
Aachen
Department of Computer Science

Technical Report

Replaying Play in and Play out:
Synthesis of Design Models from
Scenarios by Learning

Benedikt Bollig, Joost-Pieter Katoen, Carsten Kern,
and Martin Leucker

ISSN 0935–3232 · Aachener Informatik Berichte · AIB-2006-12

RWTH Aachen · Department of Computer Science · October 2006

The publications of the Department of Computer Science of RWTH Aachen (Aachen
University of Technology) are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

Replaying Play in and Play out:
Synthesis of Design Models from Scenarios by Learning

Benedikt Bollig1, Joost-Pieter Katoen2, Carsten Kern2, and Martin Leucker3

1 LSV, CNRS UMR 8643 & ENS de Cachan, France
2 Software Modeling and Verification Group, RWTH Aachen University, Germany

3 Institut für Informatik, TU München, Germany

Abstract. This paper is concerned with bridging the gap between requirements, provided
as a set of scenarios, and conforming design models. The novel aspect of our approach is
to exploitlearningfor the synthesis of design models. In particular, we present a procedure
that infers a message-passing automaton (MPA) from a given set of positive and negative
scenarios of the system’s behavior provided as message sequence charts (MSCs). The paper
investigates which classes of regular MSC languages and corresponding MPAs can (not) be
learned, and presents a dedicated tool based on the learninglibrary LearnLibthat supports
our approach.

1 Introduction

The elicitation of requirements is the main initial phase inthe typical software engineer-
ing development cycle. A plethora of elicitation techniques for requirement engineering
exist. Popular requirement engineering methods, such as the Inquiry Cycle and CREWS
[27], exploit use cases and scenarios to specify the system’s requirements. Sequence di-
agrams are also at the heart of the UML. A scenario is a partialfragment of the system’s
behavior, describing the system components, their messageexchange and concurrency.
Their intuitive yet formal nature has resulted in a broad acceptance. Scenarios can be
either positive or negative, indicating a possible desiredor unwanted system behavior,
respectively. Different scenarios together form a more complete description of the sys-
tem behavior.

The following design phase in software engineering is a major challenge as it is con-
cerned with a paradigm shift between therequirementspecification—a partial, overlap-
ping and possibly inconsistent description of the system’sbehavior—and a conforming
design model, a complete behavioral description of the system (at a high level of ab-
straction). During the synthesis of such design models, usually automata-based models
that are focused on intra-agent communication, conflictingrequirements will be de-
tected and need to be resolved. Typical resulting changes torequirements specifications
include adding or deleting scenarios, and fixing errors thatare found by a thorough anal-
ysis (e.g., model checking) of the design model. Obtaining acomplete and consistent set
of requirements together with a related design model is thusa highly iterative process.

This paper proposes a novel technique that is aimed to be an important stepping
stone towards bridging the gap between scenario-based requirement specifications and
design models. The novel aspect of our approach is to exploitlearningalgorithms for the
synthesis of design models from scenario-based specifications. Since message-passing
automata (MPA, for short) [11] are a commonly used model to realize the behavior
as described by scenarios, we adopt MPA as design model. In particular, we present

a procedure that interactively infers an MPA from a given setof positive and negative
scenarios of the system’s behavior provided as message sequence charts (MSCs). This
is achieved by generalizing Angluin’s learning algorithm for deterministic finite-state
automata (DFA) [4] towards specific classes of bounded MPA, i.e., MPA that can be
used to realize MSCs with channels of finite capacity. An important distinctive aspect
of our approach is that it naturally supports theincremental generationof design models.
Learning of initial sets of scenarios is feasible. On addingor deletion of scenarios, MPA
are adapted accordingly in an automated manner. Thus, synthesis phases and analysis
phases, supported by simulation or analysis tools such asMSCan[7], complement each
other in a natural fashion. Furthermore, on establishing the inconsistency of a set of
scenarios, our approach mechanically providesdiagnostic feedback(in the form of a
counterexample) that can guide the engineer to evolve his requirements.

The paper investigates which classes of regular MSC languages and corresponding
MPA can (not) be learned, and presentsSmyle, a dedicated tool based on the learning
library LearnLib[28], which supports our approach.

Generating automata-based models from scenarios has received a lot of attention.
These works include algorithms to generate statechart models from MSCs [21], formal-
ization and undecidability results for the synthesis for a simple variant of live sequence
charts (LSCs) [10], and Harel’s play-in, play-out approachfor LSCs [12, 13]. Another
approach is proposed by Aluret al. in [2, 3]. Uchitelet al. [30] present an algorithm for
synthesizing transition systems from high-level MSCs. An executable variant of LSCs,
triggered MSCs, are presented in [29]. All approaches are based on a rather complete,
well-elaborated specification of the system to be, such as MSCs with loops or condi-
tions, high-level MSCs, triggered MSCs, or LSCs, whereas for our synthesis approach
only simple MSCs have to be provided as examples, simplifying the requirements spec-
ification task. The novel aspect of our technique is that we exploit learning algorithms
for synthesiswhich are based on positive andnegativescenarios. Existing approaches
to synthesizing design models are based on completely different techniques and only
consider positive examples. Applying learning yields an incremental approach, and fa-
cilitates the generation of diagnostic feedback.

In the setting of model-based testing, Angluin’s learning algorithm has successfully
been used for inferring models of system’s behavior [20]. Intheir setting, examples are
words and models are DFA, while we work with the more complicated structures of
MSCs (in fact, partial orders) and MPA.

After an introduction into MSCs and MPA (Sections 2 and 3), weformally define
the general learning setting and describe the extension of Angluin’s learning algorithm,
cf. Section 4. We then consider existentially and universally bounded MPA, i.e., MPA
for which some (all) possible event orderings can be realized with finite channels. It
is shown (in Section 5) that universally bounded MPA and safeproduct MPA, as well
as existentially bounded MPA with an a priori fixed channel capacity are learnable.
Section 6 presents the basic functionality of our tool as well as some initial case study
results.

2

2 Message Sequence Charts

Let Σ∗ denote the set of finite words over a finite alphabetΣ. A Σ-labeled partial order
is a tripleP = (E,≤, ℓ) whereE is a finite set,≤ is a partial-order relation onE, i.e.,
it is reflexive, transitive, and antisymmetric, andℓ : E → Σ is a labeling function. A
linearizationof P is an extension(E,≤′, ℓ) of P = (E,≤, ℓ) such that≤′ ⊇ ≤ is a total
order. As we will consider partial orders up to isomorphism,the set of linearizations of
P, denotedLin(P), is a subset ofΣ∗.

Let Proc be a finite set of at least twoprocesses, which exchange messages from
a finite setMsg . Communication proceeds through channels via executing communi-
cation actions. LetCh denote the set{(p, q) | p, q ∈ Proc, p 6= q} of reliable FIFO
channels. For processp ∈ Proc, Actp denotes the set of (communication) actions ofp,
i.e.,{!(p, q, a) | (p, q) ∈ Ch anda ∈ Msg} ∪ {?(p, q, a) | (p, q) ∈ Ch anda ∈ Msg}.
The action!(p, q, a) is to be read as “p sends the messagea to q”, while ?(q, p, a) is
the complementary action of receivinga sent fromp to q (which is thus executed byq).
Moreover, letAct =

⋃
p∈Proc Actp.

Definition 1 (Message Sequence Chart (MSC)).An MSC (overProc andMsg) is a
structure(E, {≤p}p∈Proc, <msg, ℓ) with:
– E is a finite set ofevents,
– ℓ : E → Act is a labeling function,
– for anyp ∈ Proc, ≤p is a total order onEp = ℓ−1(Actp),
– <msg ⊆ E × E such that, for anye ∈ E, e <msg e′ or e′ <msg e for somee′ ∈ E,

and, for any(e1, e
′
1) ∈ <msg, there arep, q ∈ Proc anda ∈ Msg satisfying:

• ℓ(e1) = !(p, q, a) andℓ(e′1) = ?(q, p, a),
• for any(e2, e

′
2) ∈ <msg with ℓ(e2) = !(p, q, b) for someb ∈ Msg : e1 ≤p e2 iff

e′1 ≤q e′2 (which guarantees FIFO behavior), and
• ≤ = (<msg∪

⋃
p∈Proc ≤p)

∗ is a partial-order relation onE.

LetM = (E, {≤p}p∈Proc, <msg, ℓ) be an MSC. Aprefixof M is a structure(E′, {≤′
p

}p∈Proc, <
′
msg, ℓ

′) such thatE′ ⊆ E with e ∈ E′ and e′ ≤ e implies e′ ∈ E′,
≤′

p = ≤p ∩ (E′ × E′) for any p ∈ Proc, <′
msg = <msg ∩ (E′ × E′), and ℓ′ is

the restriction ofℓ to E′. We writeP � M if P is a prefix of the MSCM .
The set of MSCs is denoted byMSC.4 A set of MSCs,L ⊆ MSC, is called anMSC

language. ForL ⊆ MSC, we letPref (L) denote{P | P � M for someM ∈ L} (a
similar notation will be used in the context of words). Note thatMSC ⊆ Pref (MSC).

Let M = (E, {≤p}p∈Proc, <msg, ℓ) ∈ MSC. We setLin(M) to beLin((E, ≤, ℓ))
(canonically extended for prefixes ofM); the linearizations ofL ⊆ MSC are defined
by Lin(L) =

⋃
M∈L Lin(M). Note thatL ⊆ MSC is uniquely determined byLin(L),

i.e., for anyL,L′ ⊆ MSC, Lin(L) = Lin(L′) impliesL = L′. A word w ∈ Act∗ is an
MSC wordif w ∈ Lin(M) for someM ∈ MSC; for B ∈ IN, w is B-boundedif, for any
prefix v of w and any(p, q) ∈ Ch,

∑
a∈Msg |v|!(p,q,a) −

∑
a∈Msg |v|?(q,p,a) ≤ B where

|v|σ denotes the number of occurrences ofσ in v. For B ∈ IN, let LinB(M) denote
{w ∈ Lin(M) | w is B-bounded}, andLinB(L) =

⋃
M∈L LinB(M) for L ⊆ MSC.

4 As Proc andMsg are supposed to be fixed, they are omitted.

3

Definition 2 (Boundedness).LetM ∈ MSC.

1. M is universallyB-bounded(i.e.,∀B-bounded) ifLin(M) = LinB(M).
2. M is existentiallyB-bounded(i.e.,∃B-bounded), ifLin(M) ∩ LinB(M) 6= ∅.

The set of∀B-bounded MSCs and∃B-bounded MSCs is denoted byMSC∀B andMSC∃B, respectively. In an∃B-bounded MSC, the events can be scheduled such that,
during its execution, any channel contains at mostB messages. In a∀B-bounded MSC,
any scheduling is within the channel boundB. L ⊆ MSC is ∀B-bounded ifL ⊆MSC∀B, and∃B-bounded ifL ⊆ MSC∃B . Moreover,L is ∀-/∃-bounded if it is∀B-
/∃B-bounded for someB ∈ IN, respectively.

Example 1.Let M be the MSC in Fig. 1c, where five messages are sent from1 to 2.
The wordw = !(1, 2, req) (!(1, 2, req) ?(2, 1, req))4 ?(2, 1, req) is in Lin(M), and thus
is an MSC word. It is2-bounded, but not1-bounded.M , however, has a1-bounded
linearization, andLin1(M) = {(!(1, 2, req) ?(2, 1, req))5}. In fact, MSCM is ∃1-
bounded and∀B-bounded forB ≥ 5. The MSC in Fig. 1a is∀4-bounded and thus also
∃4-bounded; in fact, it is even∃2-bounded. However, it is not∃1-bounded, as there is
no possible schedule such that any channel always carries atmost one message. The
MSC in Fig. 1b is∀2-and∃1-bounded, but not∀1-bounded. Finally, we note that the set
of MSCs where an arbitrary number of messages is sent from1 to 2 is ∃1-bounded, but
not∀-bounded.

3 Message-Passing Automata

An MPA [11] is a collection of finite-state machines (called processes) that share a single
global initial state and a set of global final states. Bilateral communication between
the processes takes place via unbounded reliable FIFO buffers. Process transitions are
labeled with send or receive actions. Action!(p, q, a) puts the messagea at the end of
the channel fromp to q. Receive actions are enabled only if the requested message is
found at the head of the channel. The expressive power of MPA is extended by allowing
components to exchangesynchronization messages.

Definition 3 (Message-passing automaton (MPA)).An MPAA is a tuple((Ap)p∈Proc,

Sync, sin , F) with:

– Sync is a nonempty finite set ofsynchronization messages,
– for eachp ∈ Proc, Ap is a pair (Sp, ∆p) whereSp is a finite set oflocal statesand

∆p ⊆ Sp × Actp × Sync × Sp is a set oflocal transitions,
– sin ∈ SA =

∏
p∈Proc Sp is theglobal initial state, and

– F ⊆ SA is a set ofglobal final states.

As in [19, 25], we consider the linearizations of MSCs that are obtained from the
global automaton induced by an MPA. For an MPAA = ((Ap)p∈Proc,Sync, sin , F),
whereAp = (Sp, ∆p), this global automaton is defined as follows. The set ofconfigu-
rationsof A, denoted byConfA, consists of pairs(s, χ) with s ∈ SA andχ : Ch →

4

1 2

req

req

req

req

req

req

req

req

ack

ack

ack

ack

(a)

1 2

req

req

req

ack

ack

(b)

1 2

req

req

req

req

req

(c)
Fig. 1. Example message sequence charts

(Msg × Sync)∗, indicating the channel contents. Theglobal transition relationof A,
=⇒A ⊆ ConfA×Act ×Sync×ConfA, is defined by the following two inference rules
(s[p] refers to thep-component of a global states ∈ SA):

(s[p], !(p, q, a), m, s′[p]) ∈ ∆p ∧ for all r 6= p, s[r] = s′[r]

((s, χ), !(p, q, a), m, (s′, χ′)) ∈ =⇒A

whereχ′ = χ[(p, q) := (a, m) · χ((p, q))], i.e.,χ′ maps(p, q) to the concatenation of
(a, m) andχ((p, q)); for all other channels, it coincides withχ.

(s[p], ?(p, q, a), m, s′[p]) ∈ ∆p ∧ for all r 6= p, s[r] = s′[r]

((s, χ), ?(p, q, a), m, (s′, χ′)) ∈ =⇒A

whereχ((q, p)) = w · (a, m) andχ′ = χ[(q, p) := w]. The initial and final configura-
tions of the global automaton are(sin , χε) andF × {χε}, respectively, whereχε maps
each channel onto the empty word.

Now MPA A defines the word languageL(A) ⊆ Act∗, i.e., the set of words ac-
cepted by the global automaton ofA while ignoring synchronization messages. The
MSC language ofA, denoted byL(A), is the (unique) setL of MSCs such thatLin(L) =
L(A). The notions of boundedness on MSCs carry over to MPA in a natural way, e.g.,
MPA A is ∀-bounded if its MSC language is∀-bounded. The set of∀-bounded and
∃B-bounded MPA is denoted by MPA∀ and MPA∃B, respectively.

Example 2.Fig. 2a shows a not∃-bounded MPA with set of synchronization messages
{m1, m2} (and simplified action alphabet). The only global final stateis indicated by a
dashed line. The MSC language cannot be recognized with lessthan two synchroniza-
tion messages, which help to separate two request phases of equal length, as illustrated
in Fig. 1a. For the MPA in Fig. 2b, specifying a part of the alternating-bit protocol
(ABP), a single synchronization message suffices (which is therefore omitted). It is∀2-
bounded (cf. Fig. 1b). The MPA in Fig. 2c has no synchronization messages either. Its
accepted MSCs are as in Fig. 1c and form an∃1-bounded MSC language that, however,
is not∀-bounded.

5

!(req), m1

?(req), m2

?(ack), m1

!(ack), m1!(req), m2 ?(ack), m1

?(req), m1 !(ack), m1

A1: A2:

(a)

!(req)

?(req)!(req) ?(ack)

?(req) !(ack)

A1: A2:

(b)

!(req) ?(req)

A1: A2:

(c)
Fig. 2. Example message-passing automata

An MPA A = ((Ap)p∈Proc,Sync, sin , F), with Ap = (Sp, ∆p), is aproduct MPA
if |Sync| = 1 andF =

∏
p∈Proc Fp for someFp ⊆ Sp, p ∈ Proc. The acceptance con-

dition is thuslocal, i.e., any process autonomously decides to halt. Moreover,product
MPA cannot distinguish between synchronization messages.MSC languages of prod-
uct MPA are referred to asrealizable[23, 25]. The MPA in Figs. 2b and 2c are product
MPA, whereas the MPA in Fig. 2a is not, as it employs two synchronization messages.
Actually, the latter has no equivalent product MPA [6, 8]. Asfor ordinary MPA, the no-
tions of boundedness carry over to product MPA; let MPAp

∀ and MPAp
∃B

denote the set
of ∀-bounded product and∃B-bounded product MPA, respectively. The MPA in Fig. 2b
is in MPAp

∀ , whereas the MPA in Fig. 2c is in MPAp∃1, but not in MPA∀.
An MPA is calleddeadlock-freeor safe if, from any configuration that is reach-

able from the initial configuration, one can reach a final configuration. The MPA from
Figs. 2b and 2c are safe, whereas the MPA depicted in Fig. 2a isnot safe. The class of
∀-bounded safe product MPA is denoted by MPAsp

∀ .

4 An Extension of Angluin’s algorithm

Angluin’s algorithmL∗ [4] is a well-known algorithm for learning deterministic finite
state automata (DFA). In this section, we recall the algorithm and extend it towards
learning objects that can berepresentedby DFA in a way made precise shortly. This
extension allows us to learn various classes of MPA, as described below.

Let us first recall some basic definitions. LetΣ be an alphabet. A deterministic finite
automaton (DFA) overΣ is a tupleA = (Q, q0, δ, F), whereQ is its finite set ofstates,
q0 ∈ Q is theinitial state, δ : Q × Σ → Q is its transition function, andF ⊆ Q is the
set offinal states. The language ofA is defined as usual and denoted byL(A).

Angluin’s learning algorithm is designed for learning a regular languageL(A) ⊆
Σ∗ in terms of a minimal DFAA.

4.1 The Basic Algorithm

In this algorithm, a so-calledLearner , who initially knows nothing aboutA, is trying
to learnL(A) by asking queries to aTeacher , who knowsA. There are two kinds of
queries:

– A membership queryconsists in asking whether a stringw ∈ Σ∗ is in L(A).
– An equivalence queryconsists in asking whether ahypothesizedDFA H is correct,

i.e., whetherL(H) = L(A). TheTeacher will answeryesif H is correct, or else
supply a counterexamplew, either inL(A) \ L(H) or in L(H) \ L(A).

6

TheLearner maintains a prefix-closed setU ⊆ Σ∗ of prefixes, which are candidates
for identifying states, and a suffix-closed setV ⊆ Σ∗ of suffixes, which are used to dis-
tinguish such states. The setsU andV are increased when needed during the algorithm.
TheLearner makes membership queries for all words in(U∪UΣ)V , and organizes the
results into atableT which maps eachu ∈ (U∪UΣ) to a mappingT (u) : V → {+,−}
where+ represents accepted and− not accepted. In [4], each functionT (u) is called a
row. WhenT is

– closed, meaning that, for eachu ∈ U anda ∈ Σ, there is au′ ∈ U such that
T (ua) = T (u′), and

– consistent, meaning that for eachu ∈ U anda ∈ Σ, T (u) = T (u′) impliesT (ua) =
T (u′a),

theLearner constructs a hypothesized DFAH = (Q, q0, δ, Q
+), where

– Q = {T (u) | u ∈ U} is the set of distinct rows,
– q0 is the rowT (ε) (with ε denoting the empty word),
– δ is defined byδ(T (u), a) = T (ua), and
– Q+ = {T (u) | u ∈ U andT (u)(ε) = +},

and submitsH in an equivalence query. If the answer isyes, the learning procedure is
completed, otherwise the returned counterexample is used to extendU andV , and sub-
sequent membership queries are performed until arriving ata new hypothesized DFA.

4.2 Learning Objects represented by Subclasses of Regular Word Languages

Our goal is to learn MPA from examples given as MSCs. To avail Angluin’s algorithm,
we need to establish a correspondence between MPA and regular word languages. As
we will consider several classes of MPA with corresponding representations in the next
section, let us first elaborate on general properties of representations for learningobjects
of a fixed arbitrary set of objectsO. These objects might be classified into equivalence
classes of an equivalence relation∼ ⊆ O ×O. In our setting, the objects will be MPA,
and two MPA are considered to be equivalent if they recognizethe same MSC language.

We now have torepresentelements fromO (or, rather, their equivalence classes) by
regular word languages, say over an alphabetΣ. For MPAA, we might consider regular
languagesL overAct such thatL corresponds to the setLin(L(A)). Unfortunately, not
every regular word language overAct gives rise to an MPA. In particular, it might
contain words that are not MSC words, i.e., do not correspondto some MSC. Thus, in
general, it is necessary to work within a subsetD of Σ∗, i.e., we learn regular word
languages that contain at most words fromD. For learning MPA, e.g., it is reasonable
to setD = Lin(MSC).

It is, however, not always sufficient to restrict toD in order to obtain a precise
correspondence betweenO and regular word languages. Often, regular word languages
are required to be closed under someequivalence relationand/orinference rule. E.g., an
MPA always gives rise to an MSC word language that contains either any linearization
of some given MSC, or none. Similarly, languages of product MPA are closed under
inference (to be made precise in the next section) imposing similar requirements on the
representing regular language. So let us consider an equivalence relation≈ ⊆ D × D

7

and, moreover, a relation⊢ ⊆ 2D × 2Σ∗

whereL1 ⊢ L2 intuitively means thatL1 still
requires at least one element fromL2.

We say thatL ⊆ D is ≈-closed(or, closed under≈) if, for any w, w′ ∈ D with
w ≈ w′, we havew ∈ L iff w′ ∈ L. Moreover,L is said to be⊢-closed(or, closed
under⊢) if, for any (L1, L2) ∈ ⊢, we have thatL1 ⊆ L impliesL ∩ L2 6= ∅. 5

Regular Languages Objects

D

D

u ≈ u
′

w
′′

w ≈ w
′

obj

∼

Fig. 3. Representing objects by regu-
lar languages

Naturally,D, ≈, and⊢ determine a particu-
lar classRminDFA(Σ,D,≈,⊢) = {L ⊆ D | L

is regular and closed under both≈ and⊢} of
regular word languages overΣ (where any lan-
guage is understood to be given by its min-
imal DFA). Suppose a language of this class
RminDFA(Σ,D,≈,⊢) can be learned in some
sense that will be made precise. For learning
elements ofO, we still need to derive an ob-
ject from a language inRminDFA(Σ,D,≈,⊢).
To this aim, we suppose a computable bijec-

tive mappingobj : RminDFA(Σ,D,≈,⊢) → [O]∼ = {[o]∼ | o ∈ O} (where
[o]∼ = {o′ ∈ O | o′ ∼ o}). A typical situation is depicted in Fig 3, where the larger
ellipse is closed under≈ (w ≈ w′) and under⊢ (assuming{w, w′} ⊢ {w′′}), whereas
the smaller circle is not, as it containsu but notu′.

As Angluin’s algorithm works within the class of arbitrary DFA overΣ, its Learner
might propose DFA whose languages are neither a subset ofD nor satisfy the closure
properties for≈ and⊢. To rule out and fix such hypotheses, the language inclusion prob-
lem and the closure properties in question are required to beconstructively decidable,
meaning that they are decidable and if the property fails, areasonof its failure can be
computed.

Let us be more precise and define what we understand by alearning setup:

Definition 4. LetO be a set ofobjectsand∼ ⊆ O ×O be an equivalence relation. A
learning setupfor (O,∼) is a quintuple(Σ,D,≈,⊢, obj) where

– Σ is an alphabet,
– D ⊆ Σ∗ is thedomain,
– ≈ ⊆ D ×D is an equivalence relation such that, for anyw ∈ D, [w]≈ is finite,
– ⊢ ⊆ 2D × 2Σ∗

such that, for any(L1, L2) ∈ ⊢, L1 is both finite and≈-closed, and
L2 is a nonempty decidable language,

– obj : RminDFA(Σ,D,≈,⊢) → [O]∼ is a bijective effective mapping in the sense
that, forL ∈ RminDFA(Σ,D,≈,⊢), a representative ofobj (L) can be computed.

Furthermore, we require that the following hold for DFAA overΣ:

(D1) The problem whetherL(A) ⊆ D is decidable. If, moreover,L(A) 6⊆ D, one can
computew ∈ L(A) \ D. We then say thatINCLUSION(Σ,D) is constructively
decidable.

5 Technically,≈ and⊢ could be encoded as a single relation. As they serve a different purpose in the next
section, we separate them in the general framework, to simplify the forthcoming explanations.

8

(D2) If L(A) ⊆ D, it is decidable whetherL(A) is ≈-closed. If not, one can compute
w, w′ ∈ D such thatw ≈ w′, w ∈ L(A), andw′ 6∈ L(A). We then say that the
problemEQCLOSURE(Σ,D,≈) is constructively decidable.

(D3) If L(A) ⊆ D is closed under≈, it is decidable whetherL(A) is ⊢-closed. If not,
we can compute(L1, L2) ∈ ⊢ (hereby,L2 shall be given in terms of a decision
algorithm that checks a word for membership) such thatL1 ⊆ L(A) andL(A) ∩
L2 = ∅. We then say thatINFCLOSURE(Σ,D,≈,⊢) is constructively decidable.

So let us slightly generalize Angluin’s algorithm to cope with the extended setting,
and let(Σ,D,≈,⊢, obj) be a learning setup for(O,∼). The main changes in Angluin’s
algorithm concern the processing of membership queries as well as the treatment of
hypothesized DFA:

– Once a membership query has been processed for a wordw ∈ D, queriesw′ ∈
[w]≈ must be answered equivalently. They are thus not forwarded to theTeacher

anymore. We might think of anAssistant in between theLearner and theTeacher

that checks if an equivalent query has already been performed. Membership queries
for w 6∈ D are not forwarded to theTeacher either but answered negatively by the
Assistant .

– When the tableT is both closed and consistent, the hypothesized DFAH is com-
puted as usual. After this, we proceed as follows:
1. If L(H) 6⊆ D, compute a wordw ∈ L(H) \ D, declare it a counterexam-

ple, and modify the tableT accordingly (possibly involving further membership
queries).

2. If L(H) ⊆ D but L(H) is not≈-closed, then computew, w′ ∈ D such that
w ≈ w′, w ∈ L(H), andw′ 6∈ L(H); perform membership queries for[w]≈.

3. If L(H) is the union of≈-equivalence classes but not⊢-closed, then compute
(L1, L2) ∈ ⊢ such thatL1 ⊆ L(H) andL(H) ∩ L2 = ∅; perform membership
queries for any word fromL1; if all these membership queries are answered
positively, theTeacher is asked to specify a wordw from L2, which will be
declared “positive”.

Actually, a hypothesized DFAH undergoes an equivalence test only ifL(H) ⊆ D
andL(H) is both≈- and⊢-closed. I.e., if, in the context of the extended learning
algorithm, we speak of a hypothesized DFA, we actually act onthe assumption that
L(H) is the union of≈-equivalence classes and closed under⊢.

Let the extension of Angluin’s algorithm wrt. a learning setup as sketched above be
called EXTENDEDANGLUIN.6 A careful analysis shows:

Theorem 1. Let (Σ,D,≈,⊢, obj) be a learning setup for(O,∼). If o ∈ O has to be
learned, then invokingEXTENDEDANGLUIN((O,∼), (Σ,D,≈,⊢, obj)) returns, after
finitely many steps, an objecto′ ∈ O such thato′ ∼ o.

The theorem suggests the following definition:

Definition 5. LetO be a set ofobjectsand∼ ⊆ O×O be an equivalence relation. We
say that(O,∼) is learnable if there is some learning setup for(O,∼).

6 The pseudo code of EXTENDEDANGLUIN is included in Appendix A

9

1 2
a

M1:

1 2
a

a

M2:

1 2 3 4
a a

M3:

3 4
a

M4:

Fig. 4. Some MSCs

5 Learning Message-Passing Automata

This section identifies some learnable classes of MPA, i.e, regular word languages that
can be learned and generated by an MPA. It seems unlikely to find a reasonable learning
approach for arbitrary MPA, which is suggested by negative results from [6, 9]. We
therefore propose to consider∃- and∀-regular MSC languages and study learnability
for the class of MPA and product MPA.

5.1 Regular MSC Languages

A word language is said to represent an MSC languageL whenever it contains a lin-
earization for eachM ∈ L, and no linearizations forM ′ 6∈ L. Formally,

Definition 6 (Representative).L ⊆ Act∗ is a representativefor L ⊆ MSC if L ⊆
Lin(L) and, for any MSCM , M ∈ L iff Lin(M) ∩ L 6= ∅.

Example 3.Let M1 ·M2 denote the concatenation of MSCsM1 andM2, i.e., the unique
MSC M such that{w1w2 | w1 ∈ Lin(M1), w2 ∈ Lin(M2)} ⊆ Lin(M). {M}∗

denotes the Kleene closure of·. The MSC language{M1}
∗ for MSC M1 in Fig. 4

is not regular in the sense of [18], asLin({M1}
∗) is not a regular word language.

However,{M1}
∗ can be represented by the regular word languageLin1({M1}

∗) =
{(!(1, 2, a) ?(2, 1, a))n | n ∈ IN}. Considering the MSCM2 in Fig. 4, we even have
thatLin({M2}

∗) is a regular representative for{M2}
∗.

The interesting case occurs when representatives are regular. However, some MSCs
cannot be generated by MPA as their regular representativesrequire infinite channels.

Example 4.The∃1-bounded MSC language{M3}
∗ for MSCM3 in Fig. 4 has the reg-

ular representative{(!(1, 2, a) ?(2, 1, a) !(3, 4, a) ?(4, 3, a))n | n ∈ IN}, but there is
no B ∈ IN such thatLinB({M3}

∗) is regular. Thus, according to results from [17], it
cannot be the language of some MPA.

Definition 7 (∀- and ∃-regular). L ⊆ MSC is ∀-regularif Lin(L) ⊆ Act∗ is regular.
L is ∃-regularif, for someB ∈ IN, LinB(L) is a regular representative forL.

Any ∀-regular MSC language is∀-bounded and any∃-regular MSC language is∃-
bounded. Moreover, any∀-regular MSC language is∃-regular. An MPA is called∀-
regular,∃-regular, etc., if so is its MSC language.

Example 5.The MPA in Fig. 2a is not∃-regular, whereas the MPA in Fig. 2b is∀-
regular. In particular, only finitely many global configurations are reachable from the
initial configuration. The MPA in Fig. 2c is∃-regular, but not∀-regular.

10

Regular MSC languages in the sense of Def. 7 are of interest asthey are realizable by
MPA.

Theorem 2 ([17, 18, 22]).Regular MSC languages versus bounded MPA:

(a) For any∃-regular MSC languageL (given as a regular representative), one can
effectively compute an MPAA such thatL(A) = L. If L is ∀-regular, thenA can
be assumed to bedeterministic.

(b) LetB ∈ IN. For A ∈ MPA∃B , LinB(L(A)) is a regular representative forL(A)
andL(A) is ∃-regular. ForA ∈ MPA∀, Lin(L(A)) is a regular representative for
L(A) andL(A) is ∀-regular.

5.2 Product MSC Languages

A realization of{M1, M4} (cf. Fig. 4) also infersM3 provided the bilateral interaction
between the processes is completely independent. A set of MSCs that is closed under
such an inference is aproductMSC language (it is calledweakly realizablein [2]). For
M = (E, {≤p}p∈Proc, <msg, ℓ) ∈ Pref (MSC), the behavior ofM can be split into its
componentsM ↾ p = (Ep,≤p, ℓ|Ep

), p ∈ Proc, each of which represents the behavior
of a single agent, which can be seen as a word overActp. For finite setL ⊆ MSC
and M ∈ MSC, let L ⊢p

MSC M if, for any p ∈ Proc, there isM ′ ∈ L such that
M ′ ↾p = M ↾p.

Definition 8 (Product MSC language [2]).L ⊆ MSC is a product MSC languageif,
for anyM ∈ MSC and any finiteL′ ⊆ L, L′ ⊢p

MSC M impliesM ∈ L.

For practical applications, it is desirable to consider so-called safeproduct lan-
guages. Those languages are implementable in terms of a safeproduct MPA, thus one
that is deadlock-free. For a finite setL ⊆ MSC andP ∈ Pref (MSC), we writeL ⊢s

MSC
P if, for any p ∈ Proc, there isM ∈ L such thatP ↾ p is a prefix ofM ↾ p.

Definition 9 (Safe product MSC language [2]).A product MSC languageL ⊆ MSC
is calledsafeif, for any finiteL′ ⊆ L and anyP ∈ Pref (MSC), L′ ⊢s

MSC P implies
P � M for someM ∈ L.

Lemma 1 ([2]). L ⊆ MSC is a ∀-regular safe product MSC language (given in terms
of Lin(L)) iff it is accepted by someA ∈ MPAsp

∀ . Both directions are effective.

5.3 Learning ∀-bounded Message-Passing Automata
Towards a learning setup for∀-bounded MPA, we let

– ∼∀ = {(A,A′) ∈ MPA∀ × MPA∀ | L(A) = L(A′)},
– ≈MW = {(w, w′) ∈ Lin(M) × Lin(M) | M ∈ MSC}, and
– obj ∀ : RminDFA(Act ,Lin(MSC),≈MW, ∅) → [MPA∀]∼∀

be an effective bijective
mapping whose existence is stated by Theorem 2(a).

To prove that(Act ,Lin(MSC),≈MW , ∅, obj ∀) is indeed a learning setup for the pair
(MPA∀,∼∀), we recall and establish some decidability results concerning MSC lan-
guages.

11

Proposition 1. INCLUSION(Act ,Lin(MSC)) andEQCLOSURE(Act ,Lin(MSC),≈MW)
are constructively decidable.

Proof: The decidability part stems from [18, Prop. 2.4] and [26]. Let A = (Q, q0, δ, F)
be aminimalDFA overAct . A states ∈ Q is calledproductiveif there is a path froms to
some final state. We successively label productive states with possible channel contents.
If there is such a labeling that is consistent in some sense, we can assume both that
L(A) ⊆ Lin(MSC) and thatL(A) is the union of≈MW-equivalence classes. Let us
be more precise. Any states will be associated with a functionχs : Ch → Msg∗ as
follows:

1. The initial state and any final state are equipped withχε (mapping any channel to
the empty word).

2. If s, s′ ∈ Q are productive states andδ(s, !(p, q, a)) = s′, thenχs′ = χs[(p, q) :=
a · χs((p, q))].

3. If s, s′ ∈ Q are productive states andδ(s, ?(q, p, a)) = s′, then we haveχs =
χs′ [(p, q) := χs′((p, q)) · a].

In fact, we haveL(A) ⊆ Lin(MSC) iff a labeling of productive states with channel
functions according to 1.–3. is possible. Moreover, we havethatL(A) is the union of
≈MW-equivalence classes iff this labeling satisfies the following condition:

4. (Diamond property) Supposeδ(s, σ) = s1 andδ(s1, τ) = s2 with σ ∈ Actp and
τ ∈ Actq for somep, q ∈ Proc satisfyingp 6= q. If not (σ = !(p, q, a) andτ =
?(q, p, a) for somea ∈ Msg) or 0 < |χs((p, q))|, then there exists a states′1 ∈ Q

such that bothδ(s, τ) = s′1 andδ(s′1, σ) = s2.

Now suppose that labeling the state space with channel functions violates 1.–3. at some
point. But this immediately yields a word that is not contained inLin(MSC). For ex-
ample, a clash in terms of productive statess, s′ ∈ Q such thatδ(s, !(p, q, a)) = s′

and χs′((p, q)) 6= a · χs((p, q)) gives rise to a path from the initial state to a fi-

nal state vias
!(p,q,a)
−→ s′ that is not labeled with an MSC word. Similarly, provided

L(A) ⊆ Lin(MSC) and property 4. is violated, we specifyw andw′ (as required in the
proposition) as words of the formuστv anduτσv, respectively. �

The above decision algorithm runs in time linear in the size of the transition function of
the DFA. It is easy to see that counterexamples can be computed in linear time as well.
Note that the question if the≈MW-closure of a regular set of MSC words is a regular
language, too, is undecidable. For our learning approach, however, this problem does
not play any role. For arbitrary finite automataA over Act with L(A) ⊆ Lin(MSC)
(which are not necessarily deterministic), it was shown in [26] (for Büchi automata)
that deciding ifL(A) is ≈MW-closed is PSPACE complete. In the context of minimal
DFA, however, the problem becomes much simpler.

Proposition 2. (Act ,Lin(MSC),≈MW, ∅, obj ∀) is a learning setup for(MPA∀,∼∀).

Theorem 3. (MPA∀,∼∀) is learnable.

12

5.4 Learning ∃-bounded Message-Passing Automata

In this subsection, we are aiming at a learning setup for∃-bounded MPA. As stated in
Def. 7, we now have to provide a channel bound. So letB ∈ IN and set

– ∼∃B = {(A,A′) ∈ MPA∃B × MPA∃B | L(A) = L(A′)},
– ≈∃B = {(w, w′) ∈ LinB(M) × LinB(M) | M ∈ MSC}, and
– obj ∃B : RminDFA(Act ,LinB(MSC),≈∃B, ∅) → [MPA∃B]∼∃B

to be an effective
bijective mapping whose existence is stated by Theorem 2.

In the following, we will show that(Act ,LinB(MSC),≈∃B , ∅, obj ∃B) is indeed a learn-
ing setup for(MPA∃B ,∼∃B). Again, we have to establish the corresponding decidability
results:

Proposition 3. For anyB ∈ IN, the problemsINCLUSION(Act ,LinB(MSC)) and
EQCLOSURE(Act ,LinB(MSC),≈∃B) are constructively decidable.

Proof: We need to adapt the universal case accordingly (Prop. 1) andrequire that, asso-
ciating a states with a channel functionχs : Ch → Msg∗, we have|χs(ch)| ≤ B for
any channelch. Moreover, the diamond property is replaced with the following:

4. Supposeδ(s, σ) = s1 andδ(s1, τ) = s2 with σ ∈ Actp andτ ∈ Actq for some
p, q ∈ Proc satisfyingp 6= q. If not (|χs((q, q

′))| = B andτ = !(q, q′, a) for some
q′ ∈ Proc anda ∈ Msg) and, moreover,(σ = !(p, q, a) andτ = ?(q, p, a) for some
a ∈ Msg) implies0 < |χs((p, q))|, then there exists a states′1 ∈ Q such that both
δ(s, τ) = s′1 andδ(s′1, σ) = s2. �

Proposition 4. For anyB ∈ IN, (Act ,LinB(MSC),≈∃B, ∅, obj ∃B) is a learning setup
for (MPA∃B,∼∃B).

Theorem 4. For anyB ∈ IN, (MPA∃B ,∼∃B) is learnable.

5.5 Learning ∀-bounded Safe Product Message-Passing Automata

Let us set the scene for learning∀-bounded safe product MPA. In this case, we have to
create an inference rule⊢ 6= ∅ (cf. Definitions 8 and 9). We first define relations⊢p

MW
and⊢s

MW for word languages, which correspond to⊢p
MSC and⊢s

MSC, respectively:

– ⊢p
MW = {(Lin(L), {w}) | L ⊆ MSC is finite and∃ M ∈ MSC: L ⊢p

MSC M ∧
w ∈ Lin(M)}

– ⊢s
MW = {(Lin(L), L2) | L ⊆ MSC is finite and∃P ∈ Pref (MSC) andu ∈ Lin(P)

such thatL ⊢s
MSC P andL2 = {w ∈ Lin(MSC) | w = uv for somev ∈ Act∗}}

(note thatL2 is a decidable language).

Given these relations, we can define our learning setup as follows:

– ∼sp
∀ = {(A,A′) ∈ MPAsp

∀ × MPAsp
∀ | L(A) = L(A′)},

– ≈MW = {(w, w′) ∈ Lin(M) × Lin(M) | M ∈ MSC} (as before),
– ⊢sp

MW = ⊢p
MW ∪ ⊢s

MW ,

13

– obj
sp
∀ : RminDFA(Act ,Lin(MSC),≈MW,⊢sp

MW) → [MPAsp
∀]∼sp

∀

be an effective bijec-
tive mapping, as guaranteed by Lemma 1.

We now establish that(Act ,Lin(MSC),≈MW,⊢sp
MW , obj

sp
∀) is a learning setup for

(MPAsp
∀ ,∼sp

∀):

Proposition 5. INFCLOSURE(Act ,Lin(MSC),≈MW ,⊢sp
MW) is constructively decidable.

Proof: Decidability of INFCLOSURE(Act ,Lin(MSC),≈MW ,⊢sp
MW) has been shown in

[3, Theorem 3], where an EXPSPACE-algorithm for bounded high-level MSCs is given,
which reduces the problem to a decision problem for finite automata with a≈MW-closed
language. The first step is to construct from the given≈MW-closed DFAH a (compo-
nentwise) minimal and deterministic product MPAA, by simply taking the projections
of H ontoActp for anyp ∈ Proc, minimizing and determinizing them. Then, the MSC
languageL associated withH is a safe product language iffA is a safe product MPA
realizingL. FromH, we can moreover compute a boundB such that any run ofA ex-
ceeding the buffer sizeB cannot correspond to a prefix of some MSC word inL(H).
Thus, a run throughA (in terms of a prefix of an MSC word) that either

– exceeds the buffer sizeB (i.e., it is notB-bounded), or
– does not exceed the buffer sizeB, but results in a deadlock configuration

gives rise to a prefixu (of an MSC word) that is implied byH wrt. ⊢s
MW , i.e., L(H)

must actually contain a completionuv ∈ Lin(MSC) of u. Obviously, one can decide if
a word is such a completion ofu. The completions ofu form one possibleL2. It remains
to specify a corresponding setL1 for u. By means ofH, we can, for anyp ∈ Proc,
compute a wordwp ∈ L(H) such that the projection ofu ontoActp is a prefix of the
projection ofwp ontoActp. We setL1 =

⋃
p∈Proc[wp]≈MW .

Finally, suppose that, inA, we could neither find a prefix exceeding the buffer size
B nor a reachable deadlock configuration in theB-bounded fragment. Then, we still
have to check ifA recognizesL. If not, one can compute a (B-bounded) MSC word
w ∈ L(A) \ L(H) whose MSC is implied byL wrt. ⊢p

MSC. SettingL2 = {w}, a
corresponding setL1 can be specified as the union of sets[wp]≈MW , as above. �

Together with Prop. 1, we obtain the following two results:

Proposition 6. The quintuple(Act ,Lin(MSC),≈MW ,⊢sp
MW , obj

sp
∀) is a learning setup

for (MPAsp
∀ ,∼sp

∀).

Theorem 5. (MPAsp
∀ ,∼sp

∀) is learnable.

5.6 Learning ∀-bounded Product Message-Passing Automata

Finally, we study the problem of learning∀-bounded product MPA. Unfortunately, we
are in the situation that the canonical definition of a learning setup does not work. For
∼p

∀ = {(A,A′) ∈ MPAp
∀ × MPAp

∀ | L(A) = L(A′)}, we obtain:

Proposition 7 ([3]). INFCLOSURE(Act ,Lin(MSC),≈MW,⊢p
MW) is not constructively

decidable. More specifically, it is undecidable if the language of a≈MW-closed DFA
overAct is closed under⊢p

MW.

14

Similar decision problems were considered in [2, 3, 23, 25].Most of them, however,
are concerned with the question if ahigh-level MSC, rather than a regular MSC lan-
guage, can be translated into a product MPA.

6 Tool Description

We have implemented the learning approach presented in the preceding sections in the
tool Smyle(Synthesizing Models bY Learning from Examples), which canbe freely
downloaded athttp://smyle.in.tum.de. It is written in Java and makes use of
theLearnLib library [28], which implementsAngluin’s algorithm, and the libraries
Grappa [5] andJGraph [24] for visualization purposes. For computing linearizations
of MSCs we use the algorithm given in [31] running inO(n · e(P)) time, wheren is the
number of elements of the partial orderP ande(P) = |E(P)| is the number of linear
extensions ofP. The tool is capable of learning universally regular and existentially
regular MSC languages.

The framework contains the following three main components:

– theTeacher, representing the interface between the GUI (user) and theAssistant
– theLearner, containing theLearnLib part
– theAssistant, keeping track of membership queries that were not yet asked, checking

for B-boundedness as well as the language type (∃/∀)

The learning chain: Initially the user is asked to specify the learning setup. After
having selected a language type (existentially/universally) and a channel boundB, the
user provides a set of MSCs. These MSC specifications must then be divided into
positive(i.e., MSCs contained in the language to learn) andnegative(i.e., MSCs not
contained in the language to learn). After submitting theseexamples, all linearizations

Fig. 5.Smylescreenshot

are checked for consistency with
respect to the properties of the
learning setup. Violating lineariza-
tions are stored as negative exam-
ples. Now the learning algorithm
starts. TheLearner continuously
communicates with theAssistantin
order to gain answers to member-
ship queries. This procedure halts
as soon as a query cannot be an-
swered by theAssistant. In this
case, theAssistantforwards the in-
quiry to the user, displaying the
MSC in question on the screen. The
user must classify the message se-
quence chart as positive or negative

(cf. Fig. 5 (1)). The classification for validity wrt. the learning setup.Depending on
the outcomeAssistantchecks the of this check, the linearizations of the current MSC

15

are assigned to the positive or negative set of future queries. Moreover, the user’s an-
swer is passed to theLearnerwhich then continues his question-and-answer game with
the Assistant. If the LearnLib proposes a possible automaton, theAssistantchecks
whether the learned model is consistent with all queries that have been categorized but
not yet been asked. If he encounters a counter-example, he presents it to the learning
algorithm which, in turn, continues the learning procedureuntil the next possible solu-
tion is found. In case there is no further evidence for contradicting samples, a new frame
appears (cf. Fig. 5 (2,3)). Among others, it visualizes the currently learned automaton
(2,4) as well as a panel for displaying MSCs (3) of runs of the system described by the
automaton. The user is then asked if he agrees with the solution and may either stop or
introduce a new counter-example proceeding with the learning procedure.

Case studies:We appliedSmyleto thesimple negotiation protocolfrom [14], thecon-
tinuous update protocolfrom [15] and a protocol being part of USB 1.1 mentioned in
[16]. For the first one,Smylewas provided with 6 positive MSCs and performed 9675
membership and 65 user-queries. It resulted in an automatonconsisting of 9 states. The
second protocol (giving 4 sample MSCs as input) was learned after 5235 membership
and 43 user queries resulting in an automaton containing 8 states. And the last proto-
col was learned after 1373 membership and 12 user-queries, providing it with 4 sample
MSCs. In this case, the inferred automaton was composed of 9 states. For further details
we refer to Appendix B where we list two of these protocols as well as the input MSCs
and the corresponding learned automata.

7 Conclusion and Future Work

This paper presented a procedure that interactively infersa message-passing automaton
(MPA) from given positive and negative scenarios of the system’s behavior provided
as message sequence charts (MSCs). In doing so, we generalized Angluin’s learning
algorithm for deterministic finite-state automata (DFA) towards learning specific classes
of bounded MPA.

It was shown that elements of the classes of∀-regular (safe product) MPA can be
learned and that elements of the class of∃-regular MPA can be learned provided an a
priori bound is given. A similar approach for learnability of ∀-regular product MPA fails.
It is left open whether(MPAp

∀,∼
p
∀) is learnable. Note that there are other interesting

classes of learnable MPA. For example, our setting easily applies to the causal closure
as defined by Adsul et al., which has the nice property that thecausal closure of any
regular MSC language is regular [1].

We developedSmyleas a prototype supporting the inference of design models from
scenario-based specifications to validate our approach in practice. As future work, we
plan to integrateMSCan[7] into Smyleto support the formal analysis of a suggested
model.

Smyleis freely available for exploration athttp://smyle.in.tum.de.

References

1. B. Adsul, M. Mukund, K. N. Kumar, and V. Narayanan. Causal closure for MSC languages. In
FSTTCS 2005, LNCS, pages 335–347, Hyderabad, India, 2005.

16

2. R. Alur, K. Etessami, and M. Yannakakis. Inference of message sequence charts.IEEE Trans. Softw.
Eng., 29(7):623–633, 2003.

3. R. Alur, K. Etessami, and M. Yannakakis. Realizability and verification of MSC graphs.Th. Comp.
Sc., 331(1):97–114, 2005.

4. D. Angluin. Learning regular sets from queries and counterexamples.Inf. Comput., 75(2):87–106,
1987.

5. AT&T. Grappa - A Java Graph Package. http://www.research.att.com/ john/Grappa/.
6. B. Bollig. Formal Models of Communicating Systems — Languages, Automata, and Monadic Second-

Order Logic. Springer, 2006.
7. B. Bollig, C. Kern, M. Schl̈utter, and V. Stolz. MSCan: A tool for analyzing MSC specifications. In

H. Hermanns and J. Palsberg, editors,Proceedings of the 12th International Conference on Tools and
Algorithms for Construction and Analysis of Systems TACAS’06, volume 3920 ofLecture Notes in
Computer Science, pages 455–458, Vienna, Austria, Mar. 2006. Springer.

8. B. Bollig and M. Leucker. A hierarchy of implementable MSClanguages. InFORTE, volume 3731
of LNCS, pages 53–67. Springer, 2005.

9. B. Bollig and M. Leucker. Message-passing automata are expressively equivalent to EMSO logic.Th.
Comp. Sc., 358(2-3):150–172, 2006.

10. Y. Bontemps, P. Heymand, and P.-Y. Schobbens. From live sequence charts to state machines and
back: a guided tour.IEEE Trans. Softw. Eng., 31(12):999–1014, 2005.

11. D. Brand and P. Zafiropulo. On communicating finite-statemachines.J. of the ACM, 30(2):323–342,
1983.

12. W. Damm and D. Harel. Lscs: Breathing life into message sequence charts.Formal Methods in System
Design, 19:1:45–80., 2001.

13. D.Harel and R. Marelly.Come, Let’s Play: Scenario-Based Programming Using LSCs and the Play-
Engine. Springer, 2003.

14. U. Endriss, N. Maudet, F. Sadri, and F. Toni. Logic-BasedAgent Communication Protocols. In
Workshop on Agent Communication Languages, pages 91–107, 2003.

15. U. Endriss, N. Maudet, F. Sadri, and F. Toni. Protocol Conformance for Logic-based Agents. InIJCAI,
pages 679–684, 2003.

16. B. Genest. Compositional Message Sequence Charts (CMSCs) Are Better to Implement Than MSCs.
In TACAS, pages 429–444, 2005.

17. B. Genest, D. Kuske, and A. Muscholl. A Kleene theorem andmodel checking algorithms for exis-
tentially bounded communicating automata.Inf. Comput., 204(6):920–956, 2006.

18. J. G. Henriksen, M. Mukund, K. N. Kumar, M. Sohoni, and P. S. Thiagarajan. A theory of regular
MSC languages.Inf. and Comput., 202(1):1–38, 2005.

19. J. G. Henriksen, M. Mukund, K. N. Kumar, and P. S. Thiagarajan. Regular collections of message
sequence charts. InMFCS, volume 1893 ofLNCS. Springer, 2000.

20. H. Hungar, O. Niese, and B. Steffen. Domain-specific optimization in automata learning. InComputer-
Aided Verification, volume 2725 ofLNCS, pages 315–327. Springer, 2003.

21. I. Krüger, R. Grosu, P. Scholz, and M. Broy. From mscs to statecharts. In F. J. Rammig, editor,DIPES,
volume 155 ofIFIP Conference Proceedings, pages 61–72. Kluwer, 1998.

22. D. Kuske. Regular sets of infinite message sequence charts. Inf. Comput., 187:80–109, 2003.
23. M. Lohrey. Realizability of high-level message sequence charts: closing the gaps.Th. Comp. Sc.,

309(1-3):529–554, 2003.
24. J. Ltd.JGraph - Java Graph Visualization and Layout. http://www.jgraph.com/.
25. R. Morin. Recognizable sets of message sequence charts.In STACS, volume 2285 ofLNCS, pages

523–534. Springer, 2002.
26. A. Muscholl and D. Peled. From finite state communicationprotocols to high-level message sequence

charts. InICALP, volume 2076 ofLNCS, pages 720–731. Springer, 2001.
27. B. Nuseibeh and S. Easterbrook. Requirements engineering: a roadmap. InInt. Conf. on Software

Engineering (ICSE), pages 35–46. ACM, 2000.
28. H. Raffelt and B. Steffen. Learnlib: A library for automata learning and experimentation. InFASE,

volume 3922 ofLNCS, pages 377–380, 2006.
29. B. Sengupta and R. Cleaveland. Executable requirementsspecifications using triggered message se-

quence charts. In G. Chakraborty, editor,ICDCIT, volume 3816 ofLecture Notes in Computer Science,
pages 482–493. Springer, 2005.

17

30. S. Uchitel, J. Kramer, and J. Magee. Synthesis of behavioral models from scenarios.IEEE Trans.
Softw. Eng., 29(2):99–115, 2003.

31. Y. L. Varol and D. Rotem. An algorithm to generate all topological sorting arrangements.Comput. J.,
24(1):83–84, 1981.

18

A ExtendedAngluin

The extension of Angluin’s algorithm wrt. a learning setup(Σ,D,≈,⊢, obj) for (O,∼)
is sketched in Table 1. Note that in this table we do not explicitly deal with theAssistant

keeping track of membership queries to avoid queries that are redundant due to≈.

B Case Studies

In the following we describe two of the protocolsSmylewas applied to. In the first one
(thesimple negotiation protocolfrom [14]) clientp sends arequest to the serverq. The
server may either directlyaccept orrefuse the client’s request or enter achallenge-
justify phase in which he asks for more information from the client. As long as the
server is not satisfied with the information provided by the client he stays in this phase.
Once the server collected enough information he decides whether toaccept orrefuse
the client’s initial request.

Thesimple negotiation protocol(represented as high-level MSC):

i)

p q

req

p q

chal
just

p q

ref

p q

acc

Smyle
=⇒ 1 2 3

6

4

5

7 89

!req ?req !chal

?chal

!just

?just

!acc!ref

?ref ?acc

The six example MSCsSmylewas provided with:

p q

req
acc

p q

req
ref

p q

req
chal
just
acc

p q

req
chal
just
ref

p q

req
chal
just
chal
just
acc

p q

req
chal
just
chal
just
ref

The second protocol is part of the USB 1.1 specification. The first message sent
from thehost informs thefunction that the isochronous mode (USB distinguishes
between three kinds of modes: isochronous, bulk and setup) will be used and also in-
forms whether thefunction has to play the role of the receiver or the transmitter.
Depending on this decision, the protocol either turns to theleft or the right node of the
HMSC and stays there until the transmission is complete.

19

Table 1.The extension of Angluin’s algorithm

EXTENDEDANGLUIN((O,∼), (Σ,D,≈,⊢, obj)):

2 initialize (U, V, T) by asking membership queries for allw ∈ {ε} ∪ Σ

3 repeat
4 while T is not (closed and consistent)
5 do
6 if T is not consistentthen
7 find u, u′ ∈ U , a ∈ Σ, andv ∈ V such that
8 T (u) = T (u′) andT (ua)(v) 6= T (u′a)(v)
9 addav to V

10 extendT to (U ∪ UΣ)V by membership queries
11 if T is not closedthen
12 find u ∈ U andv ∈ V such thatT (ua) 6= T (u′) for anyu′ ∈ U

13 addua to U

14 extendT to (U ∪ UΣ)V by membership queries
15 /∗ T is both closed and consistent∗/
16 from T , construct the hypothesized DFAH
17 if L(H) 6⊆ D
18 then
19 computew ∈ L(H) \ D
20 addw and all its prefixes toU
21 extendT to (U ∪ UΣ)V by membership queries
22 where the query forw is answered negatively
23 else
24 if L(H) is not ≈ -closed
25 then
26 computew, w′ ∈ D such thatw ≈ w′, w ∈ L(H), andw′ 6∈ L(H)
27 add anyu ∈ [w]≈ and all its prefixes toU
28 extendT to (U ∪ UΣ)V by membership queries
29 else
30 if L(H) is not ⊢ -closed
31 then
32 compute(L1, L2) ∈ ⊢ such thatL1 ⊆ L(H) andL(H) ∩ L2 = ∅
33 add anyu ∈ L1 and all its prefixes toU
34 extendT to (U ∪ UΣ)V by membership queries
35 if any membership query forL1 is answered positivelythen
36 ask forw ∈ L2 (as positive example)
37 addw and all its prefixes toU
38 extendT to (U ∪ UΣ)V by membership queries
39 where the query forw is answered positively
40 else
41 computeobj (H) and do equivalence test
42 if equivalence test failsthen
43 counterexamplew is provided
44 w and all its prefixes are added toU
45 extendT to (U ∪ UΣ)V by membership queries
46 until equivalence test succeeds
47 returnobj (L(H))

20

A protocol being part of the USB 1.1 protocol (represented ashigh-level MSC):

ii)

host fct.

snd

host fct.

snd

host fct.

ack

Smyle
=⇒

1

2

3

47

8

9

5

6

!snd

?snd

!snd

!snd
!ack

?snd!snd

?snd!snd?ack!ack

!ack ?ack

The four example MSCsSmylewas provided with:

host fct.

snd
snd

host fct.

snd
ack

host fct.

snd
snd
snd

host fct.

snd
ack
ack

21

22

Aachener Informatik-Berichte

This list contains all technical reports published during the past five years. A

complete list of reports dating back to 1987 is available from http://aib.
informatik.rwth-aachen.de/. To obtain copies consult the above URL

or send your request to: Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55,

52056 Aachen, Email: biblio@informatik.rwth-aachen.de

2001-01 ∗ Jahresbericht 2000

2001-02 Benedikt Bollig, Martin Leucker: Deciding LTL over Mazurkiewicz

Traces

2001-03 Thierry Cachat: The power of one-letter rational languages

2001-04 Benedikt Bollig, Martin Leucker, Michael Weber: Local Parallel Model

Checking for the Alternation Free mu-Calculus

2001-05 Benedikt Bollig, Martin Leucker, Thomas Noll: Regular MSC Languages

2001-06 Achim Blumensath: Prefix-Recognisable Graphs and Monadic Second-

Order Logic

2001-07 Martin Grohe, Stefan Wöhrle: An Existential Locality Theorem

2001-08 Mareike Schoop, James Taylor (eds.): Proceedings of the Sixth Interna-

tional Workshop on the Language-Action Perspective on Communication

Modelling

2001-09 Thomas Arts, Jürgen Giesl: A collection of examples for termination of

term rewriting using dependency pairs

2001-10 Achim Blumensath: Axiomatising Tree-interpretable Structures

2001-11 Klaus Indermark, Thomas Noll (eds.): Kolloquium Programmier-

sprachen und Grundlagen der Programmierung

2002-01 ∗ Jahresbericht 2001

2002-02 Jürgen Giesl, Aart Middeldorp: Transformation Techniques for Context-

Sensitive Rewrite Systems

2002-03 Benedikt Bollig, Martin Leucker, Thomas Noll: Generalised Regular

MSC Languages

2002-04 Jürgen Giesl, Aart Middeldorp: Innermost Termination of Context-

Sensitive Rewriting

2002-05 Horst Lichter, Thomas von der Maßen, Thomas Weiler: Modelling Re-

quirements and Architectures for Software Product Lines

2002-06 Henry N. Adorna: 3-Party Message Complexity is Better than 2-Party

Ones for Proving Lower Bounds on the Size of Minimal Nondeterministic

Finite Automata

2002-07 Jörg Dahmen: Invariant Image Object Recognition using Gaussian Mix-

ture Densities

2002-08 Markus Mohnen: An Open Framework for Data-Flow Analysis in Java

2002-09 Markus Mohnen: Interfaces with Default Implementations in Java

2002-10 Martin Leucker: Logics for Mazurkiewicz traces

2002-11 Jürgen Giesl, Hans Zantema: Liveness in Rewriting

23

2003-01 ∗ Jahresbericht 2002

2003-02 Jürgen Giesl, René Thiemann: Size-Change Termination for Term

Rewriting

2003-03 Jürgen Giesl, Deepak Kapur: Deciding Inductive Validity of Equations

2003-04 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:

Improving Dependency Pairs

2003-05 Christof Löding, Philipp Rohde: Solving the Sabotage Game is PSPACE-

hard

2003-06 Franz Josef Och: Statistical Machine Translation: From Single-Word

Models to Alignment Templates

2003-07 Horst Lichter, Thomas von der Maßen, Alexander Nyßen, Thomas

Weiler: Vergleich von Ansätzen zur Feature Modellierung bei der Soft-

wareproduktlinienentwicklung

2003-08 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:

Mechanizing Dependency Pairs

2004-01 ∗ Fachgruppe Informatik: Jahresbericht 2003

2004-02 Benedikt Bollig, Martin Leucker: Message-Passing Automata are expres-

sively equivalent to EMSO logic

2004-03 Delia Kesner, Femke van Raamsdonk, Joe Wells (eds.): HOR 2004 – 2nd

International Workshop on Higher-Order Rewriting

2004-04 Slim Abdennadher, Christophe Ringeissen (eds.): RULE 04 – Fifth In-

ternational Workshop on Rule-Based Programming

2004-05 Herbert Kuchen (ed.): WFLP 04 – 13th International Workshop on Func-

tional and (Constraint) Logic Programming

2004-06 Sergio Antoy, Yoshihito Toyama (eds.): WRS 04 – 4th International

Workshop on Reduction Strategies in Rewriting and Programming

2004-07 Michael Codish, Aart Middeldorp (eds.): WST 04 – 7th International

Workshop on Termination

2004-08 Klaus Indermark, Thomas Noll: Algebraic Correctness Proofs for Com-

piling Recursive Function Definitions with Strictness Information

2004-09 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Param-

eterized Power Domination Complexity

2004-10 Zinaida Benenson, Felix C. Gärtner, Dogan Kesdogan: Secure Multi-

Party Computation with Security Modules

2005-01 ∗ Fachgruppe Informatik: Jahresbericht 2004

2005-02 Maximillian Dornseif, Felix C. Gärtner, Thorsten Holz, Martin Mink: An

Offensive Approach to Teaching Information Security: “Aachen Summer

School Applied IT Security”

2005-03 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp: Proving and Dis-

proving Termination of Higher-Order Functions

2005-04 Daniel Mölle, Stefan Richter, Peter Rossmanith: A Faster Algorithm for

the Steiner Tree Problem

2005-05 Fabien Pouget, Thorsten Holz: A Pointillist Approach for Comparing

Honeypots

24

2005-06 Simon Fischer, Berthold Vöcking: Adaptive Routing with Stale Informa-

tion

2005-07 Felix C. Freiling, Thorsten Holz, Georg Wicherski: Botnet Tracking: Ex-

ploring a Root-Cause Methodology to Prevent Distributed Denial-of-

Service Attacks

2005-08 Joachim Kneis, Peter Rossmanith: A New Satisfiability Algorithm With

Applications To Max-Cut

2005-09 Klaus Kursawe, Felix C. Freiling: Byzantine Fault Tolerance on General

Hybrid Adversary Structures

2005-10 Benedikt Bollig: Automata and Logics for Message Sequence Charts

2005-11 Simon Fischer, Berthold Vöcking: A Counterexample to the Fully Mixed

Nash Equilibrium Conjecture

2005-12 Neeraj Mittal, Felix Freiling, S. Venkatesan, Lucia Draque Penso: Ef-

ficient Reductions for Wait-Free Termination Detection in Faulty Dis-

tributed Systems

2005-13 Carole Delporte-Gallet, Hugues Fauconnier, Felix C. Freiling: Revisiting

Failure Detection and Consensus in Omission Failure Environments

2005-14 Felix C. Freiling, Sukumar Ghosh: Code Stabilization

2005-15 Uwe Naumann: The Complexity of Derivative Computation

2005-16 Uwe Naumann: Syntax-Directed Derivative Code (Part I: Tangent-

Linear Code)

2005-17 Uwe Naumann: Syntax-directed Derivative Code (Part II: Intraprocedu-

ral Adjoint Code)

2005-18 Thomas von der Maßen, Klaus Müller, John MacGregor, Eva Geis-

berger, Jörg Dörr, Frank Houdek, Harbhajan Singh, Holger Wußmann,

Hans-Veit Bacher, Barbara Paech: Einsatz von Features im Software-

Entwicklungsprozess - Abschlußbericht des GI-Arbeitskreises “Features”

2005-19 Uwe Naumann, Andre Vehreschild: Tangent-Linear Code by Augmented

LL-Parsers

2005-20 Felix C. Freiling, Martin Mink: Bericht über den Workshop zur Ausbil-

dung im Bereich IT-Sicherheit Hochschulausbildung, berufliche Weiter-

bildung, Zertifizierung von Ausbildungsangeboten am 11. und 12. Au-

gust 2005 in Köln organisiert von RWTH Aachen in Kooperation mit

BITKOM, BSI, DLR und Gesellschaft fuer Informatik (GI) e.V.

2005-21 Thomas Noll, Stefan Rieger: Optimization of Straight-Line Code Revis-

ited

2005-22 Felix Freiling, Maurice Herlihy, Lucia Draque Penso: Optimal Random-

ized Fair Exchange with Secret Shared Coins

2005-23 Heiner Ackermann, Alantha Newman, Heiko Röglin, Berthold Vöcking:

Decision Making Based on Approximate and Smoothed Pareto Curves

2005-24 Alexander Becher, Zinaida Benenson, Maximillian Dornseif: Tampering

with Motes: Real-World Physical Attacks on Wireless Sensor Networks

2006-01 ∗ Fachgruppe Informatik: Jahresbericht 2005

25

2006-03 Michael Maier, Uwe Naumann: Intraprocedural Adjoint Code Generated

by the Differentiation-Enabled NAGWare Fortran Compiler

2006-04 Ebadollah Varnik, Uwe Naumann, Andrew Lyons: Toward Low Static

Memory Jacobian Accumulation

2006-05 Uwe Naumann, Jean Utke, Patrick Heimbach, Chris Hill, Derya Ozyurt,

Carl Wunsch, Mike Fagan, Nathan Tallent, Michelle Strout: Adjoint

Code by Source Transformation with OpenAD/F

2006-06 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Divide-

and-Color

2006-07 Thomas Colcombet, Christof Löding: Transforming structures by set in-

terpretations

2006-08 Uwe Naumann, Yuxiao Hu: Optimal Vertex Elimination in Single-

Expression-Use Graphs

2006-09 Tingting Han, Joost-Pieter Katoen: Counterexamples in Probabilistic

Model Checking

2006-10 Mesut Günes, Alexander Zimmermann, Martin Wenig, Jan Ritzerfeld,

Ulrich Meis: From Simulations to Testbeds - Architecture of the Hybrid

MCG-Mesh Testbed

2006-11 Bastian Schlich, Michael Rohrbach, Michael Weber, Stefan Kowalewski:

Model Checking Software for Microcontrollers

∗ These reports are only available as a printed version.

Please contactbiblio@informatik.rwth-aachen.de to obtain copies.

26

