Realizing Software Process Lines: Insights and
Experiences

Marco Kuhrmann, Daniel Méndez
Fernandez
Technische Universitat Miinchen
Faculty of Informatics
Munich, Germany
{kuhrmann, mendezfe}@in.tum.de

ABSTRACT

Software process lines provide a systematic approach to con-
struct and manage software processes. A process line de-
fines a reference process containing general process assets,
whereas a well-defined customization approach allows pro-
cess engineers to create new process variants by, e.g., extend-
ing or altering process assets. Variability operations are a
powerful instrument to realize a process line. However, lit-
tle is known about which variability operations are suitable
in practice. In this paper, we present a study on the fea-
sibility of variability operations to support process lines in
the context of the German V-Modell XT. We analyze which
variability operations were defined and used to which extent,
and we provide a catalog of variability operations as an im-
provement proposal for other process models. Our findings
show 69 variability operations defined across several meta-
model versions of which 25 remain unused. Furthermore, we
also find that variability operations can help process engi-
neers to compensate process metamodel evolution.

Categories and Subject Descriptors

D.2.9 [Software Engineering Management]: Software
process models

General Terms

Management, Experimentation

Keywords

software process lines, software process metamodel, meta-
model evolution, variability operations

1. INTRODUCTION

The V-Modell XT is the standard software process for I'T
development projects in Germany’s government agencies. It
has a long history beginning with the first release in 1992.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICSSP *14, May 26-28, 2014, Nanjing, China

Copyright 2014 ACM 978-1-4503-2754-1/14/05 ...$15.00.

Thomas Ternité
Technische Universitat Clausthal
Department of Informatics
Clausthal-Zellerfeld, Germany

thomas.ternite@tu-clausthal.de

In 2002, a SPI-project was initiated to refresh and mod-
ernize the entire process at its complementing ecosystem.
The first release of the new V-Modell XT was published
in 2005 as part of a comprehensive software process frame-
work, which became subject to maintenance and continuous
improvement [8]. Over the years, a number of V-Modell XT
variants were built using a “copy & change” procedure in
which company-specific process assets were realized using a
local copy of the reference process. As the reference pro-
cess evolved, this approach caused serious problems, e.g.,
how to integrate updated contents, how to figure out what
particular customizations were affected by newer reference
contents, or how to migrate existing content to a new pro-
cess metamodel. Much effort has been spent to analyze the
evolved variants (see, e.g., [17, 16, 15]). However, only the
changes could be analyzed and documented. Efficiently in-
tegrating evolved model contents with customized ones re-
mained a critical and unresolved task. In response, we de-
veloped a new approach to maintain the reference process
and its variants to allow for evolution and (automatic) up-
dates. The new approach implements concepts proposed by
software process lines [19, 14]. The basic idea is to apply con-
cepts of product lines [20] to the domain of software process
models (see Sect. 2). Special attention was paid to the cus-
tomization approach that supports process engineers, inter
alia, in using variability operations as a declarative instru-
ment to systematically adapt the reference model while en-
suring consistency and compliance with the reference model.

Problem Statement. While defining the variability opera-
tions, we faced the problem to name a set of meaningful and
actionable variability operations. Available approaches are
either conceptual [14] or focus on general concepts [18] that
need further refinement. However, still missing is a proven
basic set of variability operations to support constructing a
process variant from a software process line. That is, process
engineers need to develop their own portfolio of variability
operations which negatively impacts the process line and its
variants, e.g., due to incompatible sets of variability opera-
tions, or potential loss of compliance. Furthermore, we still
lack in long-term studies analyzing the feasibility of process
line approaches from the perspective of the process engineer.

Research Objectives. To direct further research on the
application of software process line approaches in practice,
we aim at analyzing the feasibility of variability operations
and at their improvement to support the development and
maintenance of comprehensive software process lines.

Metamodel

Concept: V-Modell-variants and variability operations

V-Modell-Variant
VariabilityOperation }<}—{ RenameWorkProduct

e oo
<<instance of>>

—————————— -..:RenameWorkProduct

<<instance of>>

Instances (Example)

Concrete V-Modell
(reference model),
containing a work
product named "ABC"

In a new variant "ABC" should be
named "XYZ" - a variability
operation is instantiated to
describe this particular change

The resulting variant
contains a work product
"XYZ" instead of "ABC"

"XYZ" behaves the same
way as "ABC" and has the
same structure...

+Name: String = "ABC->XYZ"

Automatic

- target - wpReference \V

+newName: String = "XYZ" Merge

XYZ: WorkProduct

ModelElement WorkProduct ‘

+Name: String = "ABC"

- ABC:wpReference
+Name: String = "XYZ"

Figure 1: Variability operations (concept and example).

Contribution. In this paper, we contribute a study on the
application of variability operations to realize comprehensive
software process lines. Our investigation is based on a snap-
shot from 2013 of the V-Modell XT family [8] in which we
investigated the V-Modell XT reference model and 5 of its
variants using the process line features. We contribute a cat-
alog of variability operations as implemented in the German
V-Modell XT. Furthermore, beyond the catalog, we analyze
the feasibility of this instrument. We investigate which vari-
ability operations were defined and to which extent those
were used to identify their suitability. Thus, we close a gap
in literature as—to the best of our knowledge—yet missing
is an understanding about which variability operations are
practically relevant at all. Finally, we also analyze settings
in which variability operations were not used and provide a
rationale.

Outline. The remainder of the paper is organized as fol-
lows: Section 2 describes the setting of our study and intro-
duces the basic concepts and terminology used. Section 3
summarizes the related work. In Sect. 4, we present the
study design including our research questions, the case se-
lection, and the data collection and analysis procedures. In
Sect. 5, we finally present our findings, before giving a con-
clusion in Sect. 6.

2. CONTEXT & USED TERMINOLOGY

We analyzed the V-Modell XT process family [8]. Since
the V-Modell XT is a comprehensive process framework with
(over the time) built-in process line features, we first need
to introduce the basic concepts and underlying terminology.

Model, Metamodel and Modules. The V-Modell XT is
a modular, metamodel-based framework to define software
processes. The metamodel [23] defines the process language
to create single processes or whole variant trees. According
to [7], a V-Modell-variant logically consist of two models:
(1) a structure model contains all (atomic) model elements,
and (2) an overlaying dependency model connects all model
elements. Hence, if dependencies are contained in process
modules, the configuration of such modules directly influ-
ences the dependency model, which allows for a comprehen-
sive tailoring. During customization, all elements of these
packages can be extended, altered, and so on.

Process Variants. The metamodel is designed to support
hierarchically organized process variants—even the reference
model itself is regarded as a variant. Creating a new variant

requires to refer to a reference model on which the variant
is based. A variant can be regarded as an extension applied
to a reference model. Since all V-Modell-variants are (or
should be) based on the same metamodel, each variant may
contain a complete process. As all model elements from the
reference model are accessible from a variant, a variant can
refer to and thus integrate and modify any reference model
element. A merge tool creates an integrated process from
the variants. New process assets introduced by the variant
will then be integrated with the reference model, exclusions
will be deleted, and variability operations will be executed.

Variability Operations. Variability operations allow a
process variant to modify contents of the reference model
[21]. A variability operation is a model element that de-
clares a change, e.g., renaming of elements, adding descrip-
tion text, or restructuring dependencies (see Fig. 1). During
the merge procedure of a reference model and an extension
model, the descriptive information provided by variability
operations is operationalized by the merge tool. For exam-
ple, the declaration of renaming a work product has to be
evaluated and executed during that merge. If an extension
model contains an instance of “RenameWorkProduct”, this
has to be interpreted as a rename operation on the referred
instance of “WorkProduct” during the merge.

The V-Modell XT Process Line. The V-Modell XT
family consists of a reference process and a number of de-
rived variants (cf. [8] and complementing research). The
snapshot, which is the case for our study (Fig. 2), shows
the reference model and two kinds of variants. On the one
hand, we find variants that were created as a direct modi-
fication of a local copy (“old” scheme). On the other hand,
we find 5 variants that use the built-in process line features
of the framework. Variants using the process line features
can reuse content from the reference model and support au-
tomatic updates. If a new version of the reference process is
released, in the simple case, the merge tool automatically up-
dates a variant, e.g., by computing the variability operations
again. Further information regarding the selected sample is
given in Sect. 5.1.

3. RELATED WORK

In [19], Rombach votes for organizing comprehensive soft-
ware processes similar to product lines. To this end, a soft-
ware process line consists of a stable core (commonalities)
and variable parts (variabilities) [14, 20, 4, 3]. This ap-

Metamodel 1.3

V-Modell XT 1.3, <
2008/2009 <t

variant of ‘

variant of

Metamodel 1.3B Metamodel 1.3Z

V-Modell XT
Bayern 1.3, 2009

V-Modell XT
BW 1.3, 2009

V-Modell XT Bund

variant of 1.0, 2010 <t

erariant of variant of

V-Modell XT BNetzA V-Modell XT ZIVIT 1.0,
1.0, 2010 2012

Figure 2: Snapshot of the V-Modell XT software process line (variants marked with “C” are the cases).

proach proposes advantages regarding the organization and
management of process knowledge and the systematic cre-
ation of reusable (domain-specific) process assets to ease the
development of process variants. A software process line is a
framework for a directed and proactive process construction
and management.

Since comprehensive software processes may consist of
several thousands of different process assets, management
is critical and, thus, a sophisticated technical basis, e.g., a
process framework, is necessary. A process metamodel is re-
quired to provide process engineers with tools to create, edit,
and manage the structure and the content of a process, and
strong tool support is required to support management, de-
velopment, and deployment tasks. Popular metamodels are,
for example, the Software & Systems Process Engineering
Metamodel (SPEM; [18]), the Software Engineering Meta-
model for Development Methodologies (SEMDM; [5]), or the
V-Modell XT Metamodel [23]. SPEM and the V-Modell XT
explicitly define variability operations. Process assets that
are built on these metamodels can extend or modify other
process assets, and they can be configured from certain (pro-
cess) modules. Other than SPEM, the V-Modell XT explic-
itly defines a process variant concept [7, 22] and provides an
extensive set of typed variability operations for fine-grained
model manipulations. Table 1 summarizes the practically
applied approaches to implement constructive variability for
process models.

Table 1: Approaches to implement variability.

Approach SPEM V-Modell XT
Variability ops. (general) [18]

Variability ops. (typed) [7, 22]
Tailoring 9]

Modularity [18] [7]

The group around Miinch and Armbrust follows a distinc-
tive approach to create process model variants. Instead of
constructively defining process variants, they focus on the
evolution of a process model [22]. The evolutionary ap-

proach comprises: (1) scoping processes to identify the loca-
tions where variability is needed [1, 2]; (2) providing ratio-
nale during process evolution [17, 16, 15]; and (3) analyzing
differences of evolved model variants. The first aspect aims
at determining the properties an actual process has and at
identifying commonalities to infer needed variability. Corre-
sponding approaches lay their focus on the analysis of an ex-
isting model and the possibilities to create a pattern, which
can be used to create variants. The latter two aspects are
both focused on an a posteriori observation of the evolved
subject. They do not explicitly support the variability of a
process model, but deal with evolving models in general.

Although there exists a number of approaches directly or
indirectly supporting the management of process variants,
a deeper understanding of the variability operations is yet
missing. With the study at hands, we thus close this gap in
literature.

4. STUDY DESIGN

In this section, we present the study design. After defining
the goal and the research questions, we describe how we
selected the case. Finally, we describe how we collected and
analyzed the data, before concluding with a discussion on
the validity procedures.

4.1 Research Questions

Our overall objective is the investigation of the feasibil-
ity and the practical application of variability operations to
support the (long-term) development and the maintenance
of software process lines. For this, we investigate which vari-
ability operations are implemented in general and to which
extend these variability operations are used.

As a second step, we investigate settings in which vari-
ability operations were not used and why. To this end, we
define the following research questions:

RQ 1: Which variability operations are defined to realize
the process line? Since most related work discusses, if at
all, variability operations in a generic manner (e.g., SPEM
defining extends or replaces), our first research question aims
to identify a set of variability operations to create a catalog.

RQ 2: Which variability operations are practically used to
which extend? The second research question aims to inves-
tigate the feasibility of the found variability operations. We
analyzed to which extent the found variability operations (of
a certain type) were actually used during the development
of particular process variants.

RQ 3: In which settings are variability operations not used
and why? We aim to investigate settings that are potentially
inappropriate for variability operations. Thus, we analyzed
settings in which variability operations were not used, and
we investigated the respective settings, analyzed the instru-
ments used instead of variability operations, and provide a
rationale.

4.2 Case Selection

We opted for the V-Modell XT to collect and analyze
variability operations. As we are interested in the variability
operations and their use, we only consider such V-Modell XT
variants that use the process line features provided by the
framework. Variants that are built by copying and directly
modifying the reference process are out of scope.

4.3 Data Collection Procedure

The data collection was done two-fold: To answer RQ1
and RQ@2, we used a tool to export lists of the variability
operations defined and used. All information was collected
by parsing the models’ XML files, and storing the data in
a spreadsheet. Therefore, we first analyzed the respective
metamodel on which a process variant is based, and gath-
ered all defined wvariability operation types. In the second
step, we exported the variability operation exemplars as de-
fined in the process models (in this step, we also analyzed
which version of the underlying metamodel defines an in-
stantiated operation type to track the metamodel evolution).
We repeated the export process for every considered process
variant to (1) create a consolidated list of operation types
across all versions of the metamodel, (2) to create process-
variant-specific lists of variability operation exemplars, and
(3) an aggregated list of all variability operations, their type,
number of exemplars, and so forth.

In order to answer RQ3, we had to (manually) inspect
the considered process variants. We compared the merged
(Sect. 2) process definition with its sources (reference and
extension model) for added, altered and/or removed process
assets that are not defined using variability operations. The
outcome of this investigation was also stored in a spread-
sheet.

4.4 Analysis Procedure

Due to the low number of cases, we present the results as
data tables and simple charts, and qualitatively analyze and
interpret the results.

5. STUDY RESULTS

We first give a description of the case and the subjects,
before summarizing the results.

5.1 Case Description

As case, we opted for the V-Modell XT and the set of 5
variants that use the process line features of the V-Modell XT
framework. Fig. 2 shows a snapshot; the highlighted vari-
ants are subject to the investigation—the other variants do

not use the process line features and, thus, are out of scope.
Although the V-Modell XT 1.4 was released in 2012, no
variants using this version as reference model were avail-
able when we conducted the study. Therefore, our study
is based on those variants using the V-Modell XT 1.3 and
we refer to this version as the reference model on which, fi-
nally, all variants' are built. Each variant, except for the V-
Modell XT 1.3, points to its parent (Fig. 2 also shows that
the process line builds a “family tree” in which a derived
variant can be a reference model for further variants). Vari-
ability operations, which are instantiated in a variant refer
to process assets that are defined in the respective refer-
ence model. A tool computes all variability operation types
and exemplars, and creates a dataset, which contains the
information listed in Table 2. The datasets are created as
CSV-files (one per variant).

Table 2: Generated data structure for the analysis.
Field

Description

Type Variability operation type, e.g., Re-
nameRole, ReplaceSectionText

Name Name of the operation exemplar

Basic model transformation opera-
tions used to implement the vari-
ability operation, e.g., RenamekFEle-
ment, AddText, ChangeReferences

List of model elements that are af-
fected by the operation exemplar

Basic operations

Affected elements

Compliance criti- Rating whether an operation poten-
cality tially violates compliance (confor-
mance) requirements or constraints

5.2 RQ 1: Variability Operation Types

The V-Modell XT metamodel defines the set of variability
operation types. Since the variants under consideration use
different versions/variants of the metamodel, we first ana-
lyze (1) which variability operation types are defined and
(2) which metamodel defines a particular operation type.

Table 5 shows the complete list (the catalog) of variabil-
ity operations, classified according to their operation groups.
An operation group comprises all operation types that are
logically related (e.g., changes on work products). The col-
umn “MM” of Table 5 indicates which metamodel version
(Fig. 2) defines the operation (“1.3” refers to the original
metamodel on which the reference model is based; “1.3 B”
refers to the metamodel on which the V-Modell XT Bund
is based; the metamodel “1.3 Z” does not contribute new
variability operations).

In total, the V-Modell XT metamodel provides process
engineers with a set of up to 69 variability operation types.
Figure 3 summarizes Table 5, shows the operation groups,
and the number of operation types per group and per meta-

!Note: Except for the variants V-Modell XT 1.8 and
V-Modell XT Bund 1.0, that are publicly available, for
confidentiality reasons, we are not allowed to relate the
findings to a variant from Fig. 2; we provide the data,
but anonymized. A collection of publicly available mate-
rial is provided by the Weit e.V.: www.weit-verein.de/
varianten.html (in German).

8 10
6 I
2
4 | | . B . ©138B
1.3
2 4 4
3 |3 8l |3 , 3 m o |3 m
0 0 0
<

N
s o)

&3

Figure 3: Operation types per metamodel version.

model version. Furthermore, Fig. 3 also reflects the evolu-
tion of the metamodel—35 new operation types were intro-
duced in the metamodel “1.3 B” (two years after the publica-
tion of the reference model 1.3, which defines 34 variability
operation types).

Interpretation. We found variability operation types de-
fined in two metamodel versions. Moreover, the number of
operation types doubled. The explanation can be found in
the metamodel’s evolution. The metamodel “1.3 B” got a
substantial improvement, which was based on customer re-
quirements, whereas the initial set of operation types was
derived from known improvements at this time and compli-
ance requirements in the context of a certification program.
So far, the growing number of operation types indicates that
the mechanism “variability operation” can be used to foster
flexibility in a process line (in response to customer require-
ments).

5.3 RQ 2: Variability Operation Use

The second research question aims at investigating which
of the defined operation types are actually used. Fig. 4 quan-
tifies the use within the operation groups and per metamodel
version (see also Table 6). An operation type is in the set
of used operations if there is at least one exemplar in any
of the investigated variants. Fig. 4 shows which metamodel
defines how many operation types (per operation group) and
how many of them are used in the variants (overall count).
Table 6 gives the more detailed perspective based on the
exemplars per operation group. In the following, we inves-
tigate (1) which variability operation types remain unused,
and (2) which types are the most frequently used ones.

Table 3 gives detailed information on the defined, but un-
used operation types. The table shows that several opera-
tion types that are defined in the V-Modell XT 1.3 were not
used, e.g., operations to add description text to an existing
one. Furthermore, some operations that are newly defined
in the metamodel “1.3 B” were also not used. On the other
hand, several operation types are frequently used across sev-
eral process variants. Table 4 lists the most frequently used
operation types, including their number of instances. The
data shows that most of the frequently used operations mod-
ify text fragments of the process description (e.g., Replace-
SectionText, ArrangeSection) or alter the role model (e.g.,

100% T T T T T T T T T T T T T T
90% 1 1 1
2 3 |1
80% 25
ol ol 2| H 3
70%
o o o 2
60% 0| ! .
50% 1 33— 11— 22| — 21—
5 |3
% |
0% ©1.3B used
30% ©1.3 B unused
| 2 — 2| |2 3
20% 12 01.3 used
= 3 M 1
3 1 1.3 unused
10% 1
0%+ Lo Lol M M M ll M ol sl lolloltod
o @ o @ o @ © @ °
& & & & &S bpb & & & &
F N I N R N T A N Gl
e{’b \A’b i 0\\’0 dA’b ‘-A’b Q\\’D QA’D z{’b Q\,D(J S é,bq Sb X ;’b . o
& & ¢ @ S
& & & & & & & & S
o7 & F & 0§ X & ks
A & S @

Figure 4: Used op. types per metamodel version.

ReplaceRoleDescription, RenameRole). Another interesting
finding is the operation type ChangeRoleClass, which is on
the second rank. 36 instances can be found in two process
variants. This special operation type does not change any
description text, but modifies the structure of role defini-
tions in the process model in response to a metamodel evolu-
tion. That is, beside content-related variability operations,
we also found variability operations modifying the structure
of process assets, e.g., to enable for backward-compatibility.
Finally, the V-Modell XT variant “D” (Table 5) does not
contain any variability operation exemplar.

In summary, 25 out of 69 (36.2%) operation types are not
used. Refined to the metamodel versions/variants, we get
the following numbers: The metamodel “1.3” defines 34 vari-
ability operation types of which 12 remain unused (35.3%).
The metamodel “1.3 B” introduces 35 new variability oper-
ation types; 13 thereof remain unused (37.1%).

Interpretation. As 25 operation types remain unused, one
may conclude that about one third of the variability opera-
tions seems to be dispensable. For instance, Table 3 shows
the operation type RenameCreatingDependency to be un-
used, while ReplaceCreatingDependencyDescription is used.
The reason for the existence of such operations is mainly
for process language completeness: the metamodel defines
a pair of Rename* and Replace* operations for each of the
process dependency types. The definition of these opera-
tions was a design decision during the development of the
metamodel “1.3 B”. Since the V-Modell XT framework is
designed as a generic framework, we yet cannot judge the
relevance of the unused operation types, as future process
variants may potentially use them. Furthermore, our find-
ings show that the most frequently used operations address
the customization of description texts, e.g., ReplaceSection-
Text or ReplaceRoleDescription. In the context of a software
process line, we interpret the frequent use as a standard use
case in which a generic process description (reference model)
is refined for a particular process variant. Finally, we found
the concept of variability operations also applied to compen-
sate metamodel evolution.

However, the analysis of variant “D” (no operation ex-
emplars, Table 5) also shows that variability operations are
only one instrument among others and, thus, process lines
can also be created and managed using other mechanisms.

Table 3: Unused variability operation types.

No. Operation Type MM
AddDisciplineDescriptionPrefix 1.3
5 AddDisciplineDescriptionPostfix 1.3
DeleteWorkProduct 1.3B
12 ChangeWorkProduktDiscipline 1.3B
13 RenameCreatingDependency 1.3 B
17 RenameTailoringDependency 1.3 B
18 ReplaceTailoringDependencyDescription 1.3 B
24 ArrangeSubTopic 1.3
27 AddActivityDescriptionPrefix 1.3
28 AddActivityDescriptionPostfix 1.3
29 RemoveTask 1.3 B
30 RenameTask 1.3 B
31 ReplaceTaskDescription 1.3 B
33 RemoveResponsibility 1.3
38 AddRoleDescriptionPrefix 1.3
40 RefineRole 1.3
42 AddProcessModule 1.3
46 AddDecisionGateDescriptionPrefix 1.3
50 AddChapterTextPrefix 1.3
52 AddSectionTextPrefix 1.3
57 ChangeSectionNumber 1.3B
59 RemoveChapter 1.3 B
64 RemoveGlossaryltem 1.3 B
65 ReplaceGlossaryltemDescription 1.3 B
68 RemoveAbbreviation 1.3 B

5.4 RQ 3: Variability Operations — No, Why?

So far, we investigated the feasibility of variability oper-
ations. Finally, the third research question aims at inves-
tigating whether there are situations in which variability is
required, but not implemented using variability operations.

Masking. In the analysis, we found a use case that is actu-
ally no variability operation, although it could be considered
as such. Pre-tailoring is a built-in mechanism that allows
for a coarse-grained modification of configuration contain-
ers (usually to remove whole sub-processes). Furthermore,
to construct a process variant, software process lines also
allow for adding (completely) new process assets. The com-
bination of pre-tailoring and adding new content can be
used in a strategy called “masking”, which allows for re-
placing whole sub-processes. In the analysis of the consid-
ered V-Modell XT variants, we found two cases in which
masking was used to realize variability (top-level process
configurations—project type variants—were removed from
the reference process and substituted by similar ones).

The analysis of this situation showed the following setting:
In several project type variants, an existing process module
should be replaced by an equivalent, but customized one.
However, no variability operation was defined to perform
this replacement. Moreover, it turned out that a variability
operation could not be implemented, as operation exemplars

Table 4: Most frequently used variability operations.

No. Operation Type QTY MM
49 ReplaceSectionText 46 1.3
36 ChangeRoleClass 36 1.3 B
37 ReplaceRoleDescription 34 1.3 B
35 RenameRole 22 1.3
66 RemoveLiteratureReference 19 1.3 B
19 RemoveTopicAssignment 16 1.3B
32 ChangeResponsibility 16 1.3
55 ArrangeSection 12 1.3
20 RenameTopic 10 1.3
45 ReplaceDecisionGateDescription 10 1.3 B

refer by id and name to the process assets to be altered. The
used metamodel, however, did not provide these attributes
for the specific model element referring the process modules
in the process configuration. That is, the missing variabil-
ity operation caused by a gap in the metamodel was “faked”
using the masking mechanism and, thus, is not trackable
during an automatic compliance check anymore.

New Sub-Processes. The analysis of variant “D” (Table 5)
showed a setting in which a variant was derived without us-
ing variability operations. As mentioned before, software
process lines also allow for deriving a process variant by
adding new content. Variant “D” is an example: The ref-
erence model was just taken and extended by new content,
e.g., new process modules, new roles, and new project type
variants assembling the new process modules and such from
the reference model. The new content, obviously, showed no
need for the use of variability operations as, for instance, no
re-naming or text replacements were necessary.

Interpretation. So far, we found two settings in which
variability operations were not applied. In one setting, new
sub-processes were introduced, which does not require the
use of variability operations. However, both instruments can
also be combined, e.g., in variant “B” and variant “C” new
sub-processes were introduced, but these variants also use
variability operations. In the second setting, we found the
“masking” strategy, which was used to compensate a gap
in the metamodel. In this setting, several other operations
were used to simulate missing variability operations.

We interpret our findings as follows: Variability opera-
tions are a meaningful tool. However, there are settings in
which variability operations are not necessary, and there are
also settings in which variability operations would be bene-
ficial (candidates for further metamodel improvements).

5.5 Validity of the Results

In this section, we evaluate our findings and critically re-
view our study regarding the threats to validity. Regarding
the construct validity, we see no major threat, because the
research questions were narrowly defined. We consider this
investigation to be a first step. The internal validity could
be threatened by a bias toward the variant construction pro-
cess, because two of the authors are also the developers of
the metamodels (and partially the processes). We minimized
this threat by relying on an analysis tool, which was applied

to all variants, and by calling in a third researcher for tri-
angulation. The external validity is threatened as we have
little knowledge to which extend we can generalize our re-
sults, e.g., to other software process lines. As this is the first
analysis of variability in this context, a generalization of the
findings is not the intention at this stage. We are interested
in analyzing the feasibility of variability operations, and to
prepare future research on software process lines.

6. CONCLUSION

Our main goal was to create a catalog of variability op-
erations to support the realization of software process lines.
To this end, we opted for the V-Modell XT, and analyzed
the reference process and 5 variants that use the built-in
process line features. In the V-Modell XT ecosystem, we
identified two metamodel versions that define variability op-
erations: the metamodel of the reference process defines 34
variability operation types, and the improved metamodel of
the V-Modell XT Bund adds 35 more types. Summarized,
we collected 69 variability operation types. The found vari-
ability operations allow process engineers to declaratively
alter process content, e.g., by providing new text snippets,
and the operations also allow for modifying the structure of a
process variant, e.g., by changing responsibilities, removing
references, and modifying the tailoring behavior. Further-
more, we investigated which variability operations were ap-
plied in practice, which allows us to rate the feasibility of the
variability operations. Summarized, we found 25 operation
types defined, but unused. Among these unused operations,
we found two categories of operations: (1) operations that
were introduced in the reference model and that are either
based on past improvement projects or that are required
to ensure a constructive compliance. (2) We found opera-
tions that were introduced during the improvement of the
metamodel. Such operations were defined to improve the
completeness of the process language, e.g., RenameTailor-
ingDependency that was introduced, as for all dependency
types exist corresponding operations.

Our findings also show that the concept of variability op-
erations not only achieves the requirement to build process
variants, but also serves metamodel evolution, which inher-
ently appears in a long-term development. For instance,
we found variability operations that allow for structurally
modifying “legacy” process assets so that they can be used
in newer versions of a process.

Finally, we found settings in which variability operations
were not used. In such settings, variability operations were
either unnecessary or missing. In the setting in which vari-
ability operations were missing, we could identify the “work
around” used to simulate the missing operation and, hence,
we also identified metamodel improvement candidates.

In summary, we found the concept of variability opera-
tions sufficient to support process engineers in constructing a
(new) process variant from a process line. However, variabil-
ity operations are only one instrument among others and,
thus, can (and should) be combined with other instruments.
We also showed the difficulty to define a set of meaningful
variability operations, as we for instance found a number
of variability operations defined, but unused. Nevertheless,
for all these operations exists rationale why they are part of
the model, however, further evaluation remains a topic for
future investigation.

Practitioners can also benefit from our findings. As vari-

ability operations are means to declaratively define modifi-
cations of a reference process, this concept offers payoffs in
domains in which regularized processes must be applied, e.g.,
medicine, automotive, and avionics. A company-specific
process can declare the modifications regarding the refer-
ence process using variability operations that can be easily
tracked and, thus, support audits and assessments.

6.1 Relation to Existing Evidence

In [1, 2, 15, 16, 17], first research was done in the area of
(evolutionary) variability analysis. However, these contribu-
tions aim at identifying variations considering given models.
Our research is focussed on a constructive approach that
supports variability by design. Martinez-Ruiz et al. [11]
conducted a study in which they investigated the construc-
tors used in tailoring. The literature review revealed that
current tailoring constructors do not meet industry require-
ments, and argue for an instrument that allows for variabil-
ity and consistency at the same time. The study at hand
investigates the concept of variability operations address-
ing this need (not for tailoring but for a whole process line).
Although SPEM already defines a set of basic variability op-
erations (e.g., extends or replaces), no case study is available
presenting concrete experiences. Only in [10, 12, 13] add-
ons to SPEM are discussed that are, however, not part of
the standard. To the best of our knowledge, no comparable
studies are available in the field of process engineering. The
study at hand is a step toward closing this gap in literature.

6.2 Limitations

The major limitation is that our investigation is based on
the V-Modell XT only. However, to the best of our knowl-
edge, the V-Modell XT is the only process framework that
provides process engineers with this kind of support to cre-
ate process variants. Therefore, the transfer (e.g., to the
generic concept provided by SPEM) and the generalization
of the findings have to be made carefully. Furthermore, the
V-Modell XT provides a rich portfolio of instruments to cre-
ate process variants. In this paper, we focused on the vari-
ability operation instrument, and we barely scratched the
surface regarding other instruments (e.g., Sect. 5.4).

6.3 Future Work

As our investigation is based on a snapshot of the V-
Modell XT process line, which is based on the version 1.3
of the reference model and all related variants, the study
at hand needs to be repeated when the version 1.4 of the
reference model is sufficiently disseminated and all variants
are migrated to the new reference model. This allows us to
better analyze the role of variability operations to support
metamodel evolution (as for instance found in Sect. 5.3).
Furthermore, a repeated analysis allows for analyzing the
evolution of the instrument itself, e.g., are there new vari-
ability operations (e.g., addressing the gaps discussed in
Sect. 5.4), or are unused variability operations removed. As
a second step, independent research is necessary to analyze
the transfer options to other frameworks. Variability oper-
ations are a meaningful instrument to support process vari-
ability, however, as we already discussed in [6] and as also
mentioned in [11], there is a gap in process frameworks re-
garding the capability to model flexible processes. This gap
needs to be closed and, thus, it needs to be investigated
whether variability operations can substantially contribute.

[10]

[11]

12

13

[14]

[15]

[16]

[17]

[18]

REFERENCES
O. Armbrust, M. Katahira, Y. Miyamoto, J. Miinch,

H. Nakao, and A. Ocampo. Scoping Software Process
Models - Initial Concepts and Experience from
Defining Space Standards. In Intl. Conf. on Software
Process, 2008.

O. Armbrust, M. Katahira, Y. Miyamoto, J. Miinch,
H. Nakao, and A. Ocampo. Scoping Software Process
Lines. Software Process: Improvement and Practice,
14(3):181-197, 20009.

G. Chastek, P. Donohoe, K. C. Kang, and S. Thiel.
Product line analysis: A practical introduction.
Technical report, Software Engineering Institute, 2001.
S. Cohen. Guidelines for developing a product line
concept of operations. Technical Report
CMU/SEI-99-TR-008, SEI, 1999.

ISO/IEC JTC 1, SC 7. Software engineering —
metamodel for development methodologies. Technical
Report ISO/IEC 24744:2007, ISO, 2007.

G. Kalus and M. Kuhrmann. Criteria for Software
Process Tailoring: A Systematic Review. In Intl. Conf.
on Software and Systems Process. ACM Press, 2013.
M. Kuhrmann. Konstruktion modularer
Vorgehensmodelle. PhD thesis, TU Miinchen, 2008.

M. Kuhrmann, D. M. Fernandez, and R. Steenweg.
Systematic Software Process Development: Where Do
We Stand Today? In Intl. Conf. on Software and
Systems Process. ACM Press, 2013.

M. Kuhrmann, T. Ternité, and J. Friedrich. Das
V-Modell XT anpassen. Springer, 2011.

T. Martinez-Ruiz, F. Garcia, M. Piattini, and

F. De Lucas-Consuegra. Process variability
management in global software development: A case
study. In Intl. Conf. on Software and Systems Process.
ACM Press, 2013.

T. Martinez-Ruiz, J. Miinch, F. Garcia, and

M. Piattini. Requirements and constructors for
tailoring software processes: a systematic literature
review. Software Quality Journal, 20(1):229-260, 2012.
Martinez-Ruiz, T., Garcia, F., Piattini, M., and
Miinch, J. Applying AOSE Concepts to Model
Crosscutting Variability in Variant-Rich Processes. In
EUROMICRO Conf. on Software Engineering and
Advanced Applications, 2011.

Martinez-Ruiz, T., Garcia, F., Piattini, M., and
Miinch, J. Modeling Software Process Variability: An
Empirical Study. IET Software, 5(2), 2011.

M. Niazi and S. Zahran. Software Process Lines: A
Step towards Software Industrialization, chapter 1,
pages 1-17. IGI Global, 2012.

A. Ocampo and J. Miinch. Rationale modeling for
software process evolution. Software Process:
Improvement and Practice, 14(2):85-105, 2009.

A. Ocampo, J. Miinch, and W. Riddle. Incrementally
Introducing Process Model Rationale Support in an
Organization. In Intl. Conf. on Software Process, 2009.
A. Ocampo and M. Soto. Connecting the Rationale for
Changes to the Evolution of a Process. In Intl. Conf.
on Product-Focused Software Process Improvement,
2007.

OMG. Software & Systems Process Engineering
Metamodel Specification (SPEM) Version 2.0.

Technical report, Object Management Group, 2008.

[19] D. Rombach. Integrated Software Process and
Product Lines. In Intl. Software Process Workshop
(SPW), 2005.

[20] SEI. Software Product Lines. Online:
http://www.sei.cmu.edu/productlines.

[21] T. Ternité. Process lines: A product line approach
designed for process model development. In 35th
EUROMICRO Conf. on Software Engineering and
Advanced Applications, 2009.

[22] T. Ternité. Variability of Development Models. PhD
thesis, TU Clausthal, 2010.

[23] T. Ternité and M. Kuhrmann. Das V-Modell XT 1.3
Metamodell. Research Report TUM-10905, Technische
Universitdt Miinchen, 2009.

APPENDIX
A. CONCEPTS & DATA TABLES

In this appendix, we provide the data tables that were cre-
ated to answer the research questions. Table 5 lists all vari-
ability operations, the metamodel in which a particular op-
eration type is defined, and the number of exemplars across
all investigated variants. Furthermore, this table serves as a
“catalog” for defined and practically applied variability op-
erations. In Table 6, we provide an aggregated view that
focusses on the operation groups. For each variant, the table
shows the operation instance count per operation group and
metamodel version. In this table, we skipped variant “D”,
as it does not contain any operation exemplar (Sect. 5.3).

Variability Operation Concepts. Although most of the
operations have “telling names”, we give a very brief intro-
duction to the concepts. A variability operation is a declar-
ative instrument, which is defined in a process variant being
derived from a reference model. The operation exemplar
refers to a model element in the reference process, and de-
scribes how the referred element will be treated during the
merge procedure in which the reference model and an exten-
sion model are computed in order to compile the company-
specific process variant (Sect. 2, Fig. 1). Variability op-
erations are composed of elementary model-transformation
operations, e.g., RenameFElement, AddText, ReplaceText, or
SwapRefences [22].

Some variability operations are not intuitive. For space
limitations, we give only two small examples. A detailed list
and dataset can be depicted from http://www4.in.tum.de/
“kuhrmann/sonst/varops.xslx.

Example. The operation Add WorkProductDescriptionPost-
fiz (No. 10, Table 5) adds a text snippet b to an existing
description text a of a work product p. The result in the
merged variant is thus: p.descrTextergea = a o b.

Example. The operation ChangeResponsibility (No. 32,
Table 5) replaces the responsible role 71 for a work prod-
uct p by a role r2, which means for the merged process and
the resulting variant: resp(ri,p) --» resp(r2,p). This opera-
tion addresses the dependency RolelsResponsible ForProduct
[23] and replaces the identifier of r; by the identifier of r;.

Table 5: Overview V-Modell XT variability operation types and exemplars per variant.

No. Operation Type Operation Group MM Variants Sum
A Bund B C D
1 RenameDiscipline Discipline Variations 1.3 1 2 3
2 ChangeDisciplineNumber Discipline Variations 1.3 B 11 11
3 ReplaceDisciplineDescription Discipline Variations 1.3 B 1 1 2
4 AddDisciplineDescriptionPrefiz Discipline Variations 1.3 0
5 AddDisciplineDescriptionPostfix Discipline Variations 1.3 0
6 RenameWorkProduct Work Product Variations | 1.3 1 1 1 3
7 Delete WorkProduct Work Product Variations | 1.3 B 0
8 ReplaceWorkProductDescription Work Product Variations | 1.3 B 1 2 3
9 AddWorkProductDescriptionPrefix Work Product Variations | 1.3 1 1
10 AddWorkProductDescriptionPostfix Work Product Variations | 1.3 1 2 3
11 RemoveWorkProductDecisionGateAssignment ~ Work Product Variations | 1.3 B 1 1
12 Change WorkProduktDiscipline Work Product Variations | 1.3 B 0
13 RenameCreatingDependency Work Product Variations | 1.3 B 0
14 ReplaceCreatingDependencyDescription Work Product Variations | 1.3 B 1 1
15 RenameContentDependency Work Product Variations | 1.3 B 6
16 ReplaceContentDependencyDescription Work Product Variations | 1.3 B 3
17 RenameTailoringDependency Work Product Variations | 1.3 B 0
18 ReplaceTailoringDependencyDescription Work Product Variations | 1.3 B 0
19 RemoveTopicAssignment Topic Variations 1.3 B 16 16
20 RenameTopic Topic Variations 1.3. 2 1 7 10
21 ReplaceTopicDescription Topic Variations 1.3 B 3 3
22 AddTopicDescriptionPrefix Topic Variations 1.3 1 1
23 AddTopicDescriptionPostfix Topic Variations 1.3 5 1 6
24 ArrangeSubTopic Topic Variations 1.3 0
25 RenameActivity Activity Variations 1.3 1 1
26 ReplaceActivityDescription Activity Variations 1.3 B 1 1
27 AddActivityDescriptionPrefic Activity Variations 1.3 0
28 AddActivityDescriptionPostfix Activity Variations 1.3 0
29 RemoveTask Task Variations 1.3 B 0
30 RenameTask Task Variations 1.3 B 0
31 ReplaceTaskDescription Task Variations 1.3 B 0
32 ChangeResponsibility Role Variations 1.3 2 10 4 16
33 RemoveResponsibility Role Variations 1.3 0
34 RemoveSupportingRole Role Variations 1.3 B 2 4 6 12
35 RenameRole Role Variations 1.3 2 4 16 22
36 ChangeRoleClass Role Variations 1.3 B 32 4 36
37 ReplaceRoleDescription Role Variations 1.3 B 13 10 11 34
38 AddRoleDescriptionPrefix Role Variations 1.3 0
39 AddRoleDescriptionPostfix Role Variations 1.3 4 4
40 RefineRole Role Variations 1.3 0
41 ChangeStandard Value Tailoring Variations 1.3 1 1 2
42 AddProcessModule Tailoring Variations 1.3 0
43 ReplaceProcessModuleDescription Tailoring Variations 1.3 B 4 4
44 RenameDecisionGate Decision Gate Variations | 1.3 1 1
45 ReplaceDecisionGateDescription Decision Gate Variations | 1.3 B 10 10
46 AddDecisionGateDescriptionPrefiz Decision Gate Variations | 1.3 0
47 AddDecisionGateDescriptionPostfix Decision Gate Variations | 1.3 2 1 3

No. Operation Type Operation Group MM Variants Sum
A Bund B C D
48 ReplaceChapterText Description Replacements 1.3 5 2 1 8
49 ReplaceSectionText Description Replacements 1.3 1 20 22 3 46
50 AddChapterTextPrefix Description Add-ons 1.3 0
51 AddChapterTextPostfix Description Add-ons 1.3 1 4 5
52 AddSectionTextPrefix Description Add-ons 1.3 0
53 AddSectionTextPostfix Description Add-ons 1.3 2 2
54 ArrangeChapter Description Re-Arrangements 1.3 1 1
55 ArrangeSection Description Re-Arrangements 1.3 1 5 6 12
56 ChangeChapterNumber Description Re-Arrangements 1.3 B 1 1
57 ChangeSectionNumber Description Re-Arrangements 1.3 B 0
58 RemovePart Description Removements 1.3 B 3 3
59 RemoveChapter Description Removements 1.3 B 0
60 RemoveSection Description Removements 1.3 B 5 1 6
61 RemoveMethodReference Tool/Method Reference Variations | 1.3 2 2
62 RemoveToolReference Tool/Method Reference Variations | 1.3 9 9
63 RemoveMapping Mapping Variations 1.3 B 4 1 5
64 RemoveGlossaryltem Appendix Variations 1.3 B 0
65 ReplaceGlossaryltemDescription Appendix Variations 1.3 B 0
66 RemoveLiteratureReference Appendix Variations 1.3 B 19 19
67 ReplaceLiteratureReferenceDescription ~ Appendix Variations 1.3 B 1 1
68 RemoveAbbreviation Appendix Variations 1.3 B 0
69 ReplaceAbbreviationDescription Appendix Variations 1.3 B 1 1
Sum | 17 167 84 72 0
Table 6: Used variability operations by variant, operation type, and metamodel release.
Operation Group Variant A Variant Bund Variant C Variant B
1.3 1.3B | Sum |13 1.3B | Sum |13 1.3B | Sum | 1.3 1.3 B | Sum
Discipline Variations 0 0 0 1 12 13 0 0 0 2 1 3
Work Product Variations 3 0 3 1 11 12 3 2 5 0 1 1
Topic Variations 5 0 5 2 19 21 9 0 9 1 0 1
Activity Variations 1 0 1 0 1 0 0 0 0 0 0
Task Variations 0 0 0 0 0 0 0 0 0 0 0 0
Role Variations 0 0 0 4 47 51 24 17 41 14 18 32
Tailoring Variations 1 0 1 0 4 4 1 0 1 0 0 0
Decision Gate Variations 3 0 3 0 10 10 1 0 1 0 0 0
Description Replacements 1 0 1 25 0 25 4 0 4 24 0 24
Description Add-ons 2 0 2 0 0 0 4 0 4 0
Description Re-Arrangements 1 0 1 1 1 2 6 0 6 0
Description Removements 0 0 0 0 3 3 0 1 1 5
Tool/Method Reference Variations 0 0 0 0 0 0 0 0 0 11 0 11
Mapping Variations 0 0 0 0 4 4 0 0 0 0 1 1
Appendix Variations 0 0 0 0 21 21 0 0 0 0 0 0
Sum 17 0 [17 [34 133 | 167 [52 20 [72 [58 26 84

