
User Assistance during
Domain-specific Language Design

Marco Kuhrmann

Technische Universität München, Institut für Informatik – IV
Boltzmannstr. 3

85748, Garching, Germany

kuhrmann@in.tum.de

ABSTRACT
Today, modeling is widely accepted technique in Software Engi-
neering (SE). Nevertheless, the creation of modeling tools is a
challenge. Supporting SE tasks by tools requires a lot of effort
regarding e.g., the definition of data models, and methodological
support. Even the standardized UML-notation requires a lot of
work for being tool supported, because it has to be interpreted
according to the domain of application, and the tools need to be
programmed. Domain-specific languages (DSL) propose more
efficiency: They provide exactly the modeling features required
by the domain. Since DSLs are limited to a particular scope they
need to be defined specifically for the considered domain. This is
a time-consuming task that requires a lot of knowledge in (model-
ing) language design, user assistance, and tool support. In this
paper, we discuss the need for extensive support for language
engineers. We show first steps to assist users during the definition
of visualization models for DSLs. We then motivate the extension
of our Process Development Environment (PDE) platform to
allow for a free-form-like, cooperative language design. We dis-
cuss this approach with respect to rapid modeling language crea-
tion, tool generation, and give examples from ongoing research.

Categories and Subject Descriptors
D.2.2 [Design Tools and Techniques]: Programmer workbench;
D.2.6 [Programming Environments]: Graphical environments,
Integrated environments; D.2.10 [Design]: Representation

General Terms
Documentation, Design, Languages.

Keywords
Domain-specific Languages, Modeling Tools, User Assistance.

1. INTRODUCTION
It was at a conference on object-oriented modeling and develop-
ment, where a modeling tool vendor stated: “Nobody wants to
perform ‘real’ modeling, but only drawing pictures…”. Thus,
although modeling seems to be a widely accepted methodology
during software design and development, this statement motivates
to re-think modeling and its application in projects. Looking at the
past, for a while even the UML [13] was recognized as a sophisti-
cated drawing tool (what we can still observe this if thinking
about Microsoft Visio or the Omni Group’s OmniGraffle). During

the last years modeling tools grew to comprehensive tool sets:
UML became a standardized modeling language and notation.
While UML is a “general-purpose” modeling approach that ad-
dresses a variety of modeling scenarios, specialized modeling
techniques for certain domains were developed, e.g. Aris [2] for
business processes, or Focus [18] for embedded systems. Even
UML was customized according to certain domains, e.g., BPMN
[10] for business processes, or SPEM [12] for software and sys-
tem development processes, each accompanied by at least one
modeling tool.

A major problem is, to our understanding, the complexity of the
general-purpose modeling approaches, and in consequence the
complexity of the associated modeling tools (e.g., Magicdraw
UML [14] or the Enterprise Architect [19]). We can observe, that
users need to be trained according to (1) the modeling methodolo-
gy – which is often tool-specific – and also (2) to the usage of the
tools themselves. Using modeling in a model-driven development
(MDD) approach also requires to adjust the software development
process itself, e.g., by considering generated source code and its
handling. Especially in the domain of business information sys-
tems this could be the cause of not seamlessly applying MDD, but
to use modeling rather to communicate in the team.

To make use of modeling in general, domain-specific languages
(DSL) promise to offer the “best of both worlds”: (1) easy com-
munication by using well-known and accepted domain objects in
an appropriate notation, and (2) precision that allows for further
processing of the domain models, e.g., to generate code, data
models, and so on.

The problem here is: A DSL is designed according to specific
domain requirements and, therefore, a concrete DSL is difficult to
apply in other environments than the original planned one. Taking
into account, the development of a DSL is also a (development)
project; resources (time, budget, etc.) are consumed. A “throw-
away” DSL for just one project therefore does not hold under
economic considerations as long as rapid language development –
similar to rapid prototyping – is not well supported for DSL de-
velopment.

Problem Statement. The paper at hand considers the require-
ments of rapid language development. Providing analysts, design-
ers, and other project roles with appropriate modeling languages
and tools beyond standard solutions, which need to be interpreted
and costly tailored, is a challenging undertaking. While DSLs
offer a solution, their development is time-consuming work. To
develop the DSL behind a generated end-user tool is hard and
requires deep (conceptual and technical) knowledge of current

Copyright is held by the author/owner(s).
FlexiTools 2011, May 22, 2011, Waikiki, Honolulu, HI, USA.
Copyright 2011 ACM 978-1-4503-0730-7/11/05.

DSL development environments, e.g. Eclipse EMF/GMF, Meta-
Case, or the Visual Studio DSL tools. This makes pragmatic
DSL-development tedious and uneconomic.

Contribution. Based on standard DSL tool kits we discuss how to
ease the language development process for DSLs. We argue for
extensive assistance for the DSL (language) engineer. At first we
present a concrete assistant that shows what simple and easy
support could look like. Second we sketch an extension to our
DSL development platform PDE that will support free-form de-
sign of DSLs.

Outline. The remainder of the paper is organized as follows: In
Sect. 2 we discuss related work, especially with regards to DSL-
modeling and corresponding tools. We outline some issues with
the currently available approaches from our experiences and
motivate the need for extensive assistance. In Sect. 3 we shortly
describe PDE. In Sect. 4 we present a concrete solution that sup-
ports DSL language engineers in defining visualization models.
We also present some thoughts according to an extended lan-
guage-modeling environment that supports easy visual DSL de-
sign. We conclude the paper in Sect. 5 and formulate the need for
further research tasks.

2. RELATED WORK & DSL TOOLS
The development of modeling languages and modeling environ-
ments is a strongly discussed topic. We can roughly distinguish
between the general-purpose approach UML [13], specific tech-
niques for certain domains, i.e. Focus [18], and domain-specific
languages [5], [8] somewhere in between. Thus, since many con-
tributions in several areas of modeling are available we can hardly
cover all aspects. Therefore we focus on current tools for meta-
modeling and especially for DSL-design.

Figure 1. Sample DSL definition in the Eclipse environment

Metamodels can be discussed from different perspectives. Some
good definitions in the context of language design can be found
e.g., in [1]. We understand a metamodel as a formalism to de-
scribe (domain-specific) languages. To ease usage and under-
standing we skip mathematical definitions for now but focus on
concrete representations of metamodels that are relevant when
thinking about modeling tools.

Considering for example the Eclipse-based language modeling
tools [4], [3] metamodels are represented by so-called ECore mo-
dels, which are based on the OMGs MOF hierarchy [11]. The
definition of a metamodel (DSL) is done using an UML-like
notation subset as shown in Figure 1. EMF provides rich support
for the definition of metamodels, which is shown by many con-
crete EMF-based languages (e.g., [20], or the variety of samples

that can be found at [16]). The support is important for language
engineers to adjust all aspects of a modeling language (structure
and semantics). In fact, when capturing a domain is the current
task, many of the powerful features are not required. We can state
the same for the Microsoft DSL tool kit [1], [6], which we inten-
sively used to develop PDE [9], [17] (see Sect. 3). The DSL tools
are not based on UML but also use a structured, XML-based
approach to define data models and add semantics using source
code afterwards.

From our experiences we learned that the design of a DSL needs
support in at least two areas: (1) to provide language “end users”
with a modeling tool that supports them in handling concrete
model instances and (2) to assist language engineers during the
definition of a DSL. Almost all DSL tools address the first aspect.
Eclipse for instance supports textual as well as visual DSLs and
provides corresponding Eclipse-integrated editors. With our work
on PDE we applied an alternative approach where the DSL is
merged with a stand-alone editor framework during its transfor-
mations. So end users are provided with a stand-alone modeling
tool according to their needs [9]. The second aspect is only par-
tially addressed. Still, Eclipse, MetaEdit [16], and Visual Studio
provide comprehensive support for the language engineers, if the
domain of action is known and analyzed. If the language engineer
should capture a domain and derive a DSL, no adequate support is
given – especially during a domain analysis workshop, which is
done with the stakeholders. For PDE we showed how to provide a
modeling tool that also non-technophile stakeholders can use and
understand. A similar support for the language creation process is
currently not available.

3. PDE SUMMARIZED
To support our research we developed the Process Development
Environment (PDE). PDE provides an infrastructure for the design
of process languages and process authoring. The core functionali-
ty is based on the Microsoft DSL Tool Kit [1]. PDE adds several
features, such as: Model visualization, metamodel modularization,
or hotspots for validation functions.

Figure 2 Architecture Overview of PDE
Figure 2 shows the architecture of PDE. The framework consists
of two parts: (1) the PDE language, which is the extension of the
DSL tools, and (2) an editor framework that provides the basic
features to edit a designed process model. A concrete process
language (a process metamodel) is a DSL based on the PDE ex-

tension of the Microsoft DSL SDK. The PDE Language is the
basis for the process metamodel, which is merged with the PDE
Editor Framework into a concrete modeling tool for process
engineers.

PDE is originally designed to ease the development of process
metamodels and to provide process engineers with corresponding
tools to edit the resulting process models. Currently we work on
extensions for PDE to enhance and support DSL development in
general (as described in the paper at hands).

4. ASSISTANCE FOR DSL DESIGN
The design of a domain-specific language (DSL) is a hard and
tedious task. Especially if considering visual languages, the DSLs
grow complex, as the language not only contains structure and
semantics but also information according to visual representations
that build the graphical notation of the language. With EMF/GMF
or the Microsoft DSL tools, platforms are available that support
the creation of user defined (at most external [5]) DSLs. From our
experience we know (at least) two topics that are hardly ad-
dressed: (1) the definition of so-called visualization models for the
graphical notation, and (2) the definition of the language itself.

In this section we present at first a solution that provides language
engineers with assistance to define visualization models. The
second challenge we want to address with a draft of a concept that
allows for a free-form-like language design approach.

4.1 Defining Visualization Models
A visualization model is an integrative part of a (visual) DSL that
(1) defines the graphical notation of model elements, and provides
(2) additional views to present certain model aspects to the users
of the final DSL-based modeling tool.

For both aspects we presented examples in [9] and argued for
their necessity with respect to users of the modeling tools. We do
not want to explain the raw process of adding visualization to a
Visual Studio-based DSL, which is a quite hard task. For PDE,
which is explicitly designed to support visual languages, we de-
veloped a solution ourselves that eases this process.

Figure 3. User-defined view that allows for filtered navigation
Figure 3 shows such a complex visualization. To define such a
visualization by “hand” the language engineer needs to create
certain shape classes, WPF templates and so on. The PDE Lan-
guage designer contains an assistant that evaluates the DSL and
provides the language engineer with customized snippets and
class templates (Figure 4).
The language engineer only needs to switch the designer view in
the PDE Language designer and to insert visualizations elements
from the templates (he also can adjust them afterwards). To add

and customize a comprehensive view as shown in Figure 3 takes
usually less than 10 minutes, using the assistant from Figure 4.

Figure 4. Assistant to insert visualization model elements

4.2 Free-Form DSL Design
The experiences with assistants like the one shown above proved
that an extended support dramatically eases the language defini-
tion. Hence, the assistant is still integrated with the Visual Studio-
based PDE Language designer its application requires some tech-
nical understanding. The language designer component is far
away from being easy to understand to stakeholders and supports
the definition of a DSL on a fairly technical level.
Approach summarized. In this section we want to sketch PDE’s
further development with regards to a platform that not only
allows for creating comprehensive modeling tools but also eases
the language creation process itself. The language creation should
be that easy that most of the “development” could take place
cooperatively in stakeholder workshops. Therefore we sketch the
idea of cooperative language design that allows for coupling crea-
tive and formal tasks during the definition of a DSL-based model-
ing language. The outcome of a cooperative language design is a
modeling tool that (1) allows for free-form modeling with (2)
respect to formal constraints defined by a domain-specific lan-
guage.
In terms of creativity we consider tasks from domain analysis
often performed in stakeholder workshops. The goal is to define a
particular domain and name all domain elements and relations of
importance (as well static as dynamic elements, e.g., artifacts or
processes). Formal tasks contain the language definition itself and,
in consequence, the generation of modeling tools. Language
engineers usually perform formal tasks without the stakeholders’
participation. The goal is to provide a (modeling) language that
represents the domain under consideration and an appropriate tool
to build models during workshops.
Idea detailed. In a cooperative modeling approach creative and
formal tasks overlap to a certain point. We describe the idea refer-
ring to Figure 5: A stakeholder workshop to understand and cap-
ture the domain is done “as usual” – but instead of using a

classical whiteboard a digital “informal” modeling pane is used.
This pane collects domain entities, which are represented visually,
and simple associations. In the workshop, entities can be collect-
ed, structured, combined, and so on. The goal is to express the
domain using prototypical model instances as representatives for
the domain under consideration. Stakeholders describe the domain
as it is seen by their experiences.

Behind the modeling pane, a language-modeling tool captures the
model prototype and translates into, or derives domain-specific
language constructs to prepare the metamodel definition. The
metamodel is mostly the result from the informal design and
builds the basis to create the new DSL. Having the DSL, various
tools, i.e., modeling tools, can be easily created. The stakeholders
use the resulting modeling tools. The style of modeling, the nota-
tion and the semantics comply with the drafts made during the
language creation workshops.

Current DSL-Design. Figure 5 sketches the process of language
creation and modeling tool generation, and shows in the lower
parts, which steps can be performed by existing concepts and
technologies (see also Sect. 2). In [9] we gave an insight of devel-
oping modeling tools by using DSLs. We showed, how metamod-
els can be combined with visualization models, and can also be
embedded into comprehensive tools.
These features we assume as state of the art. The addition with
free-form language design requires further research, which we
cover again in Sect. 5.
Limitations & Challenges. We have already done the first steps
according to support language engineers. The approach sketched
above goes beyond the current results and requires additional

work. Thus, although we are still in the phase of conceptualiza-
tion, we are aware of some limits and/or challenges:

• Language Derivation: The translation of the free-from
design into a DSL implies the derivation of concrete
language elements from the drawings. A 1:1 mapping,
i.e., one drawing shape à one domain entity seems to
be quite simple, but including e.g., abstraction or sub-
typing requires techniques to handle complex type sys-
tems, patterns and so on (i.e., graph transformations).

• Structures and composition: Drawings on the pane are
at first “flat”. If elements should be structured i.e., using
containers, the corresponding language elements need to
be automatically generated (see above).

• Semantics: A picture on the pane that is translated into a
DSL needs structure as well as semantics. Semantics is
quite hard to define and even harder to generate as it
needs to be “drawn” somehow.

• Language Complexity: A DSL can be very complex. It
might be hard or impossible to capture a complete do-
main using such an approach. Some kind of modulariza-
tion needs to be used to describe small aspects, and
afterwards to compose complete languages (i.e., lan-
guage libraries as used in PDE).

Another aspect that needs to be considered is: Is the modeling
pane just another DSL? If yes, is it possible to define a “meta-
meta” language that allows for the definition of certain user-
defined DSLs – and if so, what are the differences between that
particular language and concepts already known from MOF? Also
of importance is the question, if the “meta-meta” language has

Domain: Team

team

member
member

member

project

Team Project

Member

*

1..*

1

1

1

+leader
1

«is_supervisor»

 «performs»

team.svg

Model
Visualization

Metamodel

member.svg

leader.svg

Fancy Team Modeling

1701

Kirk

Scotty
Spock

Sulu

(replace
shape)

(replace
shape)

1..* 1..*

Project:
New Galaxies

NX-1

Archer

Trip TPol
Reid

(replace

Modeling

Language Engineer

Stakeholders

12
supervise

supervise

3

place domain elements

draw domain relationships

define visual notation

behind formalization
generates metamodel

modeling
tool
generation

"informal" modeling pane

generated editor

Stakeholders aka
"end users"

leader

State of the Art
in DSL-modeling

Figure 5. Cooperation language modeling approach (draft)

limitations itself and to what extend a user-defined DSL can be
derived automatically?

Potentials. Nevertheless the approach promises to fasten DSL
development. Even small DSLs for specific projects can be creat-
ed very fast and for the most parts automatically. A “low hanging
fruit” is the simplification of defining visualization models. With
PDE we showed that rapid prototyping approaches could be ap-
plied to the development of complex models, too. The approach
sketched above should transfer those concepts of prototyping to
language development (meta-modeling) and serves to establish
fast feedback cycles according to the quality of domain models.

5. CONCLUSION & FURTHER WORK
The paper at hand presents an example of the simplification of the
development of visual DSLs. We presented a concrete solution
that supports language engineers during the definition of visuali-
zation models to define a graphical notation for DSLs (Sect. 4.1).
We further argued for extensive support for language engineers.

The design and implementation of a DSL is a tedious and chal-
lenging task that combines creativity and formal aspects. While
the formal aspects are well supported by the currently available
DSL tools (Sect. 2), creativity is hardly covered. The approach we
sketched in Sect. 4.2 targets to the integration of domain analysis
and language definition. We also presented some thoughts related
to the challenges of such an approach. In fact, the creation of a
domain-specific language is a task that aims to map certain do-
main concepts to formal languages. That particular mapping is
currently done by the (human) language engineer and requires
knowledge of the domain in advance.

We just sketched the idea of the approach but still plan to make
further steps towards simplified DSL creation. A first concrete
step is the further evaluation of the PDE platform. Currently we
have several “real” modeling tools generated from that platform
mainly targeting the domain of software development process
models (in cooperation with our partners). We continuously ex-
tend the number of models, currently in the domain of modeling
(common) artifacts. Thus, artifact-orientation is a very common
concept that can be applied to many domains [15] we hope to be
able to validate some of the thoughts presented above. Especially
artifact representations that are close to data models are of inter-
est. Such representations can be used as structural components for
concrete languages.

6. ACKNOWLEDGMENTS
We want to thank Eugen Wachtel for his essential support during
the development of PDE. We also thank Georg Kalus and Daniel
Mendéz Fernández for the evaluation of PDE in their work.

7. REFERENCES
[1] S. Cook, G. Jones, S. Kent, and A. C. Wills. Domain-Specific

Development with Visual Studio DSL Tools. Addison-Wesley
Longman, 2007.

[2] R. Davis. ARIS Design Platform: Advanced Process Model-
ling and Administration. Springer, 2010.

[3] Eclipse Foundation. Eclipse Modeling Framework, 2010.
URL http://www.eclipse.org/emf.

[4] Eclipse Foundation. Eclipse Project, 2010. URL
http://www.eclipse.org.

[5] A. Fowler. Domain Specific Languages. Addison-Wesley,
2010.

[6] J. Greenfield, K. Short, S. Cook, S. Kent and J. Crupi. Soft-
ware Factories. John Wiley & Sons, 2004.

[7] G. Karsai, H. Krahn, C. Pinkernell, B. Rumpe, M. Schindler
and S. Völkel. Design Guidelines for Domain Specific Lan-
guages. In Proceedings of the 9th OOPSLA Workshop on
Domain-Specific Modeling (DSM' 09), 2009.

[8] A. Kleppe. Software Language Engineering. Addison-Wes-
ley, 2008.

[9] M. Kuhrmann, G. Kalus, E. Wachtel and M. Broy. Visual
Process Model Design using Domain-specific Languages. In
Proceedings of SPLASH Workshop on Flexible Modeling
Tools (FlexiTools), 2010.

[10] OMG. Business Process Model and Notation Version 2.0
(Beta 2), May 2010, URL http://www.omg.org/spec/BPMN/

[11] OMG. Meta Object Facility Version 2.0 (2006-01-01), Janu-
ary 2006. URL http://www.omg.org/spec/MOF/2.0.

[12] OMG. Software & Systems Process Engineering Metamodel
Specification (SPEM) Version 2.0. Technical Report, 2008.

[13] OMG. Unifed Modeling Language: Superstructure Version
2.2 (2009-02-02), February 2009. URL
http://www.omg.org/spec/UML/2.2.

[14] Magicdraw UML. Company’s home page, 2011. URL
http://www.magicdraw.com/

[15] D. Mendez-Fernandez, B. Penzenstadler, M. Kuhrmann, and
M. Broy. A Meta Model for Artefact-Orientation: Funda-
mentals and Lessons Learned in Requirements Engineering.
In Proceedings of the 13th International Conference on
Model Driven Engineering Languages and Systems (MOD-
ELS 2010), 2010.

[16] MetaCase. Company’s home page and samples, 2011. URL
http://www.metacase.com

[17] PDE. The Process Development Environment, 2010. URL
http://pde.codeplex.com

[18] B. Schätz. The ODL Operation Definition Language and the
Autofocus/Quest Application Framewoek AQUA. Technical
Report, Technische Universität München, 2001.

[19] Sparx Systems. Enterprise Architect. Company’s home page,
2011. URL http://www.sparxsystems.de/

[20] B. Volz, and S. Jablonski. OMME – A Flexible Modeling
Environment. In Proceedings of SPLASH Workshop on Flex-
ible Modeling Tools (FlexiTools), 2010.

