
Learning meets Verification

Martin Leucker

Institut für Informatik
TU München, Germany

Abstract. In this paper, we give an overview on some algorithms for
learning automata. Starting with Biermann’s and Angluin’s algorithms,
we describe some of the extensions catering for specialized or richer
classes of automata. Furthermore, we survey their recent application to
verification problems.

1 Introduction

Recently, several verification problems have been addressed by using learning
techniques. Given a system to verify, typically its essential part is learned and
represented as a regular system, on which the final verification is then carried
out. The aim of this paper is to present these recent developments in a coherent
fashion. It should serve as an annotated list of references as well as describe the
main ideas of these approaches rather than to pin down every technical detail,
as these can be found in the original literature.

From the wide spectrum of learning techniques, we focus here on learning
automata, or, as it is sometimes called, on inference of automata. We then
exemplify how these learning techniques yield new verification approaches, as
has recently been documented in the literature. Note, by verification we restrict
to model checking [21] and testing [16] techniques.

This paper consists of two more sections: In the next section, we introduce
learning techniques for automata while in Section 3, we list some of their appli-
cations in verification procedures.

In Section 2, we first recall Biermann’s so-called offline approach and An-
gluin’s online approach to learning automata. Then, we discuss variations of
the setup for online learning as well as describe domain specific optimizations.
Furthermore, we sketch extensions to Angluin’s learning approach to so-called
regular-representative systems, timed systems, and ω-regular languages. We con-
clude Section 2 by giving references to further extensions and implementations.

In Section 3, we show applications of learning techniques in the domain of
verification. We start with the problem of minimizing automata, which follows
the idea of learning a minimal automaton for a given system rather than to min-
imize the given system explicitly. Black-box checking, which renders black-box
testing as learning and (white-box) model checking, is discussed next. We con-
tinue with the idea of learning assumptions in compositional verification. Next,
we follow the idea that a (least) fixpoint of some functional might be learned

rather than computed iteratively. Implicitly, this idea has been followed when
learning network invariants or learning representations for the set of reachable
states in regular model checking [2]. We conclude Section 3 by referring to further
applications.

2 Learning Algorithms for Regular Systems

The general goal of learning algorithms for regular systems is to identify a ma-
chine, usually of minimal size, that conforms with an a priori fixed set of strings
or a (class of) machines.

Here, we take machines to be deterministic finite automata (DFAs) (over
strings), though most approaches and results carry over directly to the setting
of finite-state machines (Mealy-/Moore machines).

In general, two types of learning algorithms for DFAs can be distinguished,
so-called online and offline algorithms. Offline algorithms get a fixed set of pos-
itive and negative examples, comprising strings that should be accepted and,
respectively, strings that should be rejected by the automaton in question. The
learning algorithm now has to provide a (minimal) automaton that accepts the
positive examples and rejects the negative ones.

Gold [30] was among the first studying this problem. Typical offline algo-
rithms are based on a characterization in terms of a constraint satisfaction prob-
lem (CSP) over the natural numbers due to Biermann [14].

A different approach was proposed in [54], though imposing stronger assump-
tions (prefix-closeness) on the set of examples. We also note that there are effi-
cient algorithms inferring a not necessarily minimal DFA, like [44] or [48] (known
as RPNI).

Online algorithms have the possibility to ask further queries, whether some
string is in the language of the automaton to learn or not. In this way, an
online algorithm can enlarge the set of examples in a way most suitable for the
algorithm and limiting the number of minimal automata in question, i.e., the
ones conforming to the set of examples so far.

A popular setup for an online approach is that of Angluin’s L∗ algorithm [6] in
which a minimal DFA is learned based on so-called membership and equivalence
queries. Using a pictorial language, we have a learner whose job is to come up
with the automaton to learn, a teacher who may answer whether a given string is
in the language as well an oracle answering whether the automaton H currently
proposed by the learner is correct or not. This setting is depicted in Figure 1(a).

Clearly, an online algorithm like Angluin’s should perform better than of-
fline algorithms like Biermann’s. Indeed, Angluin’s algorithm is polynomial while
without the ability to ask further queries the problem of identifying a machine
conforming to given examples is known to be NP-complete [31].

Note that there are slightly different approaches to query-based learning of
regular languages based on observation packs or discrimination trees, which are
compared to Angluin’s approach in [8, 13].

2

Learner

Oracle

Teacher
Is string u

in the language?

Yes/No

Yes/Counterexample

Is H equivalent to
system to learn?

(a) The setting of L∗

Learner

Oracle

Teacher
Is string u

in the language?

Yes/No/Don’t know

Yes/Counterexample

Is H equivalent to
system to learn?

(b) The setting of ABL∗

Fig. 1. The setup for the learning algorithms

In Angluin’s setting, a teacher will answer queries either positively or neg-
atively. In many application scenarios, however, parts of the machine to learn
are not completely specified or not observable. Then, queries may be answered
inconclusively, by don’t know, also denoted by ?. We term such a teacher inex-
perienced, see Figure 1(b).

In the following, we will look more closely at Biermann’s approach (in Sec-
tion 2.2), Angluin’s algorithm (Section 2.3), as well as their combinations serv-
ing the setup with an inexperienced teacher (Section 2.4). Furthermore, we will
sketch some extensions of these algorithms (Sections 2.5 – 2.9). Before, however,
we look at the fundamental concept of right congruences that is the basis for the
learning algorithms.

2.1 DFAs, right-congruences, and learning regular systems

Let N denote the natural numbers, and, for n ∈ N, let [n] := {1, . . . , n}. For
the rest of this section, we fix an alphabet Σ. A deterministic finite automaton
(DFA) A = (Q, q0, δ, Q

+) over Σ consists of a finite set of states Q, an initial
state q0 ∈ Q, a transition function δ : Q × Σ → Q, and a set Q+ ⊆ Q of
accepting states. A run of A is a sequence q0

a1→ q1
a2→ . . .

an→ qn such that ai ∈ Σ,
qi ∈ Q and δ(qi−1, ai) = qi for all i ∈ [n]. It is called accepting iff qn ∈ Q+. The
language accepted by A, denoted by L(A), is the set of strings u ∈ Σ∗ for which
an accepting run exists. Since the automaton is deterministic, it is reasonable
to call the states Q \ Q+ also rejecting states, denoted by Q−. We extend δ to
strings as usual by δ(q, ǫ) = q and δ(q, ua) = δ((δ, u), a). The size of A, denoted
by |A|, is the number of its states Q, denoted by |Q|. A language is regular iff it
is accepted by some DFA.

The basis for learning regular languages is given by their characterization in
terms of Nerode’s right congruence ≡L: Let ≡L be defined by, for u, v ∈ Σ∗

u ≡L v iff for all w ∈ Σ∗ : uw ∈ L ⇔ vw ∈ L.

It is folklore, that a language L is regular iff ≡L has finite index.
Intuitively, most learning algorithms estimate the equivalence classes for a

language to learn. Typically, it assumes that all words considered so far are

3

equivalent, unless, a (perhaps empty) suffix shows that they cannot be equiva-
lent.

Based on Nerode’s right congruence, we get that, for every regular language
L, there is a canonical DFA AL that accepts L and has a minimal number of
states: Let uL or shortly u denote the equivalence class of u wrt. ≡L. Then the
canonical automaton of L is AL = (QL, q0L, δL, Q+

L) defined by

– QL = Σ/ ≡L is the set of equivalence classes wrt. ≡L,
– q0L = ǫ,
– δL : QL × Σ → Q is defined by δL(u, a) = ua,
– Q+

L = {u | u ∈ L}

We omit the subscript L provided L is known from the context.

2.2 Biermann’s algorithm

Biermann’s learning algorithm [14] is an offline algorithm for learning a DFA A.
We are given a set of strings that are to be accepted by A and a set of strings
that are to be rejected by A. There is no possibility of asking queries and we have
to supply a minimal DFA that accepts/rejects these strings. The set of positive
and negative strings are called sample. We now formally describe samples and
Biermann’s algorithm.

A sample is a set of strings that, by the language in question, should either
be accepted, denoted by +, or rejected, denoted by −. For technical reasons,
it is convenient to work with prefix-closed samples. As the samples given to us
are not necessarily prefix closed we introduce the value maybe, denoted by ?.
Formally, a sample is a partial function O : Σ∗ → {+,−, ?} with finite, prefix-
closed domain D(O). That is, O(u) is defined only for finitely many u ∈ Σ∗ and
is defined for u ∈ Σ∗ whenever it is defined for some ua, for a ∈ Σ. For a string
u the sample O yields whether u should be accepted, rejected, or we do not know
(or do not care). For strings u and u′, we say that O disagrees on u and u′ if
O(u) 6=?, O(u′) 6=?, and O(u) 6= O(u′).

An automaton A is said to conform with a sample O , if whenever O is defined
for u we have O(u) = + implies u ∈ L(A) and O(u) = − implies u /∈ L(A).

Given a sample O and a DFA A that conforms with O , let Su denote the
state reached in A when reading u. As long as we do not have A, we can treat
Su as a variable ranging over states and derive constraints for the assignments
of such a variable. More precisely, let CSP(O) denote the set of equations

{Su 6= Su′ | O disagrees on u and u′} (C1)
∪ {Su = Su′ ⇒ Sua = Su′a | a ∈ Σ, ua, u′a ∈ D(O)} (C2)

Clearly, (C1) and (C2) reflect properties of Nerode’s right congruence: (C1) tests
u and u′ on the empty suffix and (C2) guarantees right-congruence. Let the
domain of D(CSP(O)) comprise the set of variables Su used in the constraints.

An assignment of CSP(O) is mapping Γ : D(CSP(O)) → N. An assignment
Γ is called a solution of CSP(O) if it fulfils the equations over the naturals,

4

defined in the usual manner. The set CSP(O) is solvable over [N] iff there is a
solution with range [N]. It is easy to see that every solution of the CSP problem
over the natural numbers can be turned into an automaton conforming with O .
We sum-up:

Lemma 1 (Learning as CSP, [14]). For a sample O, a DFA with N states
conforming to O exists iff CSP(O) is solvable over [N].

Proof. Let A = (Q, q0, δ, Q
+) be a DFA conforming with O having N states.

Without loss of generality, assume that Q = [N]. It is easy to see that assigning
the value δ(q0, u) to each Su ∈ D(CSP(O)) solves CSP(O).

On the other hand, given a solution Γ of CSP(O) with range [N], define
A = (Q, q0, δ, Q

+) by

– Q = [N],
– q0 = Sǫ,
– δ : Q × Σ → Q is any function satisfying δ(n, a) = n′, if there is Su, Sua ∈

D(CSP(O)) with Su = n, Sua = n′. This is well-defined because of (C2).
– Q+ ⊆ Q is any set satisfying, for Su ∈ D(CSP(O)) with Su = n, O(u) = +

implies n ∈ Q+, O(u) = − implies n /∈ Q+. This is well-defined because of
(C1).

Let us give three simple yet important remarks:

– Taking a different value for every Su, trivially solves the CSP problem. Thus,
a solution of CSP(O) within range [|D(CSP(O))|] exists.

– Then, a solution with minimum range exists and yields a DFA with a mini-
mal number of states.

– From the above proof, we see that we typically cannot expect to get a unique
minimal automaton conforming with O—in contrast to Angluin’s L∗ algo-
rithm, as we will see.

Lemma 1 together with the remarks above gives a simple non-deterministic
algorithm computing in polynomial time a DFA for a given observation, mea-
sured with respect to N := |D(CSP(O))|, which is sketched Algorithm 1. Note
that by results of Gold [31], the problem is NP complete and thus, the algorithm
is optimal.

Algorithm 1 Pseudo code for Biermann’s Learning Algorithm

1 % Input O
2 Guess n ∈ [N], where N := |D(CSP(O))|
3 Guess assignment Γ of variables in D(CSP(O))
4 Verify that Γ satisfies (C1) and (C2)
5 Construct the DFA as described in Lemma 1

5

Pruning the search space of the CSP problem While the previous algo-
rithm is of optimal worst case complexity, let us make a simple yet important
observation to simplify the CSP problem, which often pays off in practice [35].
We call a bijection ι : [N] → [N] a renaming and say that assignments Γ and Γ ′

are equivalent modulo renaming iff there is a renaming ι such that Γ = ι ◦ Γ ′.
Since names (here, numbers) of states have no influence on the accepted

language of an automaton, we get

Lemma 2 (Name irrelevance). For a sample O, Γ : D(CSP(O)) → [N] is a
solution for CSP(O) iff for every renaming ι : [N] → [N], ι ◦ Γ is a solution of
CSP(O).

The previous lemma can be used to prune the search space for a solution:
We can assign numbers to state variables, provided different numbers are used
for different states.

Definition 1 (Obviously different). Su and Su′ are said to be obviously dif-
ferent iff there is some v ∈ Σ∗ such that O disagrees on uv and u′v. Otherwise,
we say that Su and Su′ look similar.

A CSP problem with M obviously different variables needs at least M dif-
ferent states, which gives us together with Lemma 1:

Lemma 3 (Lower bound). Let M be the number of obviously different vari-
ables. Then CSP(O) is not solvable over all [N] with N < M .

Note that solvability over [M] is not guaranteed, as can easily be seen.
As a solution to the constraint system produces an automaton and in view

of Lemma 2, we can fix the values of obviously different variables.

Lemma 4 (Fix different values). Let Su1
, . . . , SuM

be M obviously different
variables. Then CSP(O) is solvable iff CSP(O)∪ {Sui

= i | i ∈ [M]} is solvable.

The simple observation stated in the previous lemma improves the solution
of a corresponding SAT problem defined below significantly, as described in [35].

Solving the CSP problem It remains to come up with a procedure solving
the CSP problem presented above in an reasonable manner. An explicit solution
is proposed in [47]. In [35], however, an efficient encoding as a SAT problem
has been given, for which one can rely on powerful SAT solvers. Actually, two
different encodings have been proposed: binary and unary.

Let n be the number of strings in D(O) and N be the size of the automaton
in question. Then CSP(O) has O(n2) constraints. Using the binary SAT encod-
ing yields O(n2N log N) clauses over O(n log N) variables. Totally, the unary
encoding has O(n2N2) clauses with O(nN) variables (see [35] for details).

While the first is more compact for representing large numbers, it turns out
that the unary encoding speeds-up solving the resulting SAT problem.

6

2.3 Angluin’s algorithm

Angluin’s learning algorithm, called L∗ [6], is designed for learning a regular
language, L ⊆ Σ∗, by constructing a minimal DFA A such that L(A) = L. In
this algorithm a Learner , who initially knows nothing about L, is trying to learn
L by asking a Teacher and an Oracle, who know L, respectively two kinds of
queries (cf. Figure 1(a)):

– A membership query consists of asking whether a string w ∈ Σ∗ is in L.
– An equivalence query consists of asking whether a hypothesized DFA H is

correct, i.e., whether L(H) = L. The Oracle answers yes if H is correct, or
else supplies a counterexample w, either in L \ L(H) or in L(H) \ L.

The Learner maintains a prefix-closed set U ⊆ Σ∗ of prefixes, which are candi-
dates for identifying states, and a suffix-closed set V ⊆ Σ∗ of suffixes, which
are used to distinguish such states. The sets U and V are increased when
needed during the algorithm. The Learner makes membership queries for all
words in (U ∪ UΣ)V , and organizes the results into a table T that maps each
u ∈ (U ∪ UΣ) to a mapping T (u) : V 7→ {+,−} where + represents accepted
and − not accepted. In [6], each function T (u) is called a row. When T is

– closed, meaning that for each u ∈ U , a ∈ Σ there is a u′ ∈ U such that
T (ua) = T (u′), and

– consistent, meaning that T (u) = T (u′) implies T (ua) = T (u′a),

the Learner constructs a hypothesized DFA H = (Q, q0, δ, Q
+), where

(a) Q = {T (u) | u ∈ U} is the set of distinct rows,
(b) q0 is the row T (λ),
(c) δ is defined by δ(T (u), a) = T (ua), and

(d) Q+ = {T (u) | u ∈ U, T (u)(λ) = +}

and submits H as an equivalence query. If the answer is yes, the learning pro-
cedure is completed, otherwise the returned counterexample u is used to extend
U by adding all prefixes of u to U , and subsequent membership queries are per-
formed in order to make the new table closed and consistent producing a new
hypothesized DFA, etc. The algorithm is sketched in Algorithm 2.

Complexity It can easily be seen that the number of membership queries can be
bounded by O(kn2m), where n is the number of states of the automaton to learn,
k is the size of the alphabet, and m is the length of the longest counterexample.
The rough idea is that for each entry in the table T a query is needed, and
O(knm) is the number of rows, n the number of columns. The latter is because
at most n equivalence queries suffice. To see this, check that for any closed and
consistent T , there is a single and therefore unique DFA conforming with T (as
opposed to Biermann’s approach). Thus, equivalence queries are performed with
automata of strictly increasing size.

7

Algorithm 2 Pseudo code for Angluin’s Learning Algorithm

1 Function Angluin()
2 initialize (U,V,T)
3 repeat
4 while not(isClosed((U, V, T)) or not(isConsistent((U, V, T))
5 if not(isConsistent((U, V, T)) then
6 find a ∈ Γ , v ∈ V and u, u′ ∈ U such that
7 T (u) = T (u′) and T (ua)(v) 6= T (u′a)(v)
8 add av to V

9 for every u ∈ U ∪ UΓ

10 ask membership query for uav

11 if not(isClosed((U,V, T)) then
12 find u ∈ U , a ∈ Γ such that T (ua) 6= T (u′) for all u′ ∈ U

13 move ua to U

14 for every a′ ∈ Γ and v ∈ V

15 ask membership query for u′aa′v

16 construct hypothesized automaton H
17 do an equivalence query with hypothesis H
18 if the answer is a counterexample u then
19 add every prefix u′ of u to U .
20 for every a ∈ Γ , v ∈ V and prefix u′ of u

21 ask membership query for u′v and u′av.
22 until the answer is ’yes’ to the hypothesis H
23 Output H.

2.4 Learning from Inexperienced Teachers

In the setting of an inexperienced teacher (cf. Figure 1(b)), queries are no longer
answered by either yes or no, but also by maybe, denoted by ?. We can easily
come a up with a learning algorithm in this setting, relying on Biermann’s ap-
proach: First, the learner proposes the automaton consisting of one state accept-
ing every string.1 Then, the Learner consults the oracle, which either classifies
the automaton as the one we are looking for or returns a counter example c. In
the latter case, c as well as its prefixes are added to the sample O : c with +/−
as returned by the oracle and the prefixes with ? (unless O is already defined
on the prefix), and Biermann’s procedure is called to compute a minimal DFA
consistent with O . Again the oracle is consulted and either the procedure stops
or proceeds as before by adding the new counter example and its prefixes as
before.

However, the procedure sketched above requires to create a hypothesis and
to consult the oracle for every single observation and does not make use of
membership queries at all.

1 Proposing the automaton that rejects every string is equally OK.

8

Often, membership queries are “cheaper” than equivalence queries. Then, it
might be worthwhile to “round off” the observation by consulting the teacher,
as in Angluin’s algorithm.

We list the necessary changes to Angluin’s algorithm [35] yielding algorithm
ABL∗. We keep the idea of a table but now, for every u ∈ (U ∪ UΣ), we get
a mapping T (u) : V → {+,−, ?}. For u, u′ ∈ (U ∪ UΣ), we say that rows T (u)
and T (v) look similar, denoted by T (u) ≡ T (u′), iff, for all v ∈ V , T (u)(v) 6=?
and T (u′)(v) 6=? implies T (u)(v) = T (u′)(v). Otherwise, we say that T (u) and
T (v) are obviously different. We call T
– weakly closed if for each u ∈ U , a ∈ Σ there is a u′ ∈ U such that T (ua) ≡

T (u′), and
– weakly consistent if T (u) ≡ T (u′) implies T (ua) ≡ T (u′a).

Angluin’s algorithm works as before, but using the weak notions of closed and
consistent. However, extracting a DFA from a weakly closed and weakly consis-
tent table is no longer straightforward. However, we can go back to Biermann’s
approach now.

Clearly, Angluin’s table (including entries with ?) can easily be translated to
a sample, possibly by adding prefixes to (U ∪ UΣ)V with value ? to obtain a
prefix-closed domain.

Catering for the optimizations listed for Biermann’s algorithm, given a table
T : (U ∪ UΣ) × V → {+,−, ?}, we can easily approximate obviously different
states: For u, u′ ∈ (U ∪ UΣ), states Su and Su′ are obviously different, if the
rows T (u) and T (u′) are obviously different.

Overall, in the setting of an inexperienced teacher, we use Biermann’s ap-
proach to derive a hypothesis of the automaton in question, but use the comple-
tion of Angluin’s observation table as a heuristic to round the sample by means
of queries.

2.5 Domain specific optimizations for Angluin’s algorithm

Angluin’s L∗ algorithm works in the setting of arbitrary regular languages. If the
class of regular languages is restricted, so-called domain specific optimizations
may be applied to optimize the learning algorithm [38]. For example, if the
language to learn is known to be prefix closed, a positive string ua implies u to
be positive as well, preventing to consult the teacher for u [11].

Pictorially, such a setting can easily be described by adding an assistant
between the learner and the teacher. Queries are send to the assistant who only
consults the teacher in case the information cannot be deduced from context
information [13]. Assistants dealing with independent actions, I/O systems, and
symmetrical systems have been proposed in [38].

2.6 Learning of regular representative systems

Angluin’s L∗ algorithm identifies a DFA accepting a regular language. Such a
language, however, might represent a more complicated object. In [15], for exam-

9

ple, L∗ is used to infer message-passing automata (MPAs) accepting languages
of message sequence charts (MSCs).

Let us work out a setup that allows to learn systems using a simple modifi-
cation of Angluin’s L∗ algorithm. A representation system is a triple (E ,O,L),
where

– E is a set of elements,
– O is a set of objects,
– and L : O → 2E is a language function yielding for an object o the set of

elements it represents.

The objects might be classified into equivalence classes of an equivalence relation
∼L ⊆ O×O by L: o ∼ o′ iff L(o) = L(o′). Intuitively, objects could be understood
as subsets of E . However, like with words and automata, subsets of languages
could be infinite while automata are a finite representation of such an infinite
set.

A further example is where objects are MPAs, elements are MSCs, and MPA
represent MSC languages. Then, two MPAs are considered to be equivalent if
they recognize the same MSC language.

Our goal is now to represent objects (or rather their equivalence classes) by
regular word languages, say over an alphabet Σ, to be able to use L∗. An almost
trivial case is given when there is a bijection from regular word languages to O.
As we will see, a simple framework can also be obtained, when there is bijection
of O to a factor of a subset of regular languages.

Let D be a subset of Σ∗. The motivation is that only regular word languages
containing at most words from D are considered and learned. Furthermore, let
≈ ⊆ D×D be an equivalence relation. We say that L ⊆ D is ≈-closed (or, closed
under ≈) if, for any w, w′ ∈ D with w ≈ w′, we have w ∈ L iff w′ ∈ L.

Regular Languages Objects

D

D

u ≈ u′

w′′

w ≈ w′

obj

∼

Fig. 2. Representing objects by
regular languages

Naturally, D and ≈ determine the par-
ticular class RminDFA(Σ,D,≈) := {L ⊆ D |
L is regular and closed under ≈} of regu-
lar word languages over Σ (where any lan-
guage is understood to be given by its mini-
mal DFA). Suppose a language of this class
RminDFA(Σ,D,≈) can be learned in some
sense that will be made precise. For learning
elements of O, we still need to derive an ob-
ject from a language in RminDFA(Σ,D,≈).
To this aim, we suppose a computable bi-

jective mapping obj : RminDFA(Σ,D,≈) → [O]∼ = {[o]∼ | o ∈ O} (where
[o]∼ = {o′ ∈ O | o′ ∼ o}). A typical situation is depicted in Fig 2, where the
larger ellipse is closed under ≈ (w ≈ w′), whereas the smaller circle is not, as it
contains u but not u′.

As Angluin’s algorithm works within the class of arbitrary DFA over Σ, its
Learner might propose DFAs whose languages are neither a subset of D nor
satisfy the closure properties for ≈. To rule out and fix such hypotheses, the
language inclusion problem and the closure properties in question are required to

10

be constructively decidable, meaning that they are decidable and if the property
fails, a reason of its failure can be computed.

Let us be more precise and define what we understand by a learning setup:

Definition 2. Let (E ,O,L) be a representation system. A learning setup for
(E ,O,L) is a quintuple (Σ,D,≈, obj , elem) where

– Σ is an alphabet,
– D ⊆ Σ∗ is the domain,
– ≈ ⊆ D × D is an equivalence relation such that, for any w ∈ D, [w]≈ is

finite,
– obj : RminDFA(Σ,D,≈) → [O]∼L

is a bijective effective mapping in the sense
that, for A ∈ RminDFA(Σ,D,≈), a representative of obj (A) can be computed.

– elem : [D]≈ → E is a bijective mapping such that, for any o ∈ O,

elem(L(obj−1([o]∼L
))) = L(o)

Furthermore, we require that the following hold for DFA A over Σ:

(D1) The problem whether L(A) ⊆ D is decidable. If, moreover, L(A) 6⊆ D, one
can compute w ∈ L(A) \D. We then say that Inclusion(Σ,D) is construc-
tively decidable.

(D2) If L(A) ⊆ D, it is decidable whether L(A) is ≈-closed. If not, one can
compute w, w′ ∈ D such that w ≈ w′, w ∈ L(A), and w′ 6∈ L(A). We then
say that the problem EqClosure(Σ,D,≈) is constructively decidable.

Given a regular representation system (E ,O,L) for a which a learning setup
exists, let us sketch a learning algorithm that, by using membership queries for
elements e ∈ E and equivalence queries for objects o ∈ O, identifies a prede-
termined object. Let (Σ,D,≈, obj , elem) be a learning setup for (E ,O,L). To
obtain this algorithm, we rely on Angluin’s algorithm but modify it a little.
The general idea is that the algorithms learns the regular language representing
the object in question. However, membership queries for words and equivalence
queries for automata are translated thanks to elem and respectively obj . How-
ever, use these functions in a meaningful manner, we modify also the processing
of membership queries as well as the treatment of hypothesized DFAs:

– Once a membership query has been processed for a word w ∈ D (by querying
elem(w)), queries w′ ∈ [w]≈ must be answered equivalently. They are thus
not forwarded to the Teacher anymore. Again, as in Section 2.5, we might
think of an Assistant in between the Learner and the Teacher that checks
if an equivalent query has already been performed. Membership queries for
w 6∈ D are not forwarded to the Teacher either but answered negatively by
the Assistant .

– When the table T is both closed and consistent, the hypothesized DFA H is
computed as usual. After this, we proceed as follows:
1. If L(H) 6⊆ D, compute a word w ∈ L(H) \ D, declare it a counterex-

ample, and modify the table T accordingly (possibly involving further
membership queries).

11

2. If L(H) ⊆ D but L(H) is not ≈-closed, then compute w, w′ ∈ D such
that w ≈ w′, w ∈ L(H), and w′ 6∈ L(H); perform membership queries
for [w]≈.

Actually, a hypothesized DFA H undergoes an equivalence test (by querying
obj (H)) only if L(H) ⊆ D and L(H) is ≈-closed. I.e., if, in the context of the
extended learning algorithm, we speak of a hypothesized DFA, we actually
act on the assumption that L(H) is the union of ≈-equivalence classes.

Let the extension of Angluin’s algorithm wrt. a learning setup as sketched
above be called ExtendedAngluin. A careful analysis shows:

Theorem 1. Let (Σ,D,≈, obj , elem) be a learning setup for a representation
system (E ,O,L). If o ∈ O has to be learned, then invoking

ExtendedAngluin((E ,O,L), (Σ,D,≈, obj , elem))

returns, after finitely many steps, an object o′ ∈ O such that o′ ∼L o.

The theorem suggests the following definition:

Definition 3. A representation system (E ,O,L) is learnable if there is some
learning setup for (E ,O,L).

2.7 Learning of timed systems

Angluin’s algorithm has been extended to the setting of realtime systems. In [33]

and [32], learning of event-deterministic event-recording automata and, respec-
tively, event-recording automata, which both form sub-classes of timed automata
[4], is described. For learning timed systems, several obstacles have to be over-
come. First, timed strings range over pairs of letters (a, t) where a is from some
finite alphabet while t is a real number, denoting the time when a has occurred.
Thus, timed strings are sequences of letters taken from some infinite alphabet,
while the learning algorithms deal with strings over finite alphabets. To be able
to deal with strings over a finite alphabet, one joins several time points to get
a zone [33] or region [32] of time points. This allows us to work over an alpha-
bet consisting of actions and zone respectively region constraints, which, given
a greatest time point K, gives rise to a finite alphabet. These strings, which
are built-up from letters of actions and constraints, are sometimes also called
symbolic strings. It has been shown that the set of symbolic strings accepted
by an (event-deterministic) event-recording automaton forms a regular language
[27], which we call the symbolic regular language of the automaton. The sec-
ond obstacle to overcome is to derive a form or Nerode’s right congruence for
such symbolic regular languages that is consistent with a natural notion of right
congruence for timed systems. This is implicitly carried out in [33, 32] by intro-
ducing sharply-guarded event-deterministic event-recording automata and simple
event-recording automata, which are both unique normal forms for all automata
accepting the same language.

12

This gives that Angluin’s learning algorithm can be reused to learn (symbolic
versions of) timed languages, yielding either sharply-guarded event-deterministic
event-recording automata [33] or simple event-recording automata [32]. However,
a direct application of Angluin’s algorithm employs queries for symbolic strings
that might represent complex timed behavior of the underlying system. To deal
with this obstacle, an assistant can then be used to effectively bridge the level
from symbolic timed strings (actions plus regions) to timed strings (action plus
time value).

A different approach to learning timed systems, based on decision trees, is
presented in [34].

2.8 Learning of ω-regular languages

Reactive systems, like a web server, are conceptually non-terminating systems,
whose behavior is best modelled by infinite rather than finite strings. In such a
setting, Angluin’s learning algorithm has to be extended to learn ω-regular lan-
guages [45]. Therefore, two main obstacles have to be overcome: First, a suitable
representation for infinite strings has to be found. Second, a suitable version of
Nerode’s right congruence has to be defined. The first obstacle is overcome by
considering only so-called ultimately periodic words, which can be described by
u(v)ω for finite words u, v ∈ Σ∗ [53]. The second obstacle is solved by restricting
the class of ω-regular languages. The given algorithm is restricted to languages
L for which both L and its complement can be accepted by a deterministic
ω-automaton, respectively. This class coincides with the class of deterministic
weak Büchi automata. We are not aware of any Biermann-style or Angluin-style
learning algorithm for the full class of ω-regular languages.

2.9 Further extensions

Especially in communication protocols, the input/output actions of a system can
be distinguished in control sensitive or not. Some parameters of the system affect
the protocol’s state, while others are considered as data, just to be transmitted,
for example. Optimizations of Angluin’s algorithm for such a setup, in which we
are given parameterized actions, have been proposed in [12].

Angluin’s algorithm has been extended to deal with regular tree languages
rather than word languages in [26, 18]. Learning of strategies for games has been
considered in [25]. A symbolic version of Angluin’s L∗ algorithm based on BDDs
[17] is presented in [5].

Learning (certain classes of) message passing automata accepting (regular)
sets of message sequence charts has been studied in [15], using ideas of regular
representations (cf. Section 2.6).

2.10 Implementations

Implementations of Angluin’s learning algorithm have been described and ana-
lyzed in [11, 52].

13

Incremental
Learning
(Angluin)

Model Checking
wrt. current model

Check equivalence
(VC algorithm)

Compare
counterexample

with system

report
no error found

report
counterexample

No counterexample Counterexample found

Conformance established Counterexample confirmed

Model and system do not conform
Counterexample refuted

Fig. 3. Black Box Checking

3 Verification using Learning

3.1 Minimizing automata

Typical minimization algorithms for automata work on the transition graph
of the given automaton. In [50], however, a minimization algorithm for incom-
pletely specified finite-state machines was proposed, which is based on learning
techniques: Instead of simplifying a given machine, a new, minimal machine is
learned. For this, membership and equivalence queries are carried out on the
given system.

Although no verification is performed in this approach, it entails one of the
main motivations for using learning techniques in verification: Instead of deriving
some object by modifying a large underlying system, one directly learns the small
result. Clearly, it depends very much on the whole setup when this idea is fruitful.

3.2 Black-box checking

A different motivation for using learning techniques for verification purposes is
when no model of the underlying system is given. Thus, we are faced with a
so-called black box system i.e. a system for which no model is given but whose
output can be observed for a given input. In black box checking or adaptive model
checking [49, 36] these systems should be tested against a formal specification.
Conceptually, the problem can be solved by learning a (white box) model of the
black box, on which model checking can be performed. This can be done–under
strong restrictions—for example using L∗ and a conformance test like the ones
in [59, 19]. In [49, 36], the tasks of learning and model checking are interweaved
as explained in Figure 3, suggesting better practical performance.

First, an initial model of the system to check is learned. If model checking
stops with a counter example, this might be due to the inadequacy of the current

14

version of the model. However, running the counter example reveals whether
indeed a bug of the black-box system has been found, or, whether the counter
example was spurious—and should be used to improve the model.

If model checking does not provide a counter example, we have to apply a
conformance test [59, 19] to make sure that no (violating) run of the black box
is missing in the model. If a missing run was detected, the model is updated,
otherwise, the correctness of the black box has been proved.

3.3 Compositional verification

Compositional verification addresses the state-space explosion faced in model
checking by exploiting the modular structure naturally present in system designs.
One prominent technique uses the so-called assume guarantee rule: Take that we
want to verify a property ϕ of the system M1 ‖ M2, consisting of two modules M1

and M2 running synchronously in parallel, denoted by M1 ‖ M2 |= ϕ. Instead of
checking M1 ‖ M2 |= ϕ, one considers a module A and verifies that

1. M1 ‖ A |= ϕ

2. M2 is a refinement of A.

The rational is that A might be simpler than M2, in the sense that both checking
M1 ‖ A |= ϕ and M2 is a refinement of A is easier than checking M1 ‖ M2 |= ϕ.

A setup, for which the assume-guarantee rule has been proven to be sound
and complete [46], is when

1. modules can be represented as transition systems,

2. the parallel operator ‖ satisfies L(M ‖ M ′) = L(M) ∩ L(M ′), and

3. ϕ is a safety property and can thus be understood as a DFA Aϕ accepting
the allowed behavior of the system to check.

For such a setup, the assume-guarantee rule boils down to come up with
some A such that

(AG1) L(M1 ‖ A) ⊆ L(Aϕ) and

(AG2) L(A) ⊇ L(M2).

In [24] and [5], it has been proposed to employ a learning algorithm to come up
with such a module A. Here, we follow [5], which uses Angluin’s L∗ algorithm.

Whenever Angluin’s algorithm proposes some hypothesis automaton A, it is
easy to answer an equivalence query:

– if L(M1 ‖ A) 6⊆ L(Aϕ), consider w ∈ L(M1 ‖ A) \ L(Aϕ). If w ∈ L(M2),
w witnesses that M1 ‖ M2 |= ϕ does not hold. Otherwise, return w as a
counterexample as result of the equivalence query.

– if L(A) 6⊇ L(M2) provide a w ∈ L(A) \L(M2) as a counterexample as result
of the equivalence query.

15

If both tests succeed, we have found an A showing that M1 ‖ M2 |= ϕ holds.

Membership queries are less obvious to handle. Clearly, when w ∈ L(M2)
then w must be in L(A) because of (AG2). If w /∈ L(Aϕ) but w ∈ L(M1), w must
not be in L(A) since otherwise the safety property ϕ is not met ((AG1)).Note,
if in this case also w ∈ L(M2) (i.e., w ∈ L(M1) ∩ L(M2), w 6∈ L(Aϕ)), w is a
witness that M1 ‖ M2 6|= ϕ. In all other cases, however, it is not clear whether
w should be classified as + or −.

In [5], the following heuristic is proposed. Let B := M1∪Aϕ, where A denotes
complementation. Thus, runs of B either satisfy ϕ or are not in the behavior of
M1 and thus not in the behavior of M1 running in parallel with any module A or
M2. Now, if M1 ‖ M2 |= ϕ then L(M2) ⊆ L(B) as M2 may only consist of words
either satisfying ϕ or ones that are removed when intersecting with M1. If, on the
other hand, M1 ‖ M2 6|= ϕ, then there is a w ∈ L(M1) ∩L(M2) and w /∈ L(Aϕ),

meaning that w ∈ L(M1)∩L(M2)∩L(Aϕ). Hence, w ∈ L(M1) ∪ L(Aϕ)∩L(M2).
Thus, there is a w that is not in L(B) but in L(M2).

In other words, B is a module that allows to either show or disprove that M1 ‖
M2 |= ϕ. Thus, answering membership queries according to B will eventually
either show or disprove M1 ‖ M2 |= ϕ. While incrementally learning B, it is,
however, expected, that one gets a hypothesis A smaller than B that satisfies
(AG1) and (AG2) and thus shows that M1 ‖ M2 |= ϕ, or, that we get a word w
witnessing that M1 ‖ M2 |= ϕ does not hold.

The approach is sketched in Figure 4, where cex is a shorthand for counter
example.

L∗ algorithm
generating A

M1 ‖ w |= ϕ
yes, M1 ‖ M2 |= ϕ

no, M1 ‖ M2 6|= ϕ

w witnesses this

M1 ‖ A |= ϕ

L(M1) ⊆ L(A)

M1 ‖ w |= ϕ

equiv(A)

no, cex

yes, w is cex

yes/no

yes

no, let w ∈ L(M1) \ L(A)

w ∈ A?

Fig. 4. Overview of compositional verification by learning assumptions

In [5], the approach has been worked out in the context of the verification
tool NuSMV [20]. For this, a symbolic version of L∗ has been developed that is
based on BDDs [17] and carries out membership queries for sets of words rather
than individual ones. It has been shown that the approach is beneficial for many
examples. The success of the method, however, depends heavily on finding a
suitable system A while learning B.

Instead of using Angluin’s L∗ algorithm, one could think of using an inexperi-
enced teacher answering membership queries by ? whenever a choice is possible.
While the learning algorithm is computationally more expensive, smaller invari-
ants A can be expected. It would be interesting to compare both approaches on
real world examples.

16

In [18], the assume-guarantee reasoning for simulation conformance between
finite state systems and specifications is considered. A non-circular assume-
guarantee proof rule is considered, for which a weakest assumption can be rep-
resented canonically by a deterministic tree automaton (DTA). Then, learning
techniques for DTA are developed and examined by verifying non-trivial bench-
marks.

In [25], game semantics, counterexample-guided abstraction refinement, as-
sume-guarantee reasoning and Angluin’s L∗ algorithm are combined to yield
a procedure for compositional verification of safety properties for fragments of
sequential programs. For this, L∗ is adapted to learn (regular) game strategies.

3.4 Learning fixpoints, regular model checking, and learning
network invariants

Assume that we are given a regular set of initial states Init of a system to verify
and a function Φ that computes for a given set W the set Φ(W) comprising of W
together with successor states of W . Then, the set of reachable states is the least
fixpoint limn→∞ Φn(W), where Φ0(W) := Init and Φn+1(W) := Φ(Φn(W)), for
n ≥ 0.

When proving properties for the set of reachable states, the typical approach
would be to compute the (exact) set of reachable states by computing the min-
imal fixpoint using Φ, before starting to verify their properties. However, this
approach may be problematic for two reasons:

– computing the fixpoint might be expensive, or
– the computation might not even terminate.

In regular model checking [2], for example, the set of initial states is regular (and
represented by a finite automaton) and the set of successor states is computed
by means of a transducer and thus is a regular set as well. There are, however,
examples for which the set of reachable states is no longer regular. Thus, a
straightforward fixpoint computation will not terminate.

A way out would be to consider a regular set of states over-approximating
the set of reachable states.

Here, the idea of using learning techniques comes into play: Instead of com-
puting iteratively the fixpoint starting from the initial states, one iteratively
learns a fixpoint W . Clearly, one can stop whenever

– W is a fixpoint,
– W is a superset of Init , and
– W satisfies the property to verify.

For example, if one intends to verify a safety property, i.e., none of the reach-
able states is contained in the given bad states Bad , it suffices to find any fixpoint
W that subsumes Init and does not intersect with Bad .

This general idea has been worked out in different flavors for verifying prop-
erties of infinite-state systems: Verifying safety-properties of parameterized sys-
tems by means of network invariants has been studied in [35]. Applications of

17

learning in regular model checking [2] for verifying safety properties [37, 56] and
liveness properties [57] can also be understood as a way to find suitable fix-
points. A further application for infinite state systems is that of verifying FIFO
automata [55]. Let us understand the gist of these approaches.

Learning network invariants One of the most challenging problems in ver-
ification is the uniform verification of parameterized systems. Given a parame-
terized system S(n) = P [1] ‖ · · · ‖ P [n] and a property ϕ, uniform verification
attempts to verify that S(n) satisfies ϕ for every n > 1. The problem is in gen-
eral undecidable [7]. One possible approach is to look for restricted families of
systems for which the problem is decidable (cf. [28, 22]). Another approach is
to look for sound but incomplete methods (e.g., explicit induction [29], regular
model checking [39, 51], or environment abstraction [23]).

Here, we consider uniform verification of parameterized systems using the
heuristic of network invariants [60, 43]. In simple words, a network invariant for
a given finite system P is a finite system I that abstracts the composition of
every number of copies of P running in parallel. Thus, the network invariant
contains all possible computations of every number of copies of P . If we find
such a network invariant I, we can solve uniform verification with respect to the
family S(n) = P [1] ‖ · · · ‖ P [n] by reasoning about I.

The general idea proposed in [60] and turned into a working method in [43],
is to show by induction that I is a network invariant for P . The induction base
is to prove that (I1) P ⊑ I, for a suitable abstraction relation ⊑. The induction
step is to show that (I2) P ‖ I ⊑ I. After establishing that I is a network
invariant we can prove (P) I |= ϕ, turning I into a proper network invariant
with respect to ϕ. Then we conclude that S(n) |= ϕ for every value of n.

Coming up with a proper network invariant is usually an iterative process.
We start with divining a candidate for a network invariant. Then, we try to prove
by induction that it is a network invariant. When the candidate system is non-
deterministic this usually involves deductive proofs [42]2. During this stage we
usually need to refine the candidate until getting a network invariant. The final
step is checking that this invariant is proper (by automatically model checking
the system versus ϕ). If it is not, we have to continue refining our candidate un-
til a proper network invariant is found. Coming up with the candidate network
invariant requires great knowledge of the parameterized system in question and
proving abstraction using deductive methods requires great expertise in deduc-
tive proofs and tools. Whether a network invariant exists is undecidable [60],
hence all this effort can be done in vain.

In [35], a procedure searching systematically for a network invariant satisfying
a given safety property is proposed. If one exists, the procedure finds a proper
invariant with a minimal number of states. If no proper invariant exists, the
procedure in general diverges (though in some cases it may terminate and report
that no proper invariant exists). In the light of the undecidability result for the
problem, this seems reasonable.

2 For a recent attempt at mechanizing this step see [40].

18

Network invariants are usually explained in the setting of transition structures
[41]. However, the learning algorithms have been given in terms of DFAs (see
Section 2). Thus, we explain the approach in the setting of checking safety prop-
erties of networks that are described in terms of (the parallel product of) DFAs:
We assume that P is given as a DFA and abstraction is just language inclusion:
A ⊑ B iff L(A) ⊆ L(B). A safety property is a DFA ϕ that accepts a prefix-closed
language. Thus, a system A satisfies ϕ, denoted by A |= ϕ, iff L(A) ⊆ L(ϕ).
The parallel operator combines two given DFAs into a new one. Finally, a pro-
jection operator for A ‖ B onto B is a mapping prB

A‖B : L(A ‖ B) → L(B)

such that whenever w ∈ L(A ‖ B) then for all B′ with prB
A‖B(w) ∈ L(B′) also

w ∈ L(A ‖ B′). In other words, (at least) the projection of w has to be removed
from B to (eventually) remove w from the parallel product.

The careful reader observers that the proper invariant I we are looking for
is indeed a fixpoint of the operator (P ‖ ·), which subsumes the words given
by P and has empty intersection with the bad words given by L(ϕ). Thus, the
following explanation can be understood as one way of learning fixpoints.

We now describe how to compute a proper network invariant in the case that
one exists. For the rest of this section, we fix system P and a property automaton
ϕ.

We only give an informal explanation, details can be found in [35]. We are
using an unbounded number of students whose job it is to suggest possible invari-
ants, one teaching assistant (TA) whose job is to answer queries by the students,
and one supervisor whose job is to control the search process for a proper in-
variant. The search starts by the supervisor instructing one student to look for
a proper invariant.

Like in Angluin’s algorithm, every active student maintains a table (using +,
−, and ?) and makes it weakly closed and weakly consistent by asking the TA
membership queries. The TA answers with either +, −, or ?, as described below.
When the table is weakly closed and consistent, the student translates the table
to a sample O and this to a CSP problem. He solves the CSP problem using
the SAT encoding (see Section 2.2). The solution with minimum range is used
to form an automaton I that is proposed to the supervisor. The supervisor now
checks whether I is indeed a proper invariant by checking (P), (I1), and (I2). If
yes, the supervisor has found a proper invariant and the algorithm terminates
with proper invariant found. If not, one of the following holds.

1. There is a string w such that w ∈ L(I) but w /∈ L(ϕ),
2. There is a string w such that w ∈ L(P) but w /∈ L(I),
3. There a string w such that w ∈ L(P ‖ I) but w /∈ L(I).

In the first case, w should be removed from I. In the second case, the string
w should be added to I. In these cases, the supervisor returns the appropriate
string with the appropriate acceptance information to the student, who continues
in the same manner as before.

In the last case, it is not clear, whether w should be added to I or removed
from P ‖ I. For the latter, we have to remove the projection pr I

P‖I
(w) from I.

Unless w is listed negatively or pr I
P‖I

(w) is listed positively in the table, both

19

possibilities are meaningful. Therefore, the supervisor has to follow both tracks.
She copies the table of the current student, acquires another student, and asks
the current student to continue with w in I and the new student to continue
with pr I

P‖I
(w) not in I.

In order to give answers, the teaching assistant uses the same methods as the
supervisor, however, whenever a choice is possible she just says ?.

Choices can sometimes yield conflicts that are observed later in the procedure.
Such a case reveals a conflicting assumption and requires the student to retire.
If no working student is left, no proper invariant exists.

Clearly, the procedure sketched above finds a proper invariant if one exists.
However, it consumes a lot of resources and may yield a proper invariant that is
not minimal. It can, however, easily be adapted towards using only one student
at a given time and stopping with a minimal proper invariant. Intuitively, the
supervisor keeps track of the active students as well as the sizes of recently
suggested automata. Whenever a student proposes a new automaton of size N ,
the supervisor computes the appropriate answer, which is either a change of the
student’s table or the answer proper invariant found. However, she postpones
answering the student (or stopping the algorithm), gives the student priority
N , and puts the student on hold. Then the supervisor takes a student that
is on hold with minimal priority and sends the pre-computed instrumentation
to the corresponding student. In case the student’s instrumentation was tagged
proper invariant found the procedure stops by printing the final proper invariant.
Note that students always propose automata of at least the same size as before
since the learning algorithm returns a minimal automaton conforming to the
sample. Thus, whenever a proper invariant is found, it is guaranteed that the
proper invariant is eventually reported by the algorithm, unless a smaller proper
invariant is found before.

The formal details are given in [35].

Learning in regular model checking In regular model checking [2] we are
typically faced with a finite automaton Init encoding the initial states of an
infinite-state system and a transducer τ , which yields for an automaton A, an
automaton τ(A) encoding the current and successor states of states given by
A. The set of reachable states is then given by the least fixpoint of Init under
τ . However, the set of reachable states might not be regular, implying that a
simple fixpoint computation does not terminate. Thus, for example, by so-called
acceleration techniques, supersets of fixpoints are computed [1].

The same holds for the learning approaches in [37, 56, 57], in which algorithms
employing an (experienced) teacher are used, in contrast to the approach of
learning network invariants.

Clearly, when learning a fixpoint A, equivalence queries are not difficult to
answer: Init ⊆ L(A) and L(τ(A)) ⊆ L(A) can easily be answered and, if applica-
ble, a counterexample can be computed. For membership queries, the situation
is more involved. In [37, 56], the transducer is assumed to be length preserving,
meaning that τ applied to some word w yields words w′ of the same length.

20

Thus, the fixpoint of w under τ can be computed in finitely many steps. Then,
the following heuristic is used: Given a word w′ of length n, check whether there
is some w of length n such that w′ is in the fixpoint of w. It has been reported,
that this heuristic works well in practice [37, 56]. However, it is not clear whether
a regular fixpoint is found in this manner, if one exists.

In [57], verifying also liveness properties in the setting of regular model check-
ing has been considered. For this, the set of reachable states together with in-
formation i on how many final states of a system encounter on a path of some
length j leaving s is learned. It has been shown that for the function comput-
ing successor states plus this additional information, a unique fixpoint exists.
Clearly, liveness properties can be answered when the fixpoint is given. Further-
more, for a given (s, i, j), it is easy to answer a membership query. Thus, the
method works, provided a regular description for such a fixpoint exists.

Learning for verifying branching-time properties in the context of regular
model checking asks for learning nested fixpoints and has been studied in [58].

3.5 Further applications

Synthesizing interface specifications Learning interface specifications for
Java classes has been based on Angluin’s algorithm in [3]. The problem studied
is to derive (a description) of the most general way to call the methods in a
Java class while maintaining some safety property. In [3], the problem is tackled
by abstracting the class, giving rise to a partial-information two-player game.
As analyzing such games is computationally expensive, approximative solutions
based on learning are considered.

Learning versus testing In model-based testing [16], test suites are generated
based on a model of the system under test (SUT). When no model is available,
approximations of the SUT can be learned, the model can be analyzed, and used
for test case generation. This approach, which is conceptually similar to black
box checking, has been turned into a working method in [38].

In [10], the close relationship of learning techniques and test suites has been
elaborated. In simple words, the following insight has been formalized and proved:
if a conformance test suite is good enough to make sure that the SUT conforms
to a given model, it should have enough information to identify the model. Like-
wise, if the observations of a system identify a single model, the observations
should form a conformance test suite.

References

1. P. A. Abdulla, B. Jonsson, M. Nilsson, and J. d’Orso. Algorithmic improvements in
regular model checking. In Proc. 15th Int. Conf. on Computer Aided Verification,
volume 2725 of Lecture Notes in Computer Science, pages 236–248, 2003.

2. P. A. Abdulla, B. Jonsson, M. Nilsson, and M. Saksena. A survey of regular model
checking. In P. Gardner and N. Yoshida, editors, CONCUR, volume 3170 of Lecture
Notes in Computer Science, pages 35–48. Springer, 2004.

21

3. R. Alur, P. Cerný, P. Madhusudan, and W. Nam. Synthesis of interface specifica-
tions for java classes. In J. Palsberg and M. Abadi, editors, POPL, pages 98–109.
ACM, 2005.

4. R. Alur and D. L. Dill. A theory of timed automata. Theor. Comput. Sci.,
126(2):183–235, 1994.

5. R. Alur, P. Madhusudan, and W. Nam. Symbolic compositional verification
by learning assumptions. In 17th International Conference on Computer Aided
Verification, volume 3576 of Lecture Notes in Computer Science, pages 548–562.
Springer-Verlag, 2005.

6. D. Angluin. Learning regular sets from queries and counterexamples. Information
and Computation, 75(2):87–106, 1987.

7. K. R. Apt and D. Kozen. Limits for automatic verification of finite-state concurrent
systems. Inf. Process. Lett., 22(6):307–309, 1986.

8. J. L. Balcázar, J. Dı́az, and R. Gavaldá. Algorithms for learning finite automata
from queries: A unified view. In Advances in Algorithms, Languages, and Com-
plexity, pages 53–72. Kluwer, 1997.

9. L. Baresi and R. Heckel, editors. Fundamental Approaches to Software Engineer-
ing, 9th International Conference, FASE 2006, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2006, Vienna, Austria,
March 27-28, 2006, Proceedings, volume 3922 of Lecture Notes in Computer Sci-
ence. Springer, 2006.

10. T. Berg, O. Grinchtein, B. Jonsson, M. Leucker, H. Raffelt, and B. Steffen. On the
correspondence between conformance testing and regular inference. In M. Cerioli,
editor, Fundamental Approaches to Software Engineering, FASE’05, volume 3442
of Lecture Notes in Computer Science, pages 175–189. Springer, 2005.

11. T. Berg, B. Jonsson, M. Leucker, and M. Saksena. Insights to Angluin’s learning. In
Proceedings of the International Workshop on Software Verification and Validation
(SVV 2003), volume 118 of Electronic Notes in Theoretical Computer Science,
pages 3–18, Dec. 2003.

12. T. Berg, B. Jonsson, and H. Raffelt. Regular inference for state machines with
parameters. In Baresi and Heckel [9], pages 107–121.

13. T. Berg and H. Raffelt. Model checking. In Broy et al. [16].

14. A. W. Biermann and J. A. Feldman. On the synthesis of finite-state machines from
samples of their behaviour. IEEE Transactions on Computers, 21:592–597, 1972.

15. B. Bollig, J.-P. Katoen, C. Kern, and M. Leucker. Replaying play in and play
out: Synthesis of design models from scenarios by learning. In O. Grumberg and
M. Huth, editors, Proceedings of the 13th International Conference on Tools and
Algorithms for Construction and Analysis of Systems (TACAS’07), volume 4424
of Lecture Notes in Computer Science, Braga, Portugal, Mar. 2007. Springer.

16. M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, and A. Pretschner, editors. Model-
based Testing of Reactive Systems, volume 3472 of Lecture Notes in Computer
Science. Springer, 2005.

17. R. E. Bryant. Symbolic manipulation of boolean functions using a graphical repre-
sentation. In Proceedings of the 22nd ACM/IEEE Design Automation Conference,
pages 688–694, Los Alamitos, Ca., USA, June 1985. IEEE Computer Society Press.

18. S. Chaki, E. M. Clarke, N. Sinha, and P. Thati. Automated assume-guarrantee
reasoning for simulation conformance. In 17th International Conference on Com-
puter Aided Verification, volume 3576 of Lecture Notes in Computer Science, pages
534–547. Springer-Verlag, 2005.

22

19. T. S. Chow. Testing software design modeled by finite-state machines. IEEE
Trans. on Software Engineering, 4(3):178–187, May 1978. Special collection based
on COMPSAC.

20. A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Se-
bastiani, and A. Tacchella. NuSMV Version 2: An OpenSource Tool for Symbolic
Model Checking. In Proc. International Conference on Computer-Aided Verifi-
cation (CAV 2002), volume 2404 of LNCS, Copenhagen, Denmark, July 2002.
Springer.

21. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press,
Cambridge, Massachusetts, 1999.

22. E. M. Clarke, M. Talupur, T. Touili, and H. Veith. Verification by network decom-
position. In 15th International Conference on Concurrency Theory, volume 3170
of Lecture Notes in Computer Science, pages 276–291. Springer-Verlag, 2004.

23. E. M. Clarke, M. Talupur, and H. Veith. Environment abstraction for parameter-
ized verification. In 7th International Conference on Verification, Model Checking,
and Abstract Interpretation, volume 3855 of Lecture Notes in Computer Science,
pages 126–141. Springer-Verlag, 2006.

24. J. M. Cobleigh, D. Giannakopoulou, and C. S. Pasareanu. Learning assumptions for
compositional verification. In H. Garavel and J. Hatcliff, editors, TACAS, volume
2619 of Lecture Notes in Computer Science, pages 331–346. Springer, 2003.

25. A. Dimovski and R. Lazic. Assume-guarantee software verification based on game
semantics. In Z. Liu and J. He, editors, ICFEM, volume 4260 of Lecture Notes in
Computer Science, pages 529–548. Springer, 2006.

26. F. Drewes and J. Högberg. Learning a regular tree language from a teacher.
In Z. Ésik and Z. Fülöp, editors, Proc. 7th Intl. Conf. Developments in Language
Theory, volume 2710 of Lecture Notes in Computer Science, pages 279–291, Szeged,
Hungary, 2003.

27. D. D’Souza. A logical characterisation of event clock automata. International
Journal of Foundations of Computer Science (IJFCS), 14(4):625–639, Aug. 2003.

28. E. Emerson and V. Kahlon. Reducing model checking of the many to the few.
In Proc. 17th International Conference on Automated Deduction, volume 1831 of
Lecture Notes in Computer Science, pages 236–254, 2000.

29. E. Emerson and K. Namjoshi. Reasoning about rings. In Proc. 22th ACM Symp.
on Principles of Programming Languages, 1995.

30. E. M. Gold. Language identification in the limit. Information and Control, 10:447–
474, 1967.

31. E. M. Gold. Complexity of automaton identification from given data. Information
and Control, 37(3):302–320, 1978.

32. O. Grinchtein, B. Jonsson, and M. Leucker. Inference of timed transition systems.
In 6th International Workshop on Verification of Infinite-State Systems, volume
138/4 of Electronic Notes in Theoretical Computer Science. Elsevier Science Pub-
lishers, 2004.

33. O. Grinchtein, B. Jonsson, and M. Leucker. Learning of event-recording automata.
In Proceedings of the Joint Conferences FORMATS and FTRTFT, volume 3253 of
Lecture Notes in Computer Science, Sept. 2004.

34. O. Grinchtein, B. Jonsson, and P. Pettersson. Inference of event-recording au-
tomata using timed decision trees. In C. Baier and H. Hermanns, editors, CON-
CUR, volume 4137 of Lecture Notes in Computer Science, pages 435–449. Springer,
2006.

23

35. O. Grinchtein, M. Leucker, and N. Piterman. Inferring network invariants auto-
matically. In Proceedings of the 3rd International Joint Conference on Automated
Reasoning (IJCAR’06), volume 4130 of Lecture Notes in Artificial Itelligence, Sept.
2006.

36. A. Groce, D. Peled, and M. Yannakakis. Adaptive model checking. In Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’02), volume
2280 of Lecture Notes in Computer Science, pages 357–??, 2002.

37. P. Habermehl and T. Vojnar. Regular model checking using inference of regular
languages. Electr. Notes Theor. Comput. Sci., 138(3):21–36, 2005.

38. H. Hungar, O. Niese, and B. Steffen. Domain-specific optimization in automata
learning. In Proc. 15th Int. Conf. on Computer Aided Verification, 2003.

39. B. Jonsson and M. Nilsson. Transitive closures of regular relations for verifying
infinite-state systems. In S. Graf and M. Schwartzbach, editors, Proc. TACAS
’00, 6th Int. Conf. on Tools and Algorithms for the Construction and Analysis of
Systems, volume 1785 of Lecture Notes in Computer Science, 2000.

40. Y. Kesten, N. Piterman, and A. Pnueli. Bridging the gap between fair simulation
and trace inclusion. Information and Computation, 200(1):35–61, 2005.

41. Y. Kesten and A. Pnueli. Control and data abstraction: The cornerstones of prac-
tical formal verification. Software Tools for Technology Transfer, 2(4):328–342,
2000.

42. Y. Kesten, A. Pnueli, E. Shahar, and L. Zuck. Network invariants in action. In
Proc. CONCUR 2002, 13th Int. Conf. on Concurrency Theory, volume 2421 of
Lecture Notes in Computer Science, 2002.

43. R. P. Kurshan and K. L. McMillan. A structural induction theorem for processes.
Information and Computation, 117(1):1–11, 15 Feb. 1995.

44. K. J. Lang. Random dfa’s can be approximately learned from sparse uniform
examples. In COLT, pages 45–52, 1992.

45. O. Maler and A. Pnueli. On the learnability of infinitary regular sets, 1991. Esprit
Basic Reasearch Action No 3096.

46. K. S. Namjoshi and R. J. Trefler. On the competeness of compositional reasoning.
In E. A. Emerson and A. P. Sistla, editors, CAV, volume 1855 of Lecture Notes in
Computer Science, pages 139–153. Springer, 2000.

47. A. L. Oliveira and J. P. M. Silva. Efficient algorithms for the inference of minimum
size dfas. Machine Learning, 44(1/2):93–119, 2001.

48. J. Oncina and P. Garcia. Inferring regular languages in polynomial update time. In
N. P. de la Blanca, A. Sanfeliu, and E. Vidal, editors, Pattern Recognition and Im-
age Analysis, volume 1 of Series in Machine Perception and Artificial Intelligence,
pages 49–61. World Scientific, Singapore, 1992.

49. D. Peled, M. Y. Vardi, and M. Yannakakis. Black box checking. In J. Wu, S. T.
Chanson, and Q. Gao, editors, Formal Methods for Protocol Engineering and Dis-
tributed Systems, FORTE/PSTV, pages 225–240, Beijing, China, 1999. Kluwer.

50. J. M. Pena and A. L. Oliveira. A new algorithm for the reduction of incompletely
specified finite state machines. In ICCAD, pages 482–489, 1998.

51. A. Pnueli and E. Shahar. Liveness and acceleration in parameterized verification.
In Proc. 12th Int. Conf. on Computer Aided Verification, volume 1855 of Lecture
Notes in Computer Science, pages 328–343. Springer Verlag, 2000.

52. H. Raffelt and B. Steffen. Learnlib: A library for automata learning and experi-
mentation. In Baresi and Heckel [9], pages 377–380.

53. W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, volume B, chapter 4, pages 133–191. Elsevier
Science Publishers B. V., 1990.

24

54. B. Trakhtenbrot and J. Barzdin. Finite automata: behaviour and synthesis. North-
Holland, 1973.

55. A. Vardhan, K. Sen, M. Viswanathan, and G. Agha. Actively learning to verify
safety for fifo automata. In K. Lodaya and M. Mahajan, editors, FSTTCS, volume
3328 of Lecture Notes in Computer Science, pages 494–505. Springer, 2004.

56. A. Vardhan, K. Sen, M. Viswanathan, and G. Agha. Learning to verify safety
properties. In J. Davies, W. Schulte, and M. Barnett, editors, ICFEM, volume
3308 of Lecture Notes in Computer Science, pages 274–289. Springer, 2004.

57. A. Vardhan, K. Sen, M. Viswanathan, and G. Agha. Using language inference to
verify omega-regular properties. In N. Halbwachs and L. D. Zuck, editors, TACAS,
volume 3440 of Lecture Notes in Computer Science, pages 45–60. Springer, 2005.

58. A. Vardhan and M. Viswanathan. Learning to verify branching time properties.
In D. F. Redmiles, T. Ellman, and A. Zisman, editors, ASE, pages 325–328. ACM,
2005.

59. M. P. Vasilevski. Failure diagnosis of automata. Cybernetic, 9(4):653–665, 1973.
60. P. Wolper and V. Lovinfosse. Verifying properties of large sets of processes with

network invariants. In Proceedings of the International Workshop on Automatic
Verification Methods for Finite State Systems, volume 407 of Lecture Notes in
Computer Science, pages 68–80, Grenoble, France, 1989. Springer-Verlag.

25

