
SALT—Structured Assertion Language for

Temporal Logic

Andreas Bauer, Martin Leucker?, and Jonathan Streit

Institut für Informatik, Technische Universität München
{baueran,leucker,streit}@informatik.tu-muenchen.de

Abstract. This paper presents Salt. Salt is a general purpose speci-
fication and assertion language developed for creating concise temporal
specifications to be used in industrial verification environments. It incor-
porates ideas of existing approaches, such as specification patterns, but
also provides nested scopes, exceptions, support for regular expressions
and real-time. The latter is needed in particular for verification tasks
to do with reactive systems imposing strict execution times and dead-
lines. However, unlike other formalisms used for temporal specification of
properties, Salt does not target a specific domain. The paper details on
the design rationale, syntax and semantics of Salt in terms of a trans-
lation to temporal (real-time) logic, as well as on the realisation in form
of a compiler. Our results will show that the higher level of abstraction
introduced with Salt does not deprave the efficiency of the subsequent
verification tools—rather, on the contrary.

1 Introduction

Temporal logics, such as linear time temporal logic (LTL) [Pnu77], are speci-
fication formalisms suited to express desired properties of a set of traces and
come with a rigorous semantics. Yet more importantly, automatic verification
techniques, such as model checking [CGP99], are successfully used to verify such
specifications over finite-state system models.

However, despite obvious advantages over semi-formal or even informal no-
tations, temporal logic is often completely disregarded in (industrial) practice.
Instead, a considerable amount of verification related questions are answered
only partially by means of testing and simulation—with well-known drawbacks,
namely that testing alone can never show the absence of bugs, but merely their
presence if at all (cf. [DDH72]). Temporal logic, on the other hand, is still widely
considered to be a vehicle for specially skilled verification engineers, if not even
an academic toy.

We argue that this point-of-view is misleading. We do, however, admit that,
for example, LTL’s syntax—together with the typical reduction to a minimal set
of operators which is done in most research papers—makes it additionally hard
for formulating concise and correct specifications, even for specialists.

? Part of this work was done during the author’s stay in Stanford, USA, and supported
by ARO DAAD 19-03-1-0197.

For example, consider the simple requirement “s precedes p after q”, which
is formulated in LTL by Dwyer et al. [DAC99] as (�¬q) ∨ ♦(q ∧ (¬p W s)).
At first sight, this looks correct: “either q never holds or, when q becomes true,
there is no p before an s”. Nevertheless, the formula contains a very subtle error:
it states that eventually q ∧ (¬p W s) holds, but does not require it to be the
first occurrence of q. The sequence qpqs satisfies the formula, although it is
clear that it should not. Consequently, the correct formula would be (�¬q) ∨
¬q U (q ∧ (¬p W s)). Avoiding this kind of mistake in specifications altogether
is practically impossible. LTL’s minimalistic set of operators, however, forces its
users to build complex, error-prone formulas for even very simple requirements
as can be seen above.

Despite this, it is very unlikely that a completely different specification
formalism—of whatever kind—would stand a chance to compete with LTL for
at least two different reasons: 1. LTL has a well-accepted precise semantics, 2.
powerful model checking tools and runtime verification approaches based on LTL
exist already.

Contribution. In this paper, we remedy LTL’s and timed LTL’s (short: TLTL
[RS97,D’S03]) weaknesses for industrial specifications by introducing the spec-
ification and assertion language Salt, which is an acronym for Structured As-

sertion Language for Temporal Logic (see also http://salt.in.tum.de/).
To programmers, Salt looks a lot like a programming language, while still

being translatable to LTL, or—in case real-time operators are used—to TLTL.
As such, Salt is also suitable as a front end to already existing model check-
ing and runtime verification tools. Furthermore, a precise semantics of Salt is
given in terms of translation rules, which are realised in an accompanying Salt

compiler prototype.
More importantly, being closer to a general purpose (programming) language,

Salt is—as the examples throughout the paper will show—more intuitive to use
and understand than standard LTL. For example, besides LTL’s temporal op-
erators, Salt provides sophisticated scoping rules, support for (limited) regular
expressions, exceptions, iterators, counting quantifiers, and user-defined macros.

In other words, using Salt, users are able to specify properties on a higher
level of abstraction than with many other formalisms, such as standard LTL.

While compiling a high level programming language to a low level represen-
tation often has a negative impact in terms of efficiency, we will show that LTL
(resp. TLTL) formulas resulting from Salt specifications tend to be rather com-
pact when compared to their manually-written counterparts in LTL; one reason
lies in that humans tend to choose the most readable formula among equivalent
ones, while our compiler can optimise purely for the size of a formula.

However, plain LTL’s limited flexibility in real-world scenarios has also been
noted by other users (see Section 2). For instance, for the hardware domain,
Sugar/PSL [BBDE+01] has been designed as a high level specification language
aimed as a “syntactic sugaring” for temporal logic.

Dwyer et al. [DAC99] have analysed real-world specifications to identify typi-
cal patterns for property specifications, similar to design patterns encountered in

software engineering [GHJV94]. Using patterns allows even inexperienced users
to reuse expert knowledge.

Salt takes over some of the ideas present in PSL and is heavily inspired by
the pattern approach. However, Salt is a language and patterns are turned into
operators of the language. Furthermore, the additional concepts listed above, like
macro definitions, counting quantifiers etc., round off the specification language
and push Salt ahead of existing approaches.

Salt’s language reference, a compiler, an interactive web interface, as well
as further example specifications written in Salt are available from the web site
(http://salt.in.tum.de/).

Outline. Section 2 describes the context of Salt by means of already existing
and mostly domain-specific approaches, as well as a classification of Salt with
respect to its underlying semantics and expressiveness. Then, in Section 3, we
take a detailed look at the language itself and highlight its main features. We
discuss Salt’s formal semantics in Section 4. In Section 5, we will show that
Salt specifications can be efficiently compiled to standard temporal (real-time)
logics, often resulting in even more compact representations. Section 6 concludes
the paper.

2 Classification

In the following, we detail on the context of Salt in terms of related work as
well as in terms of its underlying semantics and expressiveness.

2.1 Existing approaches

Sugar/PSL. Sugar/PSL (Property Specification Language) [BBDE+01] is a
high level specification language tailored for hardware design, originally aimed
as a “syntactic sugaring” of the branching time logic CTL. Sugar 2.0 is based
on a linear view of time while keeping branching time as an optional extension
and is currently undergoing standardisation by the IEEE under the name PSL
[FMW05].

The PSL specification language is structured into boolean, temporal, verifi-
cation, and modelling layers. The boolean layer provides operators for propo-
sitional logic, while the operators of the temporal layer are used to combine
propositional formulas to temporal ones. The verification layer allows to define
what the verification tool is expected to do with the specified properties (e. g.,
check that a property holds, assume that a property holds, etc.). The modelling
layer, in turn, is used to model the input to the design or external hardware.

PSL provides a rich set of operators for reasoning over boolean conditions
(e. g., bit-vector operations) and for regular expressions. A so-called clocking
operator allows to state that an expression is evaluated only in cycles where its
clocking condition holds. PSL comes with an abort operator that can be used
to model resets: it evaluates a pending expression to false on the occurrence

of an exceptional (abort) condition. Furthermore, PSL allows the use of macro
directives similar to those of the C preprocessor. Parameterised properties can be
instantiated for a set of concrete values. However, PSL does not contain temporal
past operators which can be rather intuitive to use as well as make specifications
more succinct (cf. [Mar03]), and no real-time constraints used frequently for
modelling and verifying properties of reactive systems imposing strict execution
times and deadlines, such as embedded systems.

PSL is often directly used as input to a verification tool, both for formal
verification and for generating checks that are executed by a simulation tool.
The latter corresponds to a runtime analysis of a simulated hardware design.
However, PSL is specific to the hardware domain and a translation into LTL is
possible only for a subset of PSL [TS05]. Therefore it cannot be easily used with
existing LTL-based verification tools.

PSL’s goals are orthogonal to the Salt approach. With Salt, we wanted
to go further in terms of abstracting from LTL’s syntax and thus providing a
more convenient-to-use language. On the other hand, Salt is not dedicated to
either model checking, runtime verification, or strictly to the hardware domain.
As such, Salt does not impose its own verification and modelling layer.

SpecPatterns. The Salt approach was also influenced by work of Dwyer et
al., in which various real-world specifications have been analysed [DAC99]. Fre-
quently used patterns have been identified and a pattern system for property
specifications, similar to the design patterns in software engineering [GHJV94]
has been elaborated. A pattern provides a solution to a reoccurring problem, of-
ten including notes about its advantages, drawbacks, and alternatives. As such
it enables inexperienced users to reuse expert knowledge.

Basically, the patterns of Dwyer et al. consist of requirements, such as “ab-
sence” (i. e., a condition is false) or “response” (i. e., an event triggers another
one), that can be expressed under different scopes, like “globally”, “before an
event r”, “after an event q”, or “between two events r and q”. The specifica-
tion pattern approach has been adopted by the Bandera Specification Language
[CDHR01] and a compiler that translates such specifications into LTL is part of
the Bandera system.

Dwyer et al. convincingly argue that scopes are needed in many real-world
specifications. However, specification patterns as defined by Dwyer et al. suffer
from the fact that they cannot be nested: only propositional formulas may be
used as their parameters. In other words, adding a new requirement to the
pattern system means having to manually write an LTL formula for each scope.

Others. The previous two approaches are not the only specification languages
tailored for domain specific tasks. For instance, the ForSpec Temporal Logic
(FTL) [AFF+02] is a specification language developed at Intel, and is based
on a linear view of time, aimed for the formal verification of hardware circuits.
Much like Sugar/PSL, ForSpec provides regular and clocked expressions as well
as accept and reject operators for modelling resets. However, ForSpec does not

contain real-time operators, only limited support for references to the past, and
cannot be completely translated to LTL.

EAGLE [BGHS04] is a temporal logic with a small but flexible set of prim-
itives. The logic is based on recursive parameterised equations with fix-point
semantics and merely three temporal operators: next-time, previous-time, and
concatenation. Using these primitives, one can construct the operators known
from various other formalisms, such as LTL or regular expressions. While EA-
GLE allows the specification of real-time constraints, it lacks most high level con-
structs such as nested scopes, exceptions, counting quantifiers currently present
in Salt.

Duration calculus [CHR91] and similar interval temporal logics overcome
some of the limitations of LTL that we mentioned. These logics can naturally
encode past operators, scoping, regular expressions, and counting. However, it
is unclear how to translate specifications in these frameworks to LTL such that
standard model checking and runtime verification tools based on LTL can be
employed.

2.2 Expressiveness

Clearly, existing approaches have shaped various practical considerations in the
design rationale of the language Salt. However, from a purely theoretical point-
of-view, Salt’s features are more oriented towards the varying expressiveness of
the supported logics.

Salt currently supports translation into propositional logics, LTL, as well as
TLTL, a natural extension of LTL for the formulation of real-time constraints
[RS97]. D’Souza has shown [D’S03] that TLTL corresponds exactly to the first-
order fragment of monadic second order logic interpreted over timed words. This
resembles the correspondence of LTL and first-order logic over words, shown by
Kamp [Kam68]. However, LTL is strictly less expressive than second-order logic
over words, which is expressively equivalent to ω-regular expressions. This im-
plies that full support of regular expressions is not possible when LTL properties
are in question (see Figure 1).

LTL PastLTL

Prop. Logic

TLTL

FO

FOe
c

MSO
e
c

MSO

RExp

RExp(*)

Fig. 1. Relationships between propositional, first-order, and temporal logics.

For practitioners, regular expressions are an established formalism, often used
to specify custom search-patterns. Therefore, Salt provides support for simpli-

fied regular expressions that do not go beyond star-free languages (where “star”
refers to the Kleene operator) and that can be efficiently translated into LTL.

The design of the language Salt also follows a strictly layered approach (see
Section 3), in that the language supports specifications that can be translated
into either formalism depicted in Figure 1. More so, by reflecting and differen-
tiating between the different levels of expressiveness in the language, Salt is
extensible to support other logics in the future as well.

3 Features of the SALT language

A Salt specification contains one or many assertions that together formulate
the requirements associated with a system under scrutiny. Each assertion is
translated into a separate LTL/TLTL formula, which can then be used in, say,
a model checker or a runtime verification framework. Salt uses mainly textual
operators, so that the frequently used LTL formula �(p→ ♦q) would be written
as

assert always (p implies eventually q).

Basically, the Salt language consists of the following three layers, each cov-
ering different aspects of the specification:

– The propositional layer provides the atomic, boolean propositions as well as
the well-known boolean operators.

– The temporal layer encapsulates the main features of the Salt language
for specifying temporal system properties. The layer is divided into a future
fragment and a symmetrical past fragment.

– The timed layer adds real-time constraints to the language. It is equally
divided into a future and a past fragment, similar to the temporal layer.

Within each layer, macros and parameterised expressions can be defined and
instantiated by iteration operators, enlarging the expressiveness of each layer
into the orthogonal dimension of functions.

Depending on which layers are used for specification, the Salt compiler
generates either LTL or TLTL formulas (resp. with or without past operators).
For instance, if only operators from the propositional layer are used, the resulting
formulas are purely propositional formulas. If only operators from the temporal
and the propositional layer are used, the resulting formulas are LTL formulas,
whereas if the timed layer is used, the resulting formulas are TLTL formulas.

3.1 Propositional layer

Atomic propositions. Boolean propositions are the atomic elements from
which Salt expressions are built. They usually resemble variables, signals, or
complete expressions of the system under scrutiny. Salt is parameterised with
respect to the propositional layer: any term that evaluates to either true or false

can be used as atomic proposition. This allows, for example, propositions to be

Java expressions when used for runtime verification of Java programs, or, sim-
ple bit-vectors when Salt is used as front end to verification tools like SMV
[McM92].

Usually, every identifier that is used in the specification and that was not
defined as a macro or a formal parameter is treated as an atomic proposition,
which means that it appears in the output as it has been written in the speci-
fication. Additionally, arbitrary strings can be used as atomic propositions. For
example,

assert always "state!=ERROR"

is a valid Salt specification and results in the output (here, in SMV syntax)

LTLSPEC G state!=ERROR .

However, the Salt compiler can also be called with a customized parser
provided as a command line parameter, which is then used to perform additional
checks on the syntactic structure of the propositions thus, making the use of
structured propositions more reliable.

Boolean operators. The well-known set of boolean operators ¬, ∧, ∨, → and
↔ can be used in Salt both as symbols (!, &, |, ->, <->), or as textual operators
(not, and, or, implies, equals).

Additionally, the conditional operators if-then and if-then-else can be
used, which appear similarly also in the ForSpec language. Conditional opera-
tors tend to make specifications easier to read, because if-then-else constructs
are familiar to programmers of almost every language. Using this operator, the
introductory example could be reformulated as

assert always (if p then eventually q).

More so, any such formula can be arbitrarily combined using the boolean con-
nectives.

3.2 Temporal layer

The temporal layer consists of a future and a past fragment. Although past
operators do not add expressiveness [GPSS80], they can help to write formulas
that are easier to understand and more efficient for processing [Mar03].

In the following, we concentrate on the future fragment of Salt. The past
fragment is, however, completely symmetrical. Salt’s future operators are trans-
lated using only LTL future operators, and past operators are translated using
only LTL past operators. This leaves users the complete freedom as to whether
they do or do not want to have past operators in the result.

Standard LTL operators. Salt provides the common LTL operators U, W,
R, �, ♦ and ◦, written as until, until weak, releases, always, eventually,
and next. Thus, untimed Salt has the same expressiveness as LTL (see Sec-
tion 2.2).

Extended operators. Similar to Sugar/PSL, Salt also provides a number of
extended operators that help express frequently used requirements.

– never. The never operator is dual to always and requires that a formula
never holds. While this could of course be easily expressed with the stan-
dard LTL operators, using never can help to make specifications easier to
understand.

– Extended until. Salt provides an extended version of the LTL U operator.
The user can specify whether they want it to be exclusive (i. e., in ϕ U ψ,
ϕ has to hold until the moment ψ occurs) or inclusive (i. e., ϕ has to hold
until and during the moment ψ occurs) 1

They can also choose whether the end condition is required (i. e., must even-
tually occur), weak (i. e., may or may not occur), or optional (i. e., the ex-
pression is only considered if the end condition eventually occurs).
The until operator family of Sugar/PSL provides a similar choice between
inclusive/exclusive and weak/strong end conditions.

– Extended next. Instead of writing long chains of next operators, Salt users
can specify directly that they want a formula to hold at a certain step in the
future. It is also possible to use the extended next operator with an interval,
e. g., specifying that a formula has to hold at some time between 3 and 6
steps in the future. Note that this operator refers only to states at certain
positions in the sequence, not to real-time constraints.

Counting quantifiers. Salt provides two operators, occurring and holding,
that allow to specify that an event has to occur a certain number of times.
occurring deals with events that may last more than one step and are separated
by one or more steps in which the condition does not hold. holding considers
single steps in which a condition holds. Both operators can also be used with
an interval, e. g., expressing the fact that an event has to occur at most 2 times
in the future. To express this requirement manually in LTL, one would have to
write

¬p W (p W (¬p W (p W �¬p))).

The corresponding Salt specification is written as

assert occurring[<=2] p.

Exceptions. Salt includes the exception operators rejecton and accepton

that interrupt the evaluation of a formula upon occurrence of an abort condition.
rejecton evaluates a formula to false if the abort condition occurs and the

1 This has nothing to do with strict or non-strict U: strictness refers to whether the
present state (i. e., the left end of the interval where ϕ is required to hold) is included
or not in the evaluation, while inclusive/exclusive defines whether ϕ has to hold in
the state where ψ occurs (i. e., the right end of the interval). Strict Salt operators
can be created by adding a preceding next-operator.

formula has not been accepted before. For example, monitoring a formula ♦ϕ

when there has been no occurrence of ϕ yet would evaluate to false. The dual
operator, accepton, evaluates a formula to true if it has not been rejected before.

Exceptions can be useful, for example, when specifying a communication
protocol that requires certain messages to be sent, but allows to abort the com-
munication at any time by sending a reset message. This would be expressed in
Salt as

assert (con_open and next (data until con_close))

accepton reset .

Similar rejecton and accepton operators can be found in ForSpec and in
PSL. The formal semantics of LTL enriched with those two operators (called
Reset-LTL) is explored in detail elsewhere [ABKV03].

Scope operators. Many temporal specifications use requirements restricted
to a certain scope, i. e., they state that the requirement has to hold only before,
after, or between some events, and not on the whole sequence [DAC99]. This can
be expressed in Salt using the operators upto (or before), from (or after) and
between.

Figure 2 illustrates scopes. It should be clear from the figure that it is manda-
tory in Salt to specify whether the delimiting events are part of the interval
(i. e., inclusive) or not (i. e., exclusive).

Fig. 2. Scopes of upto, from and between.

Furthermore, for scope operators, it has to be stated whether the occurrence
of the delimiting events is strictly required. For example, the following specifi-
cation

assert p

between inclusive optional call,

inclusive optional answer

means that p has to hold within the interval delimited by call and answer,
provided such an interval exists. Without the keyword optional, such an interval
would be required and within this interval, p must occur.

Scopes have been identified by Dwyer et al. as an important issue in the
specification pattern system, and the Bandera language. However, their pattern
system is restricted to predefined requirements. It does not allow nested scopes,
and by default only certain combinations of inclusive/exclusive and required/op-
tional delimiters. Some—but by far not all—scopes can also be expressed in
Sugar/PSL using the next event and before operators. Salt’s distinguishing
feature here is that scope operators can be used with arbitrary formulas, even
with nested scope operators.

While it is possible to implement a translation of the from operator into LTL
relatively straightforward (see Section 4), the upto operator proves to be more
difficult, as can be seen in the following example.

A specification always ϕ upto b expresses that ϕ must always hold until the
occurrence of the end condition b. A näıve translation into LTL would be ϕ W b.
This is in order for a purely propositional ϕ, but might be wrong when temporal
operators are used: Consider for example ϕ := p -> (eventually s) yielding
the formula (p→ ♦s)Wb, intending to say “p should be followed by s before b”.
The sequence pbs is a model for the latter formula, although s occurs after the
end condition b, which clearly violates our intuitions. To meet our intuition, the
negated end condition b has to be inserted into the U and ◦ statements of ϕ in
various places, e. g., like this: (p → (¬b U (¬b ∧ s))) W b. Dwyer et al. describe
this procedure in the notes of their specification pattern system [DAC99]. It is
however a tedious and highly error-prone task if undertaken manually.

Salt supports automatic translation by internally defining a stop operator.
Using stop , the above example can be formulated as ((p → ♦s) stop b)Wb

with stop b expressing that (p → ♦s) shall not take into account states after
the occurrence of b. It is then transformed into an LTL expression in a similar
way as the rejecton and accepton operators. Details can be found in Section 4.

Regular expressions. Regular expressions are well-known to many program-
mers. They provide a convenient way to express complex patterns of events, and
appear also in many specification languages, e. g., such as Sugar/PSL. However,
arbitrary regular languages can be defined using regular expressions, while LTL
only allows to define so-called star-free languages. Thus, regular expressions have
to be restricted in Salt.

Salt regular expressions provide concatenation (;), union (|) and Kleene-
star operators (*), but no complement. The argument of the Kleene-star is re-
quired to be a propositional formula. The advantage of this operator set—in con-
trast to the usual operator set for star-free regular expressions, which contains
concatenation, union and complement—is that it can be translated efficiently

into LTL. We agree with Sugar/PSL, which also provides regular expressions
without a complement operator, that many relevant properties can be expressed
conveniently without it.

Additionally, Salt provides operators that do not increase the expressive-
ness of its regular expressions, but makes dealing with them more convenient
for users. The overlapping sequence operator : is inspired by Sugar/PSL and
states that one expression follows another one, overlapping in one step. The ?

and + operators (optional expression and repetition at least once) are common
extensions of regular expressions. The * operator extended with a range of nat-
ural numbers allows to specify that an expression has to hold at least, at most,
exactly, or in between n and m times.

Traditional regular expressions match finite sequences. A Salt regular ex-
pression holds on an (infinite) sequence if it matches a finite prefix of the se-
quence.

With the help of regular expressions, we can rewrite the example using ex-
ception operators as

assert /con_open; data*; con_close/ accepton reset.

3.3 Timed layer

Salt contains a timed extension that allows the specification of real-time con-
straints. Timed operators are translated into TLTL [RS97,D’S03], a timed vari-
ant of LTL.

Timing constraints in Salt are expressed using the modifier timed[∼],
which can be used together with several untimed Salt operators in order to
turn them into timed operators. ∼ is one of <, <=, =, >=, > for next timed and
either < or <= for all other timed operators.

– next timed[∼ c]ϕ

states that the next occurrence of ϕ is within the time bounds ∼ c. This
corresponds to the operator B∼cϕ in TLTL.

– ϕ until timed[∼ c] ψ

states that ϕ is true until the next occurrence of ψ, and that this occurrence
of ψ is within the time bounds ∼ c. The extended variants of until can be
used as timed operators as well.

– always timed[∼ c] ϕ

states that ϕ must always be true within the time bounds ∼ c.
– never timed[∼ c] ϕ

states that ϕ must never be true within the time bounds ∼ c.
– eventually timed[∼ c] ϕ

states that ϕ must be true at some point within the time bounds ∼ c.

3.4 Macros and parameterised expressions

Salt allows user-defined sub-expressions as macros and to parameterise macros
and sub-expressions. Macros can be called in the same way as built-in Salt

operators. Within certain limits, this allows the user to extend the Salt language
using their own operators. For example, the following macro is called in infix
notation:

define respondsto(x, y) := y implies eventually x

assert always (reply respondsto request)

Iteration operators allow to instantiate a parameterised sub-expression or
macro with a list of values provided by the user. For example, the following
specification states that either a or !b or c must hold forever.

assert someof list [a, !b, c] as i in always i

Parameters defined in a macro or an iteration expression can also be used to
parameterise boolean variables, as in the following example, which states that
exactly one of the four variables, state_1, state_2, state_3 and state_4, must
be true.

assert exactlyoneof enumerate[1..4] as i in state_i

Macros can help to make a specification easier to understand, because com-
plicated sub-expressions can be transparently hidden from the user, and accessed
via an intuitive name that explains what the expression actually stands for. Sub-
expressions that are used several times have to be written down only once.

Up to an extent, support for user-defined macros and iteration over param-
eterised expressions is a part of many high-level specification languages, e. g.,
such as Sugar/PSL.

3.5 Example

Let us conclude this section by looking at a slightly longer example showing
most of Salt’s features. The following specification describes an elevator and is
partially based on an example presented by Dwyer et al. [DAC99]: On all three
floors in a building, calling the elevator at floor i implies that it may pass at
most two times at that floor without opening its doors, and that it must finally
open its doors at that floor within 60 seconds.

define max_twice_at_floor_before_open(i) :=

always (occurring[<=2] atfloor_i

between inclusive optional call_i ,

exclusive optional open_i)

define max_60s_before_open(i) :=

always (call_i implies

eventually timed[<=60.0] open_i)

assert allof enumerate[1..3] as floor in

max_twice_at_floor_before_open(floor)

and max_60s_before_open(floor)

Note that the modifiers optional in the between-statement make sure that
atfloor_i is only checked provided call_i occurs.

4 Semantics

Salt comes with a precisely defined semantics. As outlined in Section 2.2, Salt

can be translated into either LTL or TLTL; the latter only when timed operators
are used in a specification. Therefore, we define the semantics of Salt’s operators
by means of their corresponding LTL or respectively TLTL formulas.

More precisely, we define a translation function T to translate a valid Salt

specification ψ into a temporal logic formula T (ψ), and define that an infinite
word w over a finite alphabet of actions satisfies ψ iff w |= T (ψ) (using the
standard satisfaction relation |= defined for LTL/TLTL [MP95]).

For brevity, we exemplify the translation on a few selected operators only
and refer to the extensive language reference and manual available from Salt’s
homepage at http://salt.in.tum.de/ for the remaining cases.

In what follows, let ψ, ϕ, and ϕ′ denote Salt specifications. Many of Salt’s
operators can be considered as simple syntactic sugaring and are easily translated
to LTL. For example, T (ϕ or ϕ′)) is translated inductively to T (ϕ)∨T (ϕ′). The
operator never is then translated as T (never ϕ) = ¬♦T (ϕ), whereas a weak
inclusive until as in ϕ1 until incl weak ϕ2 is then defined, for instance, as

T (ϕ1 until incl weak ϕ2) = T (ϕ1) W (T (ϕ1) ∧ T (ϕ2)).

However, not all Salt operators translate in such a straightforward inductive
manner, since their translation depends on what is defined by the according sub-
formulas occurring in a given expression. To guide the translation process for
such operators, we have introduced an artificial or helper operator, stop, which
is inductively defined as follows:

T (b stopexcl s) = b

T ((¬ϕ) stopexcl s) = ¬T (ϕ stopexcl s)

T ((ϕ ∧ ψ) stopexcl s) = T (ϕ stopexcl s) ∧ T (ψ stopexcl s)

T ((ϕ ∨ ψ) stopexcl s) = T (ϕ stopexcl s) ∨ T (ψ stopexcl s)

T ((ϕ U ψ) stopexcl s) = (¬s ∧ T (ϕ stopexcl s)) U (¬s ∧ T (ψ stopexcl s))

T ((ϕ W ψ) stopexcl s) = T (ϕ stopexcl s) W (s ∨ T (ψ stopexcl s))

T ((◦ϕ) stopexcl s) = ◦(¬s ∧ T (ϕ stopexcl s))

T ((◦W ϕ) stopexcl s) = ◦(s ∨ T (ϕ stopexcl s))

T ((�ϕ) stopexcl s) = T (ϕ stopexcl s) W s

T ((♦ϕ) stopexcl s) = (¬s) U (¬s ∧ T (ϕ stopexcl s))

where b denotes an atomic proposition from the action alphabet and s an arbi-
trary formula, possibly atomic also.

Thus, stop selects certain aspects of a formula, and in ψ ≡ ϕ1 stop ϕ2,
intuitively asserts that the validity of ψ does not depend on events occurring
after ϕ2 has occurred. Again, for brevity, we consider only the exclusive variant of
stop and only for the future fragment of Salt. The past fragment and inclusive
semantics, however, are each symmetrical.

The more complicated scope operator upto, which was discussed earlier in
Section 3.2, and whose translation depends on stop, is then defined as:

T (ϕ upto excl req b) =
if T (ϕ) = �ψ: (ψ stopexcl b) U b

if T (ϕ) = ¬♦ψ: (¬ψ stopexcl b) U b

else: (♦b) ∧ (T (ϕ) stopexcl b)

T (ϕ upto excl opt b) =
if T (ϕ) = ♦ψ: ¬((¬ψ stopexcl b) U b)
else: (♦b) → (T (ϕ) stopexcl b)

T (ϕ upto excl weak b) = (T (ϕ) stopexcl b)

T (req ϕ upto excl req b) =
if T (ϕ) = �ψ: ¬b ∧ ((ψ stopexcl b) U b)
if T (ϕ) = ¬♦ψ: ¬b ∧ ((¬ψ stopexcl b) U b)
else: (♦b) ∧ ¬b ∧ (T (ϕ) stopexcl b)

T (req ϕ upto excl opt b) =
if T (ϕ) = ♦ψ: ¬((¬ψ stopexcl b) U b)
else: (♦b) → (¬b ∧ (T (ϕ) stopexcl b))

T (req ϕ upto excl weak b) = ¬b ∧ (T (ϕ) stopexcl b)

T (weak ϕ upto excl req b) =
if T (ϕ) = �ψ: (ψ stopexcl b) U b

if T (ϕ) = ¬♦ψ: (¬ψ stopexcl b) U b

else: (♦b) ∧ (b ∨ (T (ϕ) stopexcl b))

T (weak ϕ upto excl opt b) =
if T (ϕ) = ♦ψ: b ∨ ¬((¬ψ stopexcl b) U b)
else: (♦b) → (b ∨ (T (ϕ) stopexcl b))

T (weak ϕ upto excl weak b) = b ∨ (T (ϕ) stopexcl b)

T (ϕ upto incl req b) = (♦b) ∧ (T (ϕ) stopincl b)

T (ϕ upto incl opt b) = (♦b) → (T (ϕ) stopincl b)

T (ϕ upto incl weak b) =
if T (ϕ) = �ψ: ¬(¬b U ¬(ψ stopincl b))
if T (ϕ) = ¬♦ψ: ¬(¬b U (ψ stopincl b))
else: (T (ϕ) stopincl b)

where, of course, stopexcl and stopincl are references to the exclusive and
inclusive variants of stop, respectively.

Similar translation schemes are defined for Salt’s exception operators, i. e.,
accepton and rejecton. Those and the remaining operators’ semantics are de-
tailed in the Salt language reference and manual.

5 Realisation and results

We have implemented our concepts in terms of a compiler for the Salt lan-
guage. The compiler front end is currently implemented in Java, while its back
end, which also optimises specifications for size, is realised via the functional
programming language Haskell.

5.1 The SALT compiler

Basically, the compiler’s input is a Salt specification and its output a temporal
logic formula. Like with programming languages, compilation of Salt is done
in several stages. First, user-defined macros, counting quantifiers and iteration
operators are expanded to expressions using only a core set of Salt operators.
Then, the Salt operators are replaced by expressions in the subset Salt--,
which contains the full expressiveness of LTL/TLTL as well as exception han-
dling and stop operators. The translation from Salt-- into LTL/TLTL is treated
as a separate step since it requires weaving the abort conditions into the whole
subexpression. The result is an LTL/TLTL formula in form of an abstract syn-
tax tree that is transformed easily into concrete syntax via a so-called printing

function. Currently, we provide printing functions for SMV [McM92] and SPIN
[Hol97] syntax, but the users can easily provide additional printing functions to
support their tool of choice.

The use of optimised, context-dependent translation patterns as well as a
final optimisation step performing local changes also help reducing the size of
the generated formulas.

5.2 Experimental results

As the time required for model checking depends exponentially on the size of the
formula to check, efficiency was an important issue for the development of Salt

and its compiler. One might suspect that generated formulas are bigger and less
efficient to check than handwritten ones. But our experiments show that this is
not the case.

In order to quantify the efficiency of the Salt compiler, existing LTL for-
mulas were compared to the formulas generated by the compiler from a corre-
sponding Salt specification. This was done for two data sets: the specification
pattern system [DAC99] (50 specifications) and a collection of real-world ex-
ample specifications, mostly from the Dwyer’s et al.’s survey data [DAC99] (26
specifications). The increase or decrease of the formula was measured using the
following parameters:

BA [Fri]: Number of states of the Büchi automaton (BA) generated using the
algorithm proposed by Fritz [Fri03], which is one of the best currently known.
This is probably the most significant parameter, as a BA is usually used for
model checking, and the duration of the verification process depends highly
on the size of this automaton.

BA [Odd]: Number of states of the BA generated using the algorithm proposed
by Oddoux [GO01].

U: Number of U, R, � and ♦ in the formula.
X: Number of ◦ in the formula.
Boolean: Number of boolean leafs, i. e., variable references and constants. This

is a good parameter for estimating the length of the formula.

The results can be seen in Figure 3. The formulas generated by the Salt

compiler contain a greater number of boolean leafs, but use less temporal oper-

ators and, therefore, also yield a smaller BA. The error markers in the figure
indicate the simple standard error of the mean.

-30%

-25%

-20%

-15%

-10%

-5%

+0%

+5%

+10%

+15%

+20%

D
ec

re
as

e
/ I

nc
re

as
e

BA [Fri] BA [Odd] U X Boolean

Specification Patterns

-30%

-25%

-20%

-15%

-10%

-5%

+0%

+5%

+10%

+15%

+20%

D
ec

re
as

e
/ I

nc
re

as
e

BA [Fri] BA [Odd] U X Boolean

Example Specifications

-30%

-25%

-20%

-15%

-10%

-5%

+0%

+5%

+10%

+15%

+20%

D
ec

re
as

e
/ I

nc
re

as
e

BA [Fri] BA [Odd] U X Boolean

Specification Patterns

-30%

-25%

-20%

-15%

-10%

-5%

+0%

+5%

+10%

+15%

+20%

D
ec

re
as

e
/ I

nc
re

as
e

BA [Fri] BA [Odd] U X Boolean

Example Specifications

Fig. 3. Size of generated formulas.

Discussion. Using Salt for writing specifications does not deprave model check-
ing efficiency. On the contrary, one can observe that it often leads to more suc-
cinct formulas.

The reason for this result is that Salt performs a number of optimisations.
For instance, when translating a formula of the form ϕWψ, the compiler can
choose between the two equivalent expressions

¬(¬ψ U (¬ϕ ∧ ¬ψ)) and (ϕ U ψ) ∨ �ϕ.

While the first expression duplicates ψ in the resulting formula, the second ex-
pression duplicates ϕ, and introduces a new temporal operator. In most cases,
the first expression, which is less intuitive for humans, yields better technical
results.

Another equivalence utilised by the compiler is: �(ϕ W ψ) ⇐⇒ �(ϕ ∨ ψ).
With ϕ W ψ being equivalent to (ϕ U ψ) ∨ �ϕ, the left hand side reads as
�((ϕ U ψ) ∨ �ϕ). When ϕ and ψ are propositions, this expression results in a
BA with four states (using the algorithm proposed by Fritz [Fri03]). �(ϕ ∨ ψ),
however, is translated into a BA with only a single state.

Of course, the benefit obtained from using the Salt approach is of no prin-
ciple nature: The rewriting of LTL formulas could be done without having Salt

as a high-level language. What is more, given an LTL-to-BA translator that
produces a minimal BA for the language defined by a given formula, no optimi-
sations on the formula level would be required, and such a translation function
exists—at least theoretically.2 Nevertheless, the high abstraction level realised
by Salt makes the mentioned optimisations easily possible, and produces BAs
that are smaller than without such optimisations—despite the fact that today’s
LTL-to-BA translators already perform many optimisations.

6 Conclusions

In this paper we presented Salt, a high-level extensible specification and as-
sertion language for temporal logic. It is designed for intuitive usage for both
verification experts as well as more practically oriented system engineers.

The development of Salt originates mainly from difficulties we faced in our
industrial cooperations, when trying to apply and transfer certain state-of-the-
art verification methods into industrial practice. But also within our academic
cooperations (see, e. g., [BKKS05]), we have learned that LTL is often difficult
to use for a typical software engineer.

Salt aims to ease some of these problems by introducing on the one hand
side a higher level of abstraction for the specification of temporal assertions. This
makes specifications easier to understand and more convenient to express for its
users. At the same time, Salt is designed to look and feel like a programming
language to be easily accessible to software engineers.

Our experimental results have shown that the higher level of abstraction does
not result in an efficiency penalty, as compiled specifications are often consider-
ably smaller than manually-written ones.

We have integrated Salt into AutoFocus [HSSS96], a modelling and ver-
ification tool used within several industrial cooperations, and first reactions of
AutoFocus users are very promising.

Salt as presented in this paper is ready to use and we invite the reader to
explore it in-depth via its interactive web interface at http://salt.in.tum.de/.

2 As the class of BAs is enumerable and language equivalence of two BAs decidable, it
is possible to enumerate the class of BAs ordered by size and take the first one that
is equivalent to the one to be minimised. Clearly, such an approach is not feasible
in practice—and feasible minimisation procedures are hard to achieve.

References

[ABKV03] R. Armoni, D. Bustan, O. Kupferman, and M. Y. Vardi. Resets vs. aborts
in linear temporal logic. In International Conference on Tools and Algo-
rithms for Construction and Analysis of Systems, pages 65–80. Springer,
2003.

[AFF+02] Roy Armoni, Limor Fix, Alon Flaisher, Rob Gerth, Boris Ginsburg,
Tomer Kanza, Avner Landver, Sela Mador-Haim, Eli Singerman, Andreas
Tiemeyer, Moshe Y. Vardi, and Yael Zbar. The ForSpec temporal logic:
A new temporal property-specification language. In Tools and Algorithms
for Construction and Analysis of Systems, pages 296–211, 2002.

[BBDE+01] Ilan Beer, Shoham Ben-David, Cindy Eisner, Dana Fisman, Anna
Gringauze, and Yoav Rodeh. The temporal logic Sugar. In Proceedings of
the 13th International Conference on Computer Aided Verification (CAV),
pages 363–367, London, UK, 2001. Springer.

[BGHS04] H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-based run-
time verification. In Fifth International Conference on Verification, Model
Checking and Abstract Interpretation, 2004.

[BKKS05] J. Botaschanjan, L. Kof, C. Kühnel, and M. Spichkova. Towards Verified
Automotive Software. In ACM Press, editor, Proceedings of the 2nd Inter-
national ICSE Workshop on Automotive Software. ACM, New York, May
2005.

[CDHR01] James Corbett, Matthew Dwyer, John Hatcliff, and Robby. Expressing
checkable properties of dynamic systems: The Bandera specification lan-
guage. Technical Report 04, Kansas State University, Department of Com-
puting and Information Sciences, 2001.

[CGP99] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking.
The MIT Press, Cambridge, Massachusetts, 1999.

[CHR91] Zhou ChaoChen, Tony Hoare, and Anders P. Ravn. A calculus of durations.
Information Processing Letters, 40(5):269–276, 1991.

[DAC99] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns
in property specifications for finite-state verification. In Proceedings of the
21st International Conference on Software Engineering, 1999.

[DDH72] O. J. Dahl, E. W. Dijkstra, and C. A. R. Hoare. Structured Programming.
Academic Press, London, 1972.

[D’S03] Deepak D’Souza. A logical characterisation of event clock automata. Inter-
national Journal of Foundations of Computer Science (IJFCS), 14(4):625–
639, August 2003.

[FMW05] Harry Foster, Erisch Marschner, and Yaron Wolfsthal. IEEE 1850 PSL:
The next generation. In DVCon, 2005.

[Fri03] Carsten Fritz. Constructing Büchi automata from linear temporal logic
using simulation relations for alternating Büchi automata. In Oscar H.
Ibarra and Zhe Dang, editors, Implementation and Application of Au-
tomata. Eighth International Conference (CIAA), volume 2759 of Lecture
Notes in Computer Science, pages 35–48, Santa Barbara, CA, USA, 2003.

[GHJV94] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley, 1994.

[GO01] Paul Gastin and Denis Oddoux. Fast LTL to Büchi automata translation.
In Proceedings of the 13th International Conference on Computer Aided
Verification (CAV), pages 53–65, London, UK, 2001. Springer.

[GPSS80] Dov Gabbay, Amir Pnueli, Saharon Shelah, and Jonathan Stavi. On the
temporal analysis of fairness. In Proceedings of the 7th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages (POPL),
pages 163–173, New York, NY, USA, 1980. ACM Press.

[Hol97] Gerard J. Holzmann. The model checker Spin. IEEE Trans. on Software
Engineering, 23:279–295, May 1997.

[HSSS96] Franz Huber, Bernhard Schatz, Alexander Schmidt, and Katharina Spies.
AutoFocus: A tool for distributed systems specification. In Proceedings of
Formal Techniques in Real-Time and Fault Tolerant Systems, pages 467–
470. Springer, 1996.

[Kam68] Johan Anthony Willem Kamp. Tense Logic and the Theory of Linear
Order. PhD thesis, University of California, Los Angeles, 1968.

[Mar03] Nicolas Markey. Temporal logic with past is exponentially more succinct,
concurrency column. Bulletin of the EATCS, 79:122–128, 2003.

[McM92] K. L. McMillan. The SMV system, symbolic model checking - an approach.
Technical Report CMU-CS-92-131, Carnegie Mellon University, 1992.

[MP95] Zohar Manna and Amir Pnueli. Temporal Verification of Reactive Systems.
Springer, New York, 1995.

[Pnu77] Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th
IEEE Symposium on the Foundations of Computer Science (FOCS-77),
pages 46–57, Providence, Rhode Island, October 31–November 2 1977.
IEEE Computer Society Press.

[RS97] Jean-François Raskin and Pierre-Yves Schobbens. State clock logic: A
decidable real-time logic. In Oded Maler, editor, HART, volume 1201 of
Lecture Notes in Computer Science, pages 33–47. Springer, 1997.

[TS05] T. Tuerk and K. Schneider. From PSL to LTL: A formal validation in
HOL. In Theorem Proving in Higher Order Logic (TPHOL), Lecture Notes
in Computer Science, Oxford, UK, 2005. Springer.

