(1, 2) send(1, 2)2 rec(2, 1) send(2, 3) rec(3, 2)
)n

from C∗ leads from the initial configuration of A via =⇒A to some configuration
(s, χ) with χ((1, 2)) = n+3. Thus, A cannot be strongly-bounded. Nevertheless,
L is contained in RP0 and 2-bounded. �

Corollary 4. RP = L(1-bMPAf)

13

1 2 3

M1:

1 2 3

M2:

Fig. 6. Universal boundedness vs. strong boundedness

1 2

Fig. 7. M(3, 2)

1 2 3 4

...
...i

 ff

i

Fig. 8. MSC M(i)

Lemma 7 ([HMKT00]). R = L(bMPAf) = L(sbMPAf)

In [BL04], it has been shown that any EMSO-definable MSC language is
implementable as a finite MPA and vice versa.

Lemma 8 ([BL04]). E = L(MPAf)

Lemma 9. We have the following strict inclusion:

(a) L(1-MPAf
`) $ EP0

(b) L(1-MPAf) $ EP

Proof. Inclusion of (a) follows from Lemma 4 and Lemma 8. Inclusion of (b)
then proceeds as the proof for Corollary 3. Let us turn towards strictness. For
naturals m, n ≥ 1, let the MSC M(m, n) be given by its projections accord-
ing to M(m, n) � 1 = send(1, 2)m (rec(1, 2) send(1, 2))

n
and M(m, n) � 2 =

(rec(2, 1) send(2, 1))n
rec(2, 1)m. The MSC M(3, 2) is depicted in Figure 7.

Now consider the EMSO-definable MSC language L = {M(n, n) | n ≥ 1}, which
is recognized by the finite locally-accepting 2-MPA from Figure 5. We easily
verify that L is a weak product MSC language. However, L is not contained
in L(1-MPAf). Because suppose there is A = ((Ap)p∈{1,2},D, sin , F) ∈ 1-MPAf

with L(A) = L. As A is finite, there is n ≥ 1 and an accepting run of A on
M(n, n) such that A1, when reading the first n letters send(1, 2) of M(n, n) � 1,
goes through a cycle, say of length i (≥ 1), and A2, when reading the last n let-
ters rec(2, 1) of M(n, n) � 2, goes through another cycle, say of length j (≥ 1).
But then there is also an accepting run of A on M(n + (i · j), n) 6∈ L. �

14

Lemma 10. For each N ≥ 1, L((N + 1)-bMPAf
`) \ L(N -MPA) 6= ∅.

For N ≥ 1, consider the MSC language LN+1 = {M(i) | i ∈ {1, . . . , N2 + 1}}∗

where M(i) is depicted in Figure 8. Though LN+1 is realizable by means of N +1
synchronization messages, N messages turn out to be insufficient.

Lemma 11. L(1-bMPAf) \ L(MPA`) 6= ∅

Proof. Let Lf consist of the MSCs M1 and M2 given by Figure 1. Then Lf

is contained in L(1-bMPAf) \ L(MPA`).In contrast, a bounded finite 1-MPA
recognizing Lf has some global knowledge employing global final states. �

Theorem 2. The classes of MSC languages proposed in Sections 3 and 4 draw
the picture given by Figure 3.

We did not pay special attention to the relation between (weak) EMSO-
definable product languages and the classes of languages defined by (locally-
accepting) finite N -MPAs for N ≥ 2, which is indicated by the light-gray line
in Figure 3. We believe that it is possible to show incomparability respectively
witnessed by a language depending on N and similar to the suggested one.

References

[AEY00] R. Alur, K. Etessami, and M. Yannakakis. Inference of Message Sequence
Charts. In Proceedings of the 22nd International Conference on Software

Engineering. ACM, 2000.
[BL04] B. Bollig and M. Leucker. Message-Passing Automata are expressively

equivalent to EMSO Logic. In Proceedings of CONCUR 2004, volume 3170
of LNCS. Springer, 2004.

[GMK04] B. Genest, A. Muscholl, and D. Kuske. A Kleene theorem for a class of
communicating automata with effective algorithms. In Proceedings of DLT

2004, volume 3340 of LNCS. Springer, 2004.
[GMSZ02] B. Genest, A. Muscholl, H. Seidl, and M. Zeitoun. Infinite-state high-level

MSCs: Model-checking and realizability. In Proceedings of ICALP 2002,
volume 2380 of LNCS. Springer, 2002.

[HMK+04] J. G. Henriksen, M. Mukund, K. Narayan Kumar, M. Sohoni, and P. S.
Thiagarajan. A theory of regular MSC languages. Information and Com-

putation, 2004. to appear.
[HMKT00] J. G. Henriksen, M. Mukund, K. Narayan Kumar, and P. S. Thiagarajan.

Regular collections of message sequence charts. In Proceedings of MFCS

2000, volume 1893 of LNCS. Springer, 2000.
[ITU99] ITU-TS Recommendation Z.120: Message Sequence Chart 1999 (MSC99),

1999.
[Kus02] D. Kuske. A further step towards a theory of regular MSC languages. In

Proceedings of STACS 2002, volume 2285 of LNCS. Springer, 2002.
[Kus03] D. Kuske. Regular Sets of Infinite Message Sequence Charts. Information

and Computation, 187:80–109, 2003.
[Mor02] R. Morin. Recognizable sets of message sequence charts. In Proceedings of

STACS 2002, volume 2285 of LNCS. Springer, 2002.
[Thi95] P. S. Thiagarajan. A trace consistent subset of PTL. In Proceedings of

CONCUR 1995, volume 962 of LNCS. Springer, 1995.

15

