
Towards Artifact Models as Process Interfaces in
Distributed Software Projects
Marco Kuhrmann, Daniel Méndez Fernández, Matthias Gröber

Technische Universität München
Faculty of Informatics, Software & Systems Engineering

Garching, Germany
{kuhrmann,mendezfe,groeber}@in.tum.de

Abstract—Much effort has been spent to investigate the orga-
nization of distributed teams and their collaboration patterns. It
is, however, not fully understood to which extent and how agile
software processes are feasible to support distributed software
projects. Practices and challenges that arise from the demands
for communication are often in scope of current research. Still,
it remains unclear what is necessary to monitor a project and
to track its progress from a management perspective. A solution
is to monitor projects and their progress on basis of the current
quality of the created artifacts according to a given reference
model that defines the artifacts and their dependencies. In this
paper, we present an artifact model for agile methods that
results from of a systematic literature review. The contribution
serves as an empirically grounded definition of process interfaces
to coordinate projects and to define exchanged artifacts while
abstracting from the diverse local software processes.

Index Terms—agile methods; artifact model; distributed
projects; software process interface; project management

I. INTRODUCTION

Software projects are often operated in a distributed setting.
Such settings require the organization of, e.g. the collabo-
ration between different teams, which are often subject to
an individual organizational culture and an own (local) way
of working, potentially alien to the standards of the other
distributed teams [1]. The exchange of artifacts between
the different teams is hereby an essential task including
the exchange of requirements or architecture descriptions,
or project planning and controlling data. As already known
from co-located projects, the exchange of artifacts remains, at
the same time, a challenging task, which requires a mature
configuration management process to avoid confusion and
misunderstandings. Typical symptoms of misunderstandings
are the distribution and the handling of files in different ver-
sions, conflicts that are caused by incompatible file formats, or
different notions of the structuring of artifacts, all potentially
resulting in an inconsistent result structure. In a co-located
setting, such risks can be mitigated by a direct, just-in-time
communication within the team. In a multi-site project, a
clear agreement regarding the artifacts, their structuring, and
their dependencies obligatory for all team members becomes
even more important, because informal, short and clarifying
communication lines are often not possible [2], [3].

Since artifacts represent all (tentative) outcomes such as
documents, specifications, models, code, binaries or entire

delivery packages, exchanging artifacts is critical to projects.
However, a multi-site project setting does not only combine
different sites (a site represents, e.g. a stakeholder, a company
or an offshore team), but also local software processes used to
create the artifacts. Those software processes do not necessar-
ily have to be the same, which results in different concepts, a
different terminology, and a different notion of the structuring
of artifacts being created in a (sub-)project. This problem is
inherently given in agile methods, such as Scrum, as they do
not explicitly define an artifact model at all. In the following,
we illustrate an example setting to motivate the need for a
common notion of artifact models.

Example Setting: To underpin the need for a common
notion of artifacts and artifact models, we give a simplified
example of a globally distributed project1. Figure 1 shows
a setting in which a project is operated in Europe, Asia,
and South America, including offshoring, near shoring, and
sub-contracting situations. The project’s coordinator is located
in Germany and, therefore, the V-Modell XT was chosen
as the basic software process. In Czech, Brazil, and India,
Scrum is used for the development teams, and China, India’s
sub-contractor, uses Extreme Programming. Although being
a simplified example, several questions occur, such as: How
can global requirements be transferred and mapped to local
backlogs?, How can the global project plan be mapped to
local fine grained project plans?, How can local project status
information and controlling data be synthesized into a big
picture reflecting the overall global project’s state?, and How
can locally developed subsystems be integrated into a working
software? Those exemplary questions show the challenges
when combining different software processes.

A way out of this dilemma is to abstract from concrete local
software processes and to agree on a common artifact model as
backbone of the different software processes. Such an artifact
model would allow to specify the artifacts and the data to
be exchanged while giving the possibility to integrate those
artifacts into the different software processes used at different
sites over pre-defined interfaces.

1This example is based on a project in which client and contractor used
different software processes, and the V-Modell XT was used to connect both
projects. The experiences from this project [4] show the need for adequate
techniques to couple projects using different software processes. For the
purpose of the paper at hands, we extended the setting to a global one.

© IEEE. This is the author's version of the work. It is posted here by permission of IEEE for your personal use. 
Not for redistribution. The definitive version was published in the conference/workshop proceedings



Coordination - 
V-Modell XT

Brazil

Germany

Czech

India

ChinaScrum

Scrum

Scrum

XP

contractcontract

contract

contract

Requirements Specification
Architecture

Project Plan

Controlling Data

Controlling Data

Controlling Data

Controlling DataProject
Controlling

Backlog

transfer & mapping

Backlog

transfer & mapping

System, Code, ...

System, Code, ...

System, Code, ...

System, Code, ...

Fig. 1. Exemplary distributed project setting. The setting shows off- and near shoring, and contractor/sub-contractor configurations with different software
processes that need to be integrated into one (virtual) project. The setting also shows some exemplary data and information flows that outline the challenges
of transferring, exchanging, mapping, and aggregating data across project borders.

A. Problem Statement

Although the importance of an artifact model as a means
to define clear process interfaces for supporting management
tasks among distributed projects is evident, little is yet known
about which basic concepts should be incorporated by such a
model. To avoid the pitfall of having a specific-purpose model,
the model needs to capture the least common denominator
of available software processes, especially mixing structured
processes and agile methods—at the same time, without
getting lost in abstraction. To support the actionability and
reliability of the model in the sense of objectively reflecting
common practices, it needs to be empirically grounded on
basis of available and successfully disseminated practices. So
far, apart from few experiences we could made in fundamental
and applied research on artifact orientation (see, e.g. [4]–[7]),
there exists no empirical basis that would allow to define a
model of the necessary artifact types adequately reflecting the
least common denominator of different software processes.

B. Research Objectives

We aim at defining a first artifact model and its process
interfaces to lay the foundation of the necessary artifact
types that adequately reflect the least common denominator
of different software processes.

To establish such a basis, we need to infer an artifact
model from a literature study that reveals artifacts and their
dependencies as they are successfully used and documented,
extend the artifact model with software process interfaces
(short: process interface) and provide a first validation of those
interfaces. In our understanding, a process interface is a mean
to exchange data between software processes or sub-processes
by abstracting from concrete, organization- or project-specific
implementations. To this end, a process interface shall serve

the standardized exchange of artifacts and further relevant
information, e.g. planing or controlling data, between projects
without the need to have deep knowledge about the respective
project-internal workflows.

C. Contribution
In this paper, we contribute an artifact model for agile

methods, which is based on a systematic literature review. For
this empirically grounded artifact model for agile methods,
we design and propose a generic extension as a software
process interface to support distributed software projects by
systematizing their data exchange. Furthermore, we provide
a first validation of the model’s feasibility, which is based
on a mapping of our artifact model to further ones including
standard software processes we have implemented and dissem-
inated into practice.

D. Outline
The paper is organized as follows. In Sect. II, we introduce

the fundamentals and related work. In Sect. III, we give
a brief overview of the mapping study we conducted to
empirically investigate which artifacts are defined in available
agile methods to infer an artifact model for agile methods.
In Sect. III-D, we define artifact-based process interfaces. To
this end, we generalize the agile artifact model, i.e. we revise
the artifact model taking into account further available models
and propose process interfaces as an extension of our artifact
model. A first validation of our contribution is presented in
Sect. V. In Section VI, we finally conclude our paper and
discuss future work.

II. FUNDAMENTALS & RELATED WORK

To couple software projects that are operated using different
software processes, necessary are modularization concepts in-

© IEEE. This is the author's version of the work. It is posted here by permission of IEEE for your personal use. 
Not for redistribution. The definitive version was published in the conference/workshop proceedings



cluding the support to customize and scale software processes
and to replace (sub-)processes, and concepts that support the
definition of a process-based interface to determine artifact
structures that serve a coordinated data exchange.

Much effort has been spent in defining modularity concepts
for software processes, i.e. using modularization concepts to
customize and tailor software processes at organization and
project levels. Basic ideas to modularize, to compose and
to connect (different) software processes arose in the mid
1980’s by realizing the need to tailor software processes,
e.g. [8]. In subsequent years, a number of approaches to
tailor software processes was developed. Pedreira et al. [9]
conducted a study on the state-of-the-art in software process
tailoring and concluded that there is no common framework
for tailoring available and, furthermore, the impacts on projects
when selecting certain tailoring criteria remain unclear [10]. A
promising approach to enhance software processes’s modular-
ity is given by another response to the problems mentioned by
Basili et al. Brinkkemper [11] presented an approach for the
situation-related engineering of software methods, which was
baptized as Situational Method Engineering and, furthermore,
initiated research on modular software processes. However,
research on Situational Method Engineering remained on a
conceptual level [12], [13].

From a practical perspective, software process metamod-
els, such as the Software & Systems Process Engineering
Metamodel Specification (SPEM; [14]) provide concepts to
modularize a software process. SPEM proposes several mod-
ularization concepts that compete for the process engineers’
favor, e.g. “process components” or “method plug-ins”. A
SPEM process component is a means to compose reusable
and exchangeable process assets, which are based on related
tasks/activities and artifacts that provide a process interface.
Ruiz-Rube et al. [15] conducted a comprehensive mapping
study on the use of SPEM and concluded that SPEM gained
much attention over the years. However, we conducted a
literature review [16] in which we investigated the state-of-
the-art in software process meta-modeling, and concluded
that currently we cannot observe initiatives to improve or
further develop software process metamodels. Moreover, we
have to recognize that initiatives, such as techniques given
by Situational Method Engineering research, remain without
any practical application, e.g. the software process metamodel
ISO 24744 [17] has no practically relevant implementation yet.

At the level of concrete software processes, we can find
practically implemented process interfaces. For instance, the
German V-Modell XT implements a so-called “customer-
contractor-interface” (CC-interface; [4], [18]) in which, based
on contracts, the interaction patterns of different project stake-
holders are modeled. The CC-interface comprehends a number
of quality gates to which certain artifacts are assigned. Each
artifact that is assigned to a particular quality gate is well-
defined in structure, as it forms a part of a comprehensive
artifact model, and it is subject to project management and
quality assurance processes. Therefore, the interface describes
the exchange of quality-assured artifacts among (sub-)projects.

The feasibility of applying an artifact-oriented approach in a
project to enhance the clearness of artifacts was also investi-
gated in several industrial settings, e.g. [6], [7]. Those findings
underpin a proposed generalization of artifact orientation in
terms of being a means to systematically model project result
structures. However, modularity concepts as defined in, e.g.
SPEM or in the field of Situational Method Engineering, aim at
creating software processes—or parts of a software process—
by assembling prefabricated building blocks.

Agile methods gained much attention over the years and
are well researched, e.g. in distributed settings [19], [20]
including empirical studies [21]. Hersleb and Mockus [22]
investigated collaboration and communication patterns in dis-
tributed projects in general, whereby communication is a basic
pillar of agile methods, which is hard to realize in distributed
settings and, thus, often relies on tools [23]. Since tools need
“data” to exchange, artifact models that precisely describe
outcomes, which themselves are a means for communication,
proved to be advantageous [18], even agile methods usually
neither have a notion of artifact orientation nor underlying
artifact models. A number of studies shows the feasibility of
applying concrete artifact models in industrial settings, and
the application of artifact models evidently provides significant
improvements, e.g. in the field of requirements engineering [7].

Yet, artifact orientation is a philosophy with various inter-
pretations and manifestations in practice that needs further
investigation [24]. Our contribution thus forms a next step in
this direction.

III. ARTIFACTS IN AGILE METHODS – AN EMPIRICAL
INVESTIGATION

The term artifact is used in different contexts with different
meanings. Our notion of an artifact and artifact models is
defined in [5] where we contributed a metamodel for artifact
orientation describing the basic constructs and rules. To inves-
tigate the state-of-the-art in the practical application of artifacts
and artifact models in context of agile methods, we conducted
a systematic literature review (SLR). The findings of this SLR
result in an artifact model as it is used and documented in agile
methods. In this section, we briefly present the core results
from this study to lay the basis for the proposed general artifact
model. The complete study can be taken from [25].

A. The Study at a Glance

The overall goal of the study was to investigate the state-
of-the-art of using artifacts in agile methods. To this end, we
formulated the following research questions:

RQ 1: Which agile methods and practices consider artifacts
to which extend?

RQ 2: Which degree of maturity have the agile methods, prac-
tices, and their artifact-oriented concepts w.r.t. their research
type facet?

The first two research questions aim at investigating the
maturity of agile methods when it comes to defining and
applying artifacts in projects. Those questions are designed

© IEEE. This is the author's version of the work. It is posted here by permission of IEEE for your personal use. 
Not for redistribution. The definitive version was published in the conference/workshop proceedings



1" 1" 1" 1"

1" 3" 1"

15" 2" 1" 1" 1" 3" 2" 1" 1" 10" 2" 15" 5"

5" 6" 1" 2" 4" 2" 6" 1" 1" 2" 3" 1" 9" 3" 2"

0" 1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 11" 12" 13" 14" 15" 16" 17" 18" 19"

FDD"

Kanban"

AUP"

XP"

Scrum"

burn;down"chart"

code"
coding"standard"

documentaEon"

feature"
issue"

iteraEon"backlog"

metaphor"

photo"
product"backlog"

release"plan"

requirements"

soKware"system"

task"
test"case"

use"case"

user"story"

wall"
wiki"

Fig. 2. Identified artifacts by method (consolidated view).

for a quantitative investigation and aim at harvesting different
methods that consider artifacts in general. To answer the re-
search questions, we performed a mapping study (see Peterson
et al. [26]) to structure the publication flora and to determine
the maturity of agile methods according to a predefined set of
research type facets.

RQ 3: Which artifacts are proposed for agile development and
could contribute to cross-process and cross-practice artifact
model?

This research questions aims at investigating which artifacts
are mentioned in agile methods and how those artifacts can
be used to lay the foundation for a common artifact model.
The research question contains two sub-questions: (a) Which
of the proposed artifacts are commonly used? (b) Which of
the proposed artifacts are used to serve project controlling?

RQ 4: How are the common artifacts related to each other
and what model does result from these relationships?

Based on RQ 3, this research questions aims at identify-
ing certain artifacts and relationships between the artifacts.
Therefore, the outcomes of RQ 3 are revised and checked for
synonyms to develop a clear terminology. Based on the results
of an in-depth literature review, an empirically grounded
artifact model was extracted that reflects the artifact structure
as used in agile methods—backed up by the result set of the
literature review.

B. Research Method and Analysis Procedures

To gather the data, we selected the following libraries: ACM
Digital Library, IEEE Explore, SpringerLink, and Science
Direct. Those databases were queried with the query strings
from Table I, which were constructed using the most common
terminology in the field of agile software development.

TABLE I
SUB-QUERIES AND FINAL SEARCH STRING.

Id Search String

S1 (artifact or artefact or work item or work product or work result
or deliverable or manufacture)

S2 (scrum or extreme programming or kanban or feature driven
development or agile unified process)

S3 (stand up or (iteration or sprint) plan or test driven or unit
test or burn down or retrospective or continuous integration or
(velocity or sustainable pace) or coding standard or refactoring
or collective ownership)

S4 (agile or agility or light weight) and (software)
S5 (software and (development or engineering))

SQ1 S2 and S1

SQ2 S3 and S1

SQ3 S4 and S1

SQ4 (controlling or measuring or reporting) and S5 and S1

Final SQ1 or SQ2 or SQ3 or SQ4

C. Results

The search strings (Table I) were complemented by inclu-
sion and exclusion criteria, which were applied in a rigorous
selection procedure. The initial result set contained 540 con-
tributions (books, conference and journal publications, etc.).
After screening the initial result set and applying the inclusion
and exclusion criteria, 76 contributions remained in the final
result set for further investigation to answer the research
questions (see [25] for more details).

In this section, we present the results from the study. The
presentation is structured according to the research questions.
Due to space limitation, we only present the key results for
the research questions 1–3. Since we aim at defining process
interfaces that are based on artifact models, we present the
findings of research question 4 in more detail.

© IEEE. This is the author's version of the work. It is posted here by permission of IEEE for your personal use. 
Not for redistribution. The definitive version was published in the conference/workshop proceedings



A9 MetaphorA3 Coding 
Standard A1 Burn-Down

A12 Release plan

A10 Photo

A19 Wiki

A15 Test case A18 Wall

A11 Backlog

A8 Iteration Backlog

A7 Issue/Bug

A14 Task

A6 Feature

- final

A4 COTS Software

- final

A2 Code

- description

A13 RequirementA17 User Story

A16 Use Case

- priority
- effort estimate

Backlog item

«use»
compliant to

*
*

- implement &
tested by

- tests

*

*- tested by

- tests

*

*

- implement

- represented as
contains

contains

visualizes

visualizes

visualizes

accumulates

*
*

- influences
- implements

derives & 
influences itself

refines 
Backlog.contains

Project Management

Requirements Specification

Production Process

A5 Documentation

Fig. 3. Resulting artifact model for agile methods as outcome of the study.

1) RQ 1, RQ 2 & RQ 3: This first two research questions
aim at structuring the publication flora via a mapping study. To
this end, the selected 76 contributions were mapped according
to their research type facets, and ordered by the publication
date to get a notion of the development and the maturity of
the considered domain. The outcome shows that the area of
agile methods is well-researched: opinion papers and solution
proposals are followed by evaluation (20 contributions) and
validation research (15 contributions), and experience papers
(20 contributions).

The third research questions aims at identifying artifacts
used in agile methods in general. To answer the research
question, we analyzed all contributions w.r.t. artifacts that were
explicitly named and/or used. Since the analysis resulted in a
number of artifacts, we checked for synonyms and replacement
candidates in the result set. Based on the result set, five agile
methods, their notion and usage of artifacts were investigated.
Figure 2 shows the consolidated list of the 19 identified
artifacts and their distribution over different agile methods.
The map shows XP and Scrum to contribute most of the
identified artifacts while FDD does not contribute any artifacts
at all. Furthermore, the map shows that XP pays more attention
to development-related artifacts while Scrum also contributes
to management-related artifacts.

2) RQ 4: Research question 4 aims at putting the pieces
together and to infer a common artifact model for agile
methods. To answer this research question, we analyzed the
contributions to determine relationships between the identified
artifacts and mapped the identified relationships to the consol-
idated set of artifacts (Sect. III-C1).

The outcome is shown in Fig. 3. The artifact model consists
of four parts:

1) Project management
2) Requirements specification
3) Production process
4) Other documentation parts, e.g. COTS software

The figure does not only show all identified artifacts, but
also an newly introduced artifact Backlog Item, which we
introduced to simplify the set of dependencies. As the artifacts
A10 Photo and A19 Wiki were mentioned in the contributions
without any relationship to the other artifacts, we included
those artifacts without further assignments to other artifacts.
All artifacts together build a project’s documentation (artifact
A5) and, thus, no explicit artifact named “Documentation” was
placed in the model.

The relationships in Fig. 3 are named according to the
described relations between the artifacts as they are mentioned
in the analyzed contributions. As a first step, the relations were
investigated using a dependency matrix, before we generalized
the dependencies and deduced a set of relationships.

D. Discussion of the Study Results

The results provide a first step in the definition of an
artifact model for agile methods. The model still needs further
synthesis and a clear structuring to reduce the complexity,
introduce generalizations, and so on. At the same time, the
model represents the state-of-the-art in agile methods and the
artifacts and dependencies as they are implicitly or explicitly
defined in those methods and documented in scientific litera-
ture. However, the result set from the SLR does not contain so-
called “grey literature”, e.g. web blogs or forum contributions
that are extensively used in the agile community and which
has to be considered to be a threat to validity [25]. Therefore,
from an academic perspective, our artifact model represents

© IEEE. This is the author's version of the work. It is posted here by permission of IEEE for your personal use. 
Not for redistribution. The definitive version was published in the conference/workshop proceedings



the least common denominator of the analyzed agile methods.
To support the application of this artifact model in various
software process models, we provide a synthesis and introduce
an artifact-based process interface in the next section.

IV. ARTIFACT-BASED PROCESS INTERFACES

In the previous section, we presented an artifact model for
agile methods as an outcome of a systematic literature review.
The investigated artifact model represents common artifacts
and their relationships, and their usage in context of agile
methods. Since we also analyzed the contributions for their
research type facets to get a first impression of their degree
of maturity, we see the investigated artifact model to also
represent a common foundation to build artifact models for
agile methods.

In this section, we further analyze the artifact model and
extend it to a more generic model, which we use to abstract
from local, project-specific processes. We consider the result-
ing artifact model to be an important part of a software process
interface for distributed development projects.

A. Crafting the Generalized Artifact Model

Based on our study’s results [25], we investigated previ-
ously created artifact models to gather further information for
creating a generalized notion of possible result structures in
agile methods. To this end, we applied the following approach:

1) We performed another in-depth analysis of the outcomes
of the introduced study [25]. As a result of the in-
depth analysis, we revised the resulting artifacts and their
dependencies in order to create a (more) clearly structured
and reusable artifact model. In this in-depth analysis,
we furthermore identified gaps in the artifact model that
could influence a data exchange.

2) We enriched the artifacts with previously gathered infor-
mation from academic research cooperations, e.g. [5]–
[7]. To this end, we introduced further artifacts that were
identified in cooperation projects, and added attributes
and relationships.

3) We introduced an abstraction layer to create the process
interface. To this end, we used a generalization-based ap-
proach to refine process- or project-specific artifacts from
the interface-related ones, e.g. for the artifact Backlog-
Item, which is defined in the process interface, a process-
/project-specific representative ProjectBacklogItem was
introduced. In this step, we also classified the artifacts
either to be part of the process interface or the process-
/project-specific parts of the artifact model.

4) We performed a first validation of whether the result-
ing structure serves the connection of distributed soft-
ware projects (see also Sect. V). In this validation, we
constructed exemplary cases in which we theoretically
applied the process interface.

B. A Generalized Artifact Model

Figure 4 shows the resulting artifact model. The artifact
model contains artifacts that result from the study (highlighted

by the stereotype StudyArtifact) as well as newly introduced
ones that reflect the demands of, e.g. distributed industrial
settings or software processes (see also the scenario provided
in Sect. I).

The proposed artifact model consist of three major parts: (1)
the agile artifacts that are commonly used in agile methods,
(2) tool support that is required for agile methods and which
use is documented in literature, and (3) the process interface
that serves the connection of projects and the data exchange
between projects.

1) Agile Artifacts: The agile artifact model is an abstraction
of artifacts, which we identified to be commonly used in agile
methods [25]. These artifacts, including Feature, UseCase or
TestCase, mainly address development-related topics, e.g. re-
quirements engineering or development. Few artifacts address
the project management, e.g. the Backlog or the Iteration
Backlog. In addition to the artifacts revealed by the study,
we introduced further artifacts to provide a consistent model.
For instance, we decided to shift the artifact Code into the
process interface and to replace it by a local representative
(SourceCode) that provides more structure in terms of intro-
ducing resources, code modules etc. All artifacts that can be
found in this package are usually specific to a particular team,
e.g. a team could decide to use “formal” specifications instead
of user stories. As long as the requirements of the process
interface are fulfilled, the concrete materialization of an artifact
does not matter.

2) Tool Support: Software projects in general and dis-
tributed projects in particular require an adequate tool support,
e.g. for storing and sharing data, for communication, for
development/coding or testing; project artifacts are, to a large
extend, created and exchanged using certain tools (see also
Portillo-Rodrı́guez et al. [27]). In order to pay attention to
project tools and their relationship to the project artifacts,
we introduced the classes CollaborationTool and SCM-System
(Source Control Management System; as an abstraction of, e.g.
Subversion or git) for abstracting tools that serve distributed
projects. The artifact CollaborationTool, furthermore, serves
as container to store non-source code artifacts such as photos
or several kinds of documentation.

3) Process Interface: The process interface contains those
artifacts, which are relevant for exchange between projects.
Due to their generic nature and their overall importance for
software projects in general, four of the initially investigated
artifacts (Metaphor, Requirement, BacklogItem, and Code)
were located in the process interface. For instance, a require-
ment is—in a distributed project—relevant for at least three
stakeholders:

1) The client—he constitutes the requirement
2) The implementation project—it “consumes” and imple-

ments the requirement
3) The integration project that puts all pieces of all sub-

projects together into a shippable software

Further classes are present in the interface, which we describe
in detail in Sect. IV-C.

© IEEE. This is the author's version of the work. It is posted here by permission of IEEE for your personal use. 
Not for redistribution. The definitive version was published in the conference/workshop proceedings



Artifact

- id
- state
- title
- description
- version

«StudyArtifact»
Metaphor

- statement_of_intent

Role

- name

«StudyArtifact»
Requirement

- rationale
- acceptance_criteria
- priority

«StudyArtifact»
BacklogItem

- estimate

«StudyArtifact»
Code

Deliverable

Test

- preCondition
- postCondition
- testData
- testResult

«StudyArtifact»
Feature

Scenario

ProjectBacklogItem

Teammember

Issue

Bug

«StudyArtifact»
Task

«StudyArtifact»
UserStory

«StudyArtifact»
UseCase

«StudyArtifact»
Backlog

- project-id
«StudyArtifact»

IterationBacklog

«StudyArtifact»
BurnDownChart

«StudyArtifact»
CodingStandard

«StudyArtifact»
COTSSoftware

«StudyArtifact»
ReleasePlan

IterationPlan

CodeModules

SourceCode

Ressource

Release

«StudyArtifact»
TestCaseProjectTest

AcceptanceTest

IntegrationTest

UnitTest

SCMSystem

«StudyArtifact»
Wall

CollaborationTool

«StudyArtifact»
Wiki

«StudyArtifact»
Photo

«StudyArtifact»
Documentation

- responsible

- contributes
0..*

0..*

0..*

1

relates

0..*

Person

- name
- profession

1..*

has roles
1 1..*- owner - stakeholders

- requirements
1..*

Plan

contains

1..*

influences

- scenarios

- scenarios

- scenarios
1..*

1..*

1..*

influences0..*

0..*

- actor 1

assigned to

0..*
- items

reports status

- items
0..*

assigns

complies to

use
contains

0..*
- ressources

0..*- submodules

1..*

- releases

1..*
- cases

1..*- cases

0..*- subtests

showsshows

Process Interface Agile Artifacts

Tool Support

Fig. 4. Generalized artifact model for agile methods.

4) Discussion: Our initial study revealed a number of
artifacts that are used in agile methods. However, a number of
further artifacts had to be introduced to provide a meaningful
artifact model2. Such artifacts mainly serve the structuring
aspects, e.g. the role of the class SourceCode that is a local
representative of the interface class Code in a project, and aids
the structuring of the code base by introducing modules.

To separate “local” artifacts, which are created in a project,
from the “global” artifacts, which are subject for inter-project
or inter-team exchange, we introduced proxy-like classes,

2This also reflects the situation that scientific contributions—obviously—
only capture a part of the agile domain and, therefore, can at best serve as a
basis for further investigations.

whereas each global interface class is complemented by a local
representative. The local class inherits from the global class
and, therefore, introduces the requirements regarding, e.g. the
artifacts’ structure in a project. In tune with the philosophy of
artifact orientation [5], the actual materialization of an artifact
does not matter, as long as the inherited characteristics are
fulfilled.

C. Process Interfaces

Based on the extended artifact model (Fig. 4), we define an
artifact-based process interface as separately shown in Fig. 5.
The central element of this model is the class Artifact. An
artifact is, according to [5], a representation of all (tentative)

© IEEE. This is the author's version of the work. It is posted here by permission of IEEE for your personal use. 
Not for redistribution. The definitive version was published in the conference/workshop proceedings



Role
- id
- state
- title
- description
- version

Artifact

«StudyArtifact»
Requirement

- rationale
- acceptance_criteria
- priority

«StudyArtifact»
Code

«StudyArtifact»
BacklogItem

- estimate

«StudyArtifact»
Metaphor

- statement_of_intent

- name

Deliverable
Plan

Person

- name
- profession

Test

- preCondition
- postCondition
- testData
- testResult

- responsible

- contributes
0..*

0..*

0..*

1

relates

0..*

1..*

has roles
1 1..*- owner - stakeholders

contains
1..* influences

Fig. 5. The process interface based on an artifact model of artifacts in agile methods.

outcomes of a software project. An artifact has an id, a state,
a version, a title and a description. Furthermore, an artifact
has relations to other artifacts, to construct artifact models. In
the context of distributed software development projects, we
additionally define an artifact to be a subject to data exchange
as part of a collaboration. Since distributed projects heavily
rely on supporting collaboration tools [27], we understand an
artifact to be a “data point” in such a tool infrastructure, which
is exchanged across different teams or different sites.

The interface in Fig. 5 addresses the aforementioned needs
by defining a data structure in which Artifact is the base class
for every piece of data to be exchanged among projects. In
order to support the coordination of distributed projects, only
few concrete key artifacts need to be exchanged to enable the
project management to track a project’s state and progress.
These concrete artifacts are:

• Requirements
• Code
• Tests
• Deliverables (e.g. the ones of sub-projects)
• Planning and controlling information (general: plan, fine-

grained: backlog items)
Furthermore, projects need personnel (assigned to roles). To
this end, a minimum of personnel-related information needs
to be transferred across project borders, e.g. to perform task
assignments for bug fixing. Another artifact that should be a
subject to exchange is the Metaphor as this artifact represents
the shared vision of a project.

Please note that the model in Fig. 5 is intentionally kept to
a minimum of concepts to reduce the complexity as concrete
artifact models for software processes or single projects are
usually inherently complex themselves. Therefore, the pro-
posed process interface serves as a minimal basis to allow for
data exchange while the concrete, complex artifact models are
defined, e.g. in a sub-project. The proposed interface is thus

an abstraction layer, which hides the local artifact models and,
thus, the local software processes.

V. INITIAL VALIDATION

Although the artifact model and the included artifact-based
process interface presented in the foregoing section are the
first steps towards an empirically grounded connection of
software processes, we need further empirical investigations
in different socio-economic contexts to test the sensitivity of
our contribution to organizational demands and cultures.

So far, however, we can provide a first validation to test the
feasibility of our contribution when applying it in different—to
some extent—theoretical contexts. This validation is steered by
the following validation question that serves as our leitmotif.

Validation Question: Does the artifact model represent a
meaningful process interface?

To investigate whether the introduced artifact model repre-
sents a meaningful process interface, we consider three cases,
which we briefly discuss in the following. Those cases are
chosen according to the scenario which we introduced in
Sect. I.

1) General Support for Agile Methods (Bootstrapping):
One main area of application considered important is the
application of our artifact model in context of agile methods.
Since the generalized artifact model is based on an empirical
investigation of artifacts in agile methods, the proposed artifact
model supports per construction agile methods. Terminology
as well as contained classes reflect agile methods and practices
[25]. Consequently, the proposed artifact model can lay the
foundation to create concrete artifact models for particular
projects, and abstract from a concrete methodology, which is
applied in a project. Therefore, the proposed process interface
provides a generic perspective to abstract from, e.g. concrete
agile practices [28] selected on a project-to-project basis.

© IEEE. This is the author's version of the work. It is posted here by permission of IEEE for your personal use. 
Not for redistribution. The definitive version was published in the conference/workshop proceedings



2) Support for Artifact Models in Requirements Engineer-
ing (Practical Application): Independent of the a chosen
process, especially distributed complex projects need to rely on
well-founded requirements. Over the last years, we developed
a series of artifact-based Requirements Engineering (RE)
approaches covering different domains of applications. Those
approaches were developed in research cooperations with,
e.g. Capgemini Technology Services and became, after the
process integration into their company-wide software process
definition, the standard for RE (see, e.g. [7]). Taking into
account that all of our RE approaches have their commonalities
in high-level requirements (e.g. business goals or a system
vision) that correspond to the Metaphor and an abstract
class Requirement (in turn, specialized to further elements
such as service or use case—depending on the application
domain for which the approach has been developed), we can
easily map the process interface with existing RE models.
Furthermore, the artifact-based RE approaches developed at
our research group can all be considered as an instantiation
of our metamodel for artifact orientation including artifacts,
tasks, and roles [5]. Thus, none of the elements provided by
the interface remains unused whereby we consider our artifact
model as a suitable process interface to be applied in artifact-
based RE approaches.

3) Support for Customer-Contractor-Interfaces (Scaling
and Heterogeneous Software Processes): The organization and
coordination of large, distributed projects is a challenge for
the project management and, therefore, one of the aspects that
should be addressed by a software process. Therefore, software
processes such as the V-Modell XT implement an interface to
couple projects by defining a set of shared quality gates to
which certain artifacts (named “Work Products”) are assigned
[4]. Our field study on the application of the V-Modell XT
[18] also investigates the effects of providing a well-defined
interface between projects. The study shows that especially the
clearness of communication benefits from such an instrument.

As an initial validation to check whether the proposed
artifact-based process interface fulfils the requirements of
coupling distributed projects that are operated using different
software processes, we provide an exemplary mapping and a
discussion in Fig. 6. In this mapping, we use the setting from
the motivation example from Fig. 1, which is based on our
experiences from [4].

As depicted in the upper part of the figure, a first project
site of a distributed project implements the V-Modell XT. The
Customer-Contractor-interface (CC-interface) defines a num-
ber of work products that are subject to exchange, e.g. planning
information (represented by the Project Plan) or Requirements.
Furthermore, the CC-interface also defines work products that
a contractor has to ship to the client, e.g. status reports or
deliveries. As depicted in the lower part of the figure, a second
site uses Scrum to operate its project. In the Scrum project,
requirements and planning data are stored in the Backlog,
which comprehends the data given by the client’s planning
data and requirements. In the project, deliverables and various
controlling data are generated, which, finally, become part of

Contract 
awarded

Iteration
scheduled (controlling) Delivery...

Project Plan

Requirements
...

Backlog/
Sprint Backlog

Backlog Item
Controlling
Data

Deliverables

Report
Document

V-
M

od
el

l
La

ye
r

Sc
ru

m
La

ye
r

i

i

i

i

i Artifact; part of the process interface

Si
te

 1
Si

te
 2

Fig. 6. Example: Two sites with different software processes are collaborating
and coupling the projects via the artifact-based process interface.

an overall project status report. Figure 6 shows an example
that also allows for answering the general questions from the
motivation. For instance, the question How can local project
status information and controlling data be synthesized into a
big picture reflecting the overall global project?s state? is easy
to answer: The status information, which is collected in the
contractor’s project and documented in the local backlog, can
be extracted and sent to the client, who integrates the data into
his own reporting and controlling systems.

A number of projects already implement the CC-interface
concept as shown in a study (cf. [18]: 13 out of 29 investigated
projects actively used the CC-interface while acting as client
in a distributed setting). The example shows that the artifact-
based process interface can be applied in such a setting while
abstracting from concrete software processes. Since the CC-
interface is a proven concept, and the artifact model for
the process interface can be seamlessly applied in such a
setting, artifact-based process interfaces meet the requirements
of abstracting from local software processes by providing a
general and integrated view on a distributed project.

VI. CONCLUSION

In this paper, we proposed a generic artifact model based on
an empirical investigation in which we conducted a mapping
study in combination with a systematic literature review to
analyze the usage of artifacts in agile methods. We presented
the artifact model as the outcome of the initial investiga-
tion and extended it with a process interface to support the
exchange of artifacts among different sites with potentially
different software processes in a distributed project setting. We
furthermore provided a first validation of our contribute w.r.t.
three cases we consider important in context of a distributed
project setting. We also discussed the integration of the artifact
model into different software processes. The validity of our

© IEEE. This is the author's version of the work. It is posted here by permission of IEEE for your personal use. 
Not for redistribution. The definitive version was published in the conference/workshop proceedings



contribution is supported as our contribution relies on the
state-of-the-art making explicit concepts implicitly referred
by a variety of available software processes and harmonizing
corresponding (artifact) concepts. This closes an existing gap
in literature where no empirical basis was available to support
the definition of a model to capture those concepts necessary
to enable management tasks among distributed projects.

A. Future Work
Our contribution is a first step towards providing a gen-

eralized perspective on the structures of (distributed) projects.
Practitioners can use our artifact model as a means to structure
their result structures to already support basic project manage-
ment tasks in agile environments, e.g. progress control. From a
researcher’s perspective, the results of the investigation lay the
foundation for further research on generalized artifact models
as a means to abstract from local software processes. To this
end, the existing artifact model needs to be refined. Initiatives
such as the work of the SEMAT group [29] or MetaME
[30], and also project management standards such as PMBoK
[31] or PRINCE2 [32] have to be considered during further
necessary investigations. We thus encourage researchers and
practitioners to critically discuss the results of the study and
to join us to further evaluate and extend the artifact model as
process interface in distributed software projects.

REFERENCES

[1] D. Šmite, N. B. Moe, and R. Torkar, “Pitfalls in Remote Team Co-
ordination: Lessons Learned from a Case Study,” in Product-Focused
Software Proces (PROFES). Springer, 2008.

[2] J. D. Herbsleb, A. Mockus, T. A. Finholt, and R. E. Grinter, “Distance,
dependencies, and delay in a global collaboration,” in Conference on
Computer Supported Cooperative Work. ACM Press, 2000.

[3] M. Nordio, H. C. Estler, B. Meyer, J. Tschannen, C. Ghezzi, and
E. D. Nitto, “How Do Distribution and Time Zones Affect Software
Development? A Case Study on Communication,” in International
Conference on Global Software Engineering (ICGSE). IEEE, 2011.

[4] Kuhrmann, M., Niebuhr, D., and Rausch, A., “Application of the V-
Modell XT - Report from A Pilot Project,” in International Software
Process Workshop (SPW), ser. Lecture Notes in Computer Science.
Springer, 2005.

[5] D. Mendez-Fernandez, B. Penzenstadler, M. Kuhrmann, and M. Broy,
“A Meta Model for Artefact-Orientation: Fundamentals and Lessons
Learned in Requirements Engineering,” in Proceedings of the 13th
International Conference on Model Driven Engineering Languages and
Systems (MODELS 2010), vol. 6395/2010. Heidelberg: Speinger Verlag,
2010, pp. 183–197.

[6] D. Mendez Fernandez, S. Wagner, K. Lochmann, A. Baumann, and
H. de Carne, “Field Study on Requirements Engineering: Investigation
of Artefacts, Project Parameters, and Execution Strategies,” Information
and Software Technology, vol. 54, no. 2, pp. 162–178, 2012.

[7] Mendez Fernandez, D., Lochmann, K., Penzenstadler, B, and Wagner,
S., “A Case Study on the Application of an Artefact-Based Requirements
Engineering Approach,” in Proceedings of the 15th International Con-
ference on Evaluation and Assessment in Software Engineering, 2011.

[8] V. R. Basili and H. D. Rombach, “Tailoring the Software Process to
Project Goals and Environments,” in ICSE ’87: Proceedings of the 9th
international conference on Software Engineering. IEEE Computer
Society Press, 1987, pp. 345–357.

[9] O. Pedreira, M. Piattini, M. Luaces, and N. Brisaboa, “A Systematic
Review of Software Process Tailoring,” ACM SIGSOFT Software Engi-
neering Notes, vol. 32, no. 3, 2007.

[10] G. Kalus and M. Kuhrmann, “Criteria for Software Process Tailoring:
A Systematic Review,” in Proceedings of International Conference on
Software and Systems Process (ICSSP 2013). ACM Press, 2013, pp.
171–180.

[11] S. Brinkkemper, “Method Engineering: Engieering of Information Sys-
tems Development Methods and Tools,” Information and Software
Technology, 1996.

[12] A. ter Hofstede and T. Verhoef, “On the Feasibility of Situational Method
Engineering,” Information Systems, 1997.

[13] Kuhrmann, M., Mendez Fernandez, D., and Tiessler, M., “A Mapping
Study on Method Engineering - First Results,” in Proceedings of the
17th Evaluation and Assessment in Software Engineering (EASE 2013).
ACM Press, 2013.

[14] OMG, “Software & Systems Process Engineering Metamodel Specifi-
cation (SPEM) Version 2.0,” Object Management Group, Tech. Rep.,
2008.

[15] I. Ruiz-Rube, J. M. Dodero, M. Palomo-Duarte, M. Ruiz, and D. Gawn,
“Uses and Applications of SPEM Process Models. A Systematic Map-
ping Study,” Journal of Software Maintenance and Evolution: Research
and Practice, vol. 1, no. 32, 2012.

[16] Kuhrmann, M., Mendez Fernandez, D., and Steenweg, R., “Systematic
Software Process Development – Where do we stand today?” in Pro-
ceedings of International Conference on Software and System Process,
2013.

[17] Joint Technical Committee ISO/IEC JTC 1, Subcommittee SC 7,
“Software engineering – metamodel for development methodologies,”
International Organization for Standardization, Tech. Rep. ISO/IEC
24744:2007, 2007.

[18] M. Kuhrmann, C. Lange, and A. Schnackenburg, “A survey on the
application of the v-modell xt in german government agencies,” in
Proceedings of the 18th Conference on European System & Software
Process Improvement and Innovation (to appear), 2011.

[19] H. Holz and F. Maurer, “Knowledge Management Support for Dis-
tributed Agile Software Processes,” in Advances in Learning Software
Organizations. Springer-Verlag, 2003.

[20] M. Paasivaara and C. Lassenius, “Collaboration practices in global
inter-organizational software development projects,” Software Process:
Improvement and Practice, vol. 8, no. 4, pp. 183–199, 2004.

[21] H.-C. Estler, M. Nordio, C. Furia, B. Meyer, and J. Schneider, “Agile
vs. structured distributed software development: A case study,” in Pro-
ceedings of International Conference on Global Software Engineering,
2012.

[22] J. D. Herbsleb and A. Mockus, “An empirical study of speed and
communication in globally distributed software development,” IEEE
Transactions on Software Engineering, vol. 29, no. 6, pp. 481–494, Jun.
2003.

[23] M. R. Thissen, J. M. Page, M. C. Bharathi, and T. L. Austin, “Commu-
nication tools for distributed software development teams,” in the 2007
ACM SIGMIS CPR conference. ACM Press, 2007, pp. 28–35.

[24] P. Tell and M. Babar, “Activity Theory applied to Global Software En-
gineering: Theoretical Foundations and Implications for Tool Builders,”
in Proceedings of the 7th International Conference on Global Software
Engineering, 2012, pp. 21–30.

[25] Gröber, M., “Investigation of the Usage of Artifacts in Agile Methods,”
Master’s thesis, Technische Universität München, 2013. [Online].
Available: http://www4.in.tum.de/ kuhrmann/studworks/mg-thesis.pdf

[26] Peterson, K. and Feldt, R. and Mujtaba, S. and Mattsson, M., “Sys-
tematic mapping studies in software engineering,” in Proceedings of the
12th international conference on Evaluation and Assessment in Software
Engineering, 2008, pp. 68–77.

[27] Portillo-Rodrı́guez, J., Vizcaı́no, A., Piattini, M., and Beecham, S.,
“Tools used in Global Software Engineering: A systematic mapping
review,” Information and Software Technology, 2012.

[28] J. Abrantes and G. Travassos, “Common agile practices in software pro-
cesses,” in International Symposium on Empirical Software Engineering
and Measurement, 2011, pp. 355 –358.

[29] Jacobson, I., Ng, P.-W., McMahon, P. E., Spence, I., and Lidman, S.,
The Essence of Software Engineering: Applying the SEMAT Kernel.
Addison Wesley, 2013.

[30] G. Engels and S. Sauer, “Graph transformations and model-driven
engineering,” G. Engels, C. Lewerentz, W. Schäfer, A. Schürr, and
B. Westfechtel, Eds. Berlin, Heidelberg: Springer-Verlag, 2010, ch. A
meta-method for defining software engineering methods, pp. 411–440.

[31] Project Management Institute, A Guide to the Project Management Body
of Knowledge, 4th ed. Project Management Institute, 2009.

[32] Managing Successful Projects with PRINCE 2. The Stationery Office
Ltd., 2009.

© IEEE. This is the author's version of the work. It is posted here by permission of IEEE for your personal use. 
Not for redistribution. The definitive version was published in the conference/workshop proceedings




