Automating Software Architecture Exploration with
M2Aspects

Ingolf H. Kriiger, Gunny Lee

Department of Computer Science

University of California, San Diego
La Jolla, CA 92093-0404, USA

{ikrueger,gulee}@ucsd.edu

ABSTRACT

An important step in the development of large-scale dis-
tributed reactive systems is the design of effective system
architectures. The early availability of prototypes facilitates
the selection of the most effective architecture for a given sit-
uation. Although it is very beneficial to evaluate and com-
pare architectures for functionality and quality attributes
before implementing or changing the entire system, this step
is often skipped due to the required time and effort. In this
paper we present on the status of our tool chain to automate
our approach of efficient prototype creation for scenario-
based software specifications using aspect-oriented program-
ming techniques [10]. It transforms interaction-based soft-
ware specifications (scenarios) into AspectJ programs. Cen-
tral part of this tool chain is M2Aspects, which implements
the methodological transition from scenarios to aspect im-
plementations. It also handles architectural configurations;
M2Aspects maps of the same set of scenarios to different
candidate architectures. This significantly reduces the ef-
fort required to explore architectural alternatives. We ex-
plain our tool-chain using the Center TRACON Automation
System as a running example.

Categories and Subject Descriptors

D.2.1 [Software Engineering]: Requirements/Specifica-
tions; D.2.2 [Software Engineering]: Design Tools and
Techniques; D.2.11 [Software Engineering]: Software Ar-
chitectures

General Terms
Algorithms, Design

Keywords

Scenarios, Services, Distributed Reactive Systems, Roles,
Components, Software Architecture Exploration, Architec-
ture Comparison, Aspects, Aspect-Oriented Programming,
AspectJ

Permission to make digital or hard copies of all or part of thaknfor
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage aatidbpies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguiees prior specific
permission and/or a fee.

SCESM’'06May 27, 2006, Shanghai, China.

Copyright 2006 ACM 1-59593-085-X/06/0005$5.00.

Michael Meisinger
Institut fir Informatik
Technische Universitat Minchen
Boltzmannstr. 3, 85748 Garching, Germany

meisinge@in.tum.de

1. INTRODUCTION

1.1 Architecture Exploration

One of the difficulties in designing complex distributed
systems is finding a suitable system architecture that sup-
ports the system’s goals while being effective in fulfilling
non-functional requirements, such as Quality-of-Service or
performance concerns. Commonly, different candidate ar-
chitectures need to be considered and compared to find the
most fitting one. Architecture exploration needs to hap-
pen early in the development of a system, without delaying
model refinement and implementation too much. Further-
more, lack of time and financial resources require effective
prototyping and architecture exploration strategies.

Important questions to be addressed when designing ar-
chitectures include, for instance, how to design the compo-
nents and their interfaces, how to connect and distribute
them i.e. how to design the communication topology, and
how to replicate components for most efficient operation on
a given middleware. Answering these questions requires con-
sideration and exploration of different alternative architec-
ture candidates. Building prototypes and running simula-
tions complements and provides input for architecture eval-
uation techniques based on reviews and estimation [1].

Despite the importance of prototyping and architecture
exploration, it often does not get the attention and resources
that would be necessary. The reason often lies in the ab-
sence of effective prototyping and architecture exploration
solutions.

1.2 From Scenarios to Prototypes

In this paper, we present an automated approach and tool
solution to generate executable prototypes of reactive soft-
ware systems; we use these prototypes to explore and evalu-
ate architectures. One important feature of our approach is
the possibility to generate prototypes for different candidate
architectures based on the same specification model. This
has a negligible overhead for different but comparable archi-
tectures and thus makes the exploration step very efficient
and quick.

Our solution is based on software specification models in
form of scenarios. Each scenario captures a different func-
tion or service of the system. Scenarios capture the inter-
actions between independent interacting entities. We call
these entities roles, because they fulfill certain logical func-
tions in the system. The concept of capturing scenarios as
interactions between roles allows us to abstract from target
architectures.

Additionally, we capture target architectures composed
out of independent components. These architectures real-
ize the functionality that is specified within the scenarios
and also take into account non-functional requirements and
deployment infrastructures. Components have defined in-
terfaces and behavioral models that are described by state
machines.

In order to keep the logical scenario model and the tar-
get architecture model synchronized, we also capture the
mapping in between. We map roles to components in the
target architecture — we say a component of a certain type
“implements” a number of roles. Doing so will result in
a component that exposes an interface that is a combina-
tion of the different role interfaces it implements. Thereby,
our architecture model is a true refinement of our scenario
model. Fig. 1 depicts our approach.

Scenario Target
Model Mapping Architecture
(logical) Model
captures: captures: captures:
« Roles (actors) « Components « Components
« Interactions implementing roles s Interfaces
(messages) « Replication of « Component
« Local activities components connections
« Role connections ¢ Infrastructure

Figure 1: Scenarios and Architectures

For generating prototypes, we use aspect-oriented pro-
gramming (AOP) languages and techniques [6]. We make
use of the “separation of concerns” feature that characterizes
AQP. Different concerns are separated into different aspects.
Such aspects usually span multiple entities (objects, classes)
in the source code. The task of an aspect weaver is to col-
lect all the different aspects and weave them at the correct
locations into the base source code.

We interpret scenarios as independent concerns and thus
express them in the form of separate aspects. As mentioned,
aspects need a base source could where they can be applied
to (or woven into). Our base source code are classes for the
roles and components in our model. The elegance of our ap-
proach is that the aspect weaver automatically handles the
tedious task of combining all the different aspects with the
role classes. The weaver creates implementations for each
of the roles, which thereby form state machine implementa-
tions. Build files contain the information about the actual
mapping of roles to components and thereby also determine
the different architecture variants of the prototypes. Fig. 2
depicts the translation step.

The advantage of this approach over a generation of state
machines (see [8, 12]) lies in the generation of aspect-oriented
source code: Developers can freely modify the generated
code, for instance by inserting logging and performance mea-
surement statements. Different architectures can be ex-
plored by simply changing build files without regenerating
the code. This keeps any modified source code intact.

1.3 Contributions and Outline

The contribution of this paper is the presentation of re-
quirements and an architecture of tool support for the au-
tomation of the translation procedure from scenarios to as-
pect-oriented implementations of prototypes. In Sect. 2, we
introduce the Center Tracon Automation System (CTAS) as

Scenario Target
Model Mapping Architecture
(logical) Model

[[[
Aspects & Canflgumtlan Component
Files
Role Classes Classes
(mul. sets)

Aspect Weaving
Architecture Architecture
Prototype Prototype
#1 #n

Figure 2: Translation to Aspects

our running example and show its scenario and architecture
model. In Sect. 3, we explain the steps that are necessary to
bridge the gap between model and implementation; we list
requirements that we identified as important for our tool so-
lution. We describe our tool solution and the current status
of the implementation. We discuss it in Sect. 4 and show
what is left to be done. In Sect. 5, we present related work.
Sect. 6 contains conclusions and an outlook.

This paper explains the automation of our scenario to as-
pects approach using our tool chain with the tool M2Aspects.
The underlying methodology and process is explained in de-
tail in our paper [10]. Please refer to [7, 11, 9, 14, 13] for
more details and applications of our service-oriented model
and its formal foundations.

2. CTAS SCENARIOS & ARCHITECTURES

To demonstrate our automated procedure to generate ar-
chitecture exploration prototypes, we use the Center TRA-
CON Automation System (CTAS), a case study from the
air-traffic control domain, as an example of a large-scale
distributed system [18]. CTAS is a set of tools and pro-
cesses designed to help air traffic controllers manage the
increasingly complex air traffic flows at large airports. An
important part of this system is the distribution of weather
updates to interested clients; this is the part we concentrate
on in our case study.

The requirements [18] identify the communications man-
ager CM as the main component of the CTAS weather up-
date system. Other processes, including route analysis (RA),
and the plan-view GUI (PGUI), are clients to CM. Clients
are distinguished as aware or unaware depending on whether
they participate in the weather update process. The CTAS
requirements [18] explain how the clients initialize with CM,
and how CM subsequently relays the latest weather infor-
mation to all aware clients.

For this paper, we model and explore various architectures
and communication setups for the weather update function-
ality of the CTAS system as a refinement of the structure
given in the CTAS requirements [18]. We model the relevant
scenarios as MSCs, as described in [15, 10].

2.1 CTAS Scenarios as Interaction Specifica-
tions
Analyzing the requirements leads to a number of scenarios
which share a number of roles. The roles that are relevant
for our example are AwareClient (weather-aware clients),

Manager (drives the update process), Broadcaster (broad-
casts messages to a group of clients) and Arbiter (collects
responses from groups of clients).

We specify the scenarios of the CTAS weather update sys-
tem using a notation based on Message Sequence Charts
(MSC) [3, 7, 19]. An MSC defines the relevant sequences
of messages (represented by labeled arrows) among the in-
teracting roles. Roles are represented as vertical axes in
our MSC notation. Fig. 3 shows the specification of sce-
narios as interaction patterns. The MSC syntax we use
should be fairly self-explanatory, especially to readers fa-
miliar with UML2 [19]. In particular, we support labeled
boxes in our MSCs indicating alternatives and conditional
repetitions (bounded and unbounded loops). Labeled boxes
on an axis indicate actions, such as local computations.

msc client get new weather msc CTAS_Update

Manager AwareClient /1 AwareClient
CTAS_GET_NEW_WTHR() ‘ — | ‘ ‘] [‘ J
Latl|
Get New Weather Jjoin
alt updateCM()

S
uccess/CTA&WTHRJ(ECEIVED
(GET_SUCCEEDED)

CTAS_WTHR_RECEIVED client use weather()
(GET_FAILED)

== | —

Figure 3: CTAS Scenarios as MSCs

We deviate from the standard MSCs in a few points,
see [11, 13]. First, we represent roles rather than a class,
object, or component with an axis in the MSC. As explained
above, we perform the mapping of roles to components in
a later stage in our development process, as an explicit de-
sign step. Second, we use an operator called join [7, 11] to
easily compose overlapping scenarios. The join operator will
synchronize two scenarios on their shared messages, but oth-
erwise interleave the scenarios. Join is a powerful operator
for scenario composition and isolation of common behavior.

For reasons of brevity, we omit the specification and de-
scription of all scenarios for the CTAS weather update cycle
in this paper. The full set of specifications is available at [15].

2.2 Architecture Definition

The next step after collecting the scenarios is to define a
suitable component architecture that supports them. The
architecture must observe the dependencies of the roles,
and take further constraints given by the requirements, for
instance about technical infrastructures or non-functional
properties, into account. Our goal is to explore multiple
such architecture alternatives to find out the one that sup-
port the scenarios most optimally in the given situation. For
our architecture explorations, we compare architectures with
different component configurations. We compare alterna-
tives where components differ by the roles they implement,
by their replication and their mutual connection.

We specify component architectures precisely in an Archi-
tecture Definition Language — the Service-ADL — that we
introduced in [13, 14]. It captures services, roles and com-
ponents and builds the input for the automated creation of
AspectJ architecture exploration prototypes. Fig. 4 shows
a shortened example of such an architecture definition. We
omitted the declaration and descriptive parts. In the dia-
gram, we see three components implementing the four roles

that we identified above. Component CTASMgr in this case
actually implements two roles, namely Manager and Broad-
caster.

component configuration CTAS2

Figure 4: CTAS Architecture Candidate

2.3 From Architectures to Prototypes

In [10] we explained in detail our approach to translate
scenario-based system specification into aspect-oriented pro-
grams [6]. Here, we only give a condensed summary.

We make use of AOP’s separation of concerns capabili-
ties on a programming language level and of the available
tools to create executable programs. We translate the ele-
ments of our scenario-based model into programming lan-
guage constructs and exploit the strong similarities in both
model and implementation. There is, however, an unavoid-
able conceptual gap between a specification model and the
implementation of a system, no matter how well both sides
fit together. We explain some of the challenges and problems
caused thereby in [10] and in Sect. 3, below.

We chose AspectJ [5, 20] as target language for our gen-
erated prototypes. AspectJ is a general-purpose aspect-
oriented extension to the Java programming language; its
language constructs facilitate clean modularization of sep-
arate concerns. Aspect] provides a compiler that weaves
aspect code at well-specified locations into Java classes.

We translate our scenario model into executable code us-
ing AspectJ’s join points, pointcuts, advice, aspects, and in-
tertype declarations [20]. Examples of join points are method
calls, method executions, object instantiations, constructor
executions, field references and handler executions. Point-
cuts are used for selecting these join points; an example of a
pointcut is “all invocations of method xyz”. Advice defines
code that executes before, after or around a pointcut. An
aspect can be the combination of a pointcut and the corre-
sponding advice. In other words, using pointcuts, an aspect
can specify at what points in the execution — or under what
circumstances — a particular piece of code, represented as
an advice, should be called. An intertype declaration can
be used to specify a set of members (attributes, methods)
that should be present in multiple classes. We use pointcuts
and advice to translate patterns of interactions that make up
a scenario into an aspect and we use intertype declarations
to implement associations between roles and components.

Fig. 5 gives an overview over the translation scheme. Roles,
interaction scenarios (services), components, together with
connections and mappings, are translated into their AspectJ
counterparts according to [10]. Our algorithm creates a
number of result files which are input for the AspectJ com-
piler and eventually will result in executable prototypes, see
also Fig. 2. For performance evaluation, we measure abso-
lute elapsed time as well as logical communication latency
using the notion of logical clocks. Evaluating absolute times
as well as relative latency values helps to abstract from the
communication infrastructures used. We select architecture

configurations that are optimized in terms of communica-
tion overhead and that perform similarly well in concrete
deployments on specific messaging infrastructures.

Roles Scenarios Role Domain Model
. &3] msc servicel

Scenario requesh]
Model

i\ Classes Aspects Aspect

(Component Configuration Mapping
Target
Architecture
Model

Classes

N

‘ Weave Aspects Into Classes

Architecture

Implementation
Prototype

Figure 5: Translation artifacts

3. AUTOMATING ASPECT TRANSLATION

In this section, we will describe a tool chain we are devel-
oping for automatically generating customized AspectJ im-
plementations from scenario specifications. First, we list the
main requirements that we identified as important to sup-
port our methodological approach. We will then describe
the tool chain and M2Aspects as a piece in it to generate
executables from scenarios.

3.1 Requirements

We identified five main requirements for tool support to
translate service-oriented specifications into executable As-
pectJ implementations, which we explain and discuss in de-
tail afterwards:

(R1) Efficient modeling support

(R2) Flexible target architecture configuration
(R3) Directly executable generated code

(R4) Robust and flexible interfaces

(R5) Leverage AspectJ features

3.1.1 (R1) Efficient modeling support

The implementation architecture generated by the tool
chain should efficiently and accurately reflect the model de-
scribed in the specification. In particular, MSC operators
such as alt, loop, par, and join should be accurately repre-
sented in the resulting Java implementation.

3.1.2 (R2) Flexible target architecture configuration

The tool chain should allow system designers to selec-
tively specify architecture configurations to translate into
implementation. Generating multiple prototypes of differ-
ent architecture configurations this way opens the door for
comparative performance evaluation. By constructing mul-
tiple concrete architectures, system designers can evaluate
the performance of each of these architectures and choose
one that best fit their needs. The primary aim for the tool
chain is to allow this process to be relatively quick and sim-
ple.

3.1.3 (R3) Directly executable generated code

Requirement R2 leads directly into R3: the tool chain
should automatically generate directly executable code. This
requires the model to be deterministic and causal. Errors
in consistency should therefore be checked and reported. It
also requires precision at the specification level — message
and variable names must be consistent throughout the spec-
ification, for instance. Unintentional inconsistencies are dif-
ficult if not impossible to detect, but obvious inconsistencies
should be detected and alerted to the user. Lastly, where
multiple implementation options arise due to ambiguity in
the model or a lack of a clear-cut translation, the tool may
choose one at default or at random (depending on the situ-
ation).

An alternative to generating directly executable code is
to produce code skeletons, leaving out parts where multi-
ple implementation options arise for the user to manually
implement. Although this would increase flexibility in the
translation, we opted not to choose this route due to the
likelihood of requiring redundant manual effort and thus
increasing turnaround time. For example, if the designer
chooses to generate a number of different prototypes using
different architecture configurations, it is likely that parts
of these configurations will need the same ambiguity resolu-
tions. We conjecture that it is more important for designers
to be able to quickly produce a number of prototypes for
comparative evaluation without being encumbered by such
resolution efforts.

3.1.4 (R4) Robust and flexible interfaces

Robustness and flexibility are important concerns in our
tool chain. Representation formats for scenarios and ar-
chitecture configurations should be adequately expressive,
while at the same time being manageable to systematically
process. Also, parsing and processing these specifications
should be abstracted away as much as possible from the rest
of the tool chain in order to facilitate future changes to the
specification format. This is crucial given the experimental
stage of the tool chain. It is likely that modifications to
specification format will be required as unforeseen require-
ments arise. The tool chain should be designed such that
these changes do not cause a "ripple-effect” in the rest of
the implementation of the tool chain.

3.1.5 (R5) Leverage AspectJ features

Since scenarios emerge as system-wide aspects in both
the logical and implementation models, M2Aspects should
leverage AspectJ features when generating implementation
of services. The tool chain should also support generating
AspectJ build files in order to support the composition of
services with architecture configurations.

3.2 Atool chain for prototype generation

We designed a tool chain as a solution to fulfill the above
listed requirements. We hereby make use of parts of the
tool chain for generating executable RT CORBA compo-
nents [12]. The starting point for both approaches is M2Code,
a modeling tool for interaction specifications. M2Code uses
Microsoft Visio as graphical front-end for editing MSCs and
HMSCs to model service specifications. M2Code captures
the modeled MSCs from Visio in form of an integrated inter-
action-based data model. M2Code saves this MSC model as

an XML file, which in turn is the input for the M2Aspects
generator for AspectJ code.

M2Aspects is the component implementing the transla-
tion procedure. In addition to the scenario specifications in
form of MSCs, it also requires the specification of target ar-
chitecture configurations in form of Service-ADL files. Once
invoked, M2Aspects creates all Java classes, aspects and As-
pectJ build files required for a compilable and runnable pro-
totype. M2Aspects can be invoked for different architecture
configurations using the same service repository, by using
different architecture configuration files as input. This sup-
ports a comparative exploration of alternative component
architectures that provide the same set of services to the
environment. Fig. 6 shows the aspect generation tool chain
and an overview over necessary input and created output
artifacts.

M2Aspects

)
AspectJ
javac
Prototype

Figure 6: Aspect Generation Tool Chain

The results of M2Aspect’s model translation, Java classes,
aspect definitions and build files, are the input for the As-
pectJ compiler that produces the executable prototype by
aspect weaving and compilation.

3.3 M2Aspects Architecture and Design

The functioning of M2Aspects can be described in five
steps. In step 1, XML documents representing scenario spec-
ifications and architecture configurations are passed as in-
put to M2Aspects. These XML documents are then parsed
and translated into Java classes and interfaces in step 2 us-
ing the Java Architecture for XML Binding (JAXB) tech-
nology [4]. The architecture configuration handler (in step
3) processes these generated Java files and interfaces and
generates the appropriate classes, aspects and build files to
implement the architecture configuration. Finally, the As-
pect Generator translates the scenarios into AspectJ imple-
mentations to be weaved into the architecture configuration
to form a complete, runnable prototype. Fig. 7 shows an
overview of M2Aspects, the necessary input files, and the
generated output artifacts.

We designed and developed M2Aspects with the afore-
mentioned requirements in mind. We now discuss how our
implementation aims to address these requirements.

1a. Service R itory 1b. Archif C

<L

M2Aspects

Graphical/Console User Interface ‘

2 XML
3. Architecture
Parser Configuration 4. Aspect I::>
(generated Generator

by JAXB) Handler

5. Generated
Aspect files

Consistency and Error Checking ‘

Figure 7: Overview of M2Aspects

3.3.1 (R1) Efficient modeling support

All variables and constants from the specification are as-
signed a type and stored in a symbol table. This allows the
tool to check for type consistency as well as for proper use
of variables. Message equivalence checking for the join op-
erator is implemented using the unification algorithm [17],
leveraging the type system to bind arguments to their cor-
rect types and check for compatibility. MSC operators are
translated using native Java programming constructs such
as while, if, and simple booleans. For example, the alt oper-
ator is implemented as an if-else block and the loop operator
is implemented as a while block. The join operator, which is
a little more complicated, uses boolean guards for synchro-
nization of messages. See [10] for a detailed explanation on
translating MSC operators to Java implementations.

One area where we make shortcuts in the translation of
MSC operators is with the par operator. Although techni-
cally, the par operator indicates that its elements should be
run in parallel, in most cases sequentially executing the ele-
ments is adequate and within the semantic correctness of the
scenario. We therefore implement par this way, randomly
choosing an order, and require the user to manually trans-
late par in the case that true parallel execution is necessary.

3.3.2 (R2) Flexible target architecture configuration

The feature of selecting architecture configurations for
code generation is achieved through the Architecture Config-
uration Handler component (shown in Fig. 7). This compo-
nent allows system designers to selectively specify different
architecture configurations to process and generate proto-
type implementations for. After specifying an architecture
configuration, the Architecture Configuration Handler will
generate all role classes, build files, and component classes
necessary for the implementation of the architecture. The
Aspect Generator component will then generate AspectJ
code implementing the services to be weaved in to the gen-
erated architecture to form a complete runnable system.

3.3.3 (R3) Directly executable generated code

M2Aspects checks for both syntactic and semantic errors
in the model at every step of its execution, from the parsing
of service and architecture configuration specifications to the
generation of implementation infrastructures. Examples of
syntactic errors include incorrect XML encodings of specifi-

cations or using undefined variables and methods. Examples
of semantic errors include joining services that do not have
a common interaction or using the alt operator with only
one element. All errors are logged and reported to the user

3.3.4 (R4) Robust and flexible interfaces

M2Aspects leverages JAXB to parse XML representations
for service and architecture configuration specifications. A
schema is first used to specify the format of XML docu-
ments encoding these specifications. The schema is then
given as input to the JAXB binding compiler, which gener-
ates a JAXB binding framework consisting of a package of
Java classes and interfaces that reflect the rules defined in
the schema. XML documents encoding services and archi-
tecture configurations can then be unmarshalled into Java
content trees using this framework.

This approach has two key benefits. First, it allows the
Architecture Configuration Handler and Aspect Generator
components (shown in Fig. 7) to work with schema-compli-
ant XML data represented as Java objects, achieving a clear
separation of concerns from parsing the XML documents
with the code generator logic. Second, it allows one to
change the way service and architecture configuration spec-
ifications are represented in XML without modifying the
parser, since the parser is automatically generated.

M2Aspects also employs symbol tables and scope systems
to produce correct implementation code.

3.3.5 (R5) Leverage Aspect] features

M2Aspects implements scenarios in terms of an aspect
with the help of pointcuts and advice. The next operation
or interaction within the service is implemented as an ad-
vice for the pointcut defined for the current interaction. A
series of these definitions allows for the coordination of the
interactions in the implementation.

In Fig. 8, we show how an MSC with simple sequential or-
dering of interactions is translated to an aspect. We identify
pointcuts for the occurrences of the method (interaction)
and define advice for this pointcut. For this example, we
define a pointcut called Interaction m1(B b) which captures
the method call m1(String) for the targets of type role B. We
define an after advice for this pointcut which executes after
the method call. The advice defines the call of the method
m2() of role A. Thus, the coordination of the interactions
for this MSC is achieved with the help of the aspects defined
using pointcuts and advice.

msc BasicService public aspect BasicService{
A B

I e I

m1(Stri aram)
e p > after (B b) : Interaction_m1(b) {
m2() A a= getARole();
N am();

¥
. Il

pointcut Interaction_m1(B b):
target(b) && (call(void m1(String)));

Figure 8: Implementation of a basic interaction

4. STATUS AND EXPERIENCES

The current state of M2Aspects supports the generation
of AspectJ code to implement scenarios, but not the gener-
ation of architecture configuration entities such as role and

component classes and build files. These files currently re-
quire manual effort to create. The tool is executed in the
Eclipse environment using an Ant build file. We are cur-
rently working on creating a user interface to make the tool
more interactive.

The aspect generator supports the translation of all MSC
operators including alt, par, ref, loop and join. It employs
the composite pattern to support nested operators, such as
an alt embedded in another alt. The translation of all oper-
ators has been tested using an automotive case study, and
preliminary evaluation shows that it can handle most uses of
MSC operators with an exception for the more sophisticated
edge cases. A particular weak point with the tool at its cur-
rent stage is the translation of the join operator. Although
it can translate simple uses of join, more sophisticated uses
such as nested joins are beyond what M2Aspects can cur-
rently support. Improving the join translation is also in our
future work plan.

As an example of a generated service implementation, we
ran M2Aspects on the CTAS Client_Get_New_Weather sce-
nario shown previously in Fig. 3. The generated output for
this service is shown in Fig. 9.

l,"k
* Generated Aspect
pliblir: aspect CTASGetMNew Weather{
pointent Interaction CTAS_Get_Mew_Weather(){ AwareTlient

awareclient): target(awareclient) && (call{ void
AwareClient CTAS_Get_New_Weather() 1);

after(AwareCllent awareclient): Interaction CTAS_Get_INew_Weather()
(awareclient) {
awareclient. GetMNewWeather();

]

pointent Interaction_GetMewWeather(Aware Client awareclient):
target(awareclient) && (call{ vold
AwareClient GetNewWeather()));

after{AwareClient awareclient): Interaction Getl¥ewWeather{
awareclient) {
iffsuccess){
Manager manager = awareclient gethanagerRole();
manager.CTAS Weather Recelved(manager.getGet_sucess());

else |
Manager manager = awareclient gethlanazerRole();
manager.CTAS_Weather Recelved(manager.getGet_fatl());
]
1
)

Figure 9: Translated CTAS Service

5. DISCUSSION AND RELATED WORK

In our approach, we separate a system architecture into
logical and implementation models. The logical model con-
tains the scenario definitions based on interactions. The
implementation model contains the target component archi-
tecture. Thus, our approach is related to the Model-Driven
Architecture (MDA) [16] and architecture-centric software
development (ACD) [19]. In contrast to MDA and ACD,
however, we consider scenarios (services) and their defining
interaction patterns as first-class modeling elements of both
the abstract and the concrete models. Furthermore, we see
the implementation model as strict refinement of the logical
model and require consistency of the mapping. Our models
make use of MSCs as notation and are independent from
any programming language constructs.

We see scenarios as aspects in the sense of AOP [6] at the
modeling level, by focusing on inter-component interaction
patterns. In Aspect-Oriented Modeling [2], the cross-cutting
concerns are captured as design aspects, while our approach
models these concerns as scenarios.

We systematically translate our partial interaction specifi-
cations in form of MSCs into AspectJ code and thereby cre-
ate an aspect for each scenario. At first sight this indicates
a major limitation of this approach: the final code emerges
only from the weaving of all classes containing structural
information and all aspects capturing role configurations,
interactions, and local actions; the complete picture of the
behaviors of each individual component is only contained in
the resulting Java bytecode. Clearly, this prevents easy re-
finement on the component level. Recall, however, that we
set out to develop our approach for efficient and effective
architecture exploration, where a lot depends on the cross-
cutting interaction rather than on the detailed, fine-grained
behavior of individual components, which can be developed
after settling on one component configuration. We see our
approach most effective for exploring different choices on the
architectural level; the scenarios as captured for the archi-
tecture exploration can, of course, still inform the imple-
mentation of the final deployment architecture.

6. CONCLUSIONS AND OUTLOOK

Thorough exploration of architectural alternatives is par-
ticularly important for complex distributed and reactive sys-
tems. However, tight coupling between the domain logic
and the implementation infrastructure, as well as prohibitive
costs for building prototypes needed to evaluate multiple ar-
chitectures often are stumbling blocks for architecture explo-
ration.

In this paper we presented a tool solution to automate our
approach to define software architectures and explore archi-
tecture alternatives using interaction-based scenario models
and their translation into AspectJ aspects. Scenarios are
partial interaction specifications of systems. We have decou-
pled the system’s scenarios from the many target architec-
tures that can implement them. We presented an AspectJ
code generation tool chain around the tool M2Aspects that
implements the translation algorithm and generates exe-
cutable prototypes. Providing automation and tool support
is an important step in further evaluating our approach.

We presented on the current status of the implementa-
tion, listed requirements that influenced our solution and
described some implementation challenges. Future work will
include finishing automation of the architecture configura-
tion, closing the gaps in the tool chain to eliminate any
manual interaction, and providing translations for further
and more expressive model elements and operators.

7. ACKNOWLEDGMENTS

Our work was partially supported by the UC Discovery
Grant and the Industry-University Cooperative Research
Program, as well as by funds from the California Institute for
Telecommunications and Information Technology (Calit2).
Further funds were provided by the Deutsche Forschungsge-
meinschaft (DFG) within the project InServe. We are grate-
ful to the anonymous reviewers for insightful comments.

8. REFERENCES

(1] P. Clements, R. Kazman, and M. Klein. Evaluating
Software Architectures — Methods and Case Studies.
Addison-Wesley, 2002.

[2] R. France, G. Georg, and I. Ray. Supporting
Multi-Dimensional Separation of Design Concerns. In OSD
Workshop on AOM: Aspect-Oriented Modeling with UML,
2003.

[3] ITU-TS. Recommendation Z.120 : Message Sequence
Chart (MSC). Geneva, 1996.

[4] JAXB. http://java.sun.com/webservices/jaxb/.

[5] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold. An overview of AspectJ. In
Proceedings of the 15th European Conference on
Object-Oriented Programming, volume 2072 of LNCS,
pages 327-353. Springer Verlag, 2001.

[6] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,

C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect Oriented

Programming. Technical report, Xerox Corporation, 1997.

I. Kriiger. Distributed System Design with Message

Sequence Charts. PhD thesis, Technische Universitét

Miinchen, 2000.

I. Kriiger, R. Grosu, P. Scholz, and M. Broy. From MSCs

to Statecharts. In F. J. Rammig, editor, Distributed and

Parallel Embedded Systems, pages 61-71. Kluwer Academic

Publishers, 1999.

I. Kriiger, R. Mathew, and M. Meisinger. From Scenarios

to Aspects: Exploring Product Lines. In Proceedings of the

ICSE 2005 Workshop on Scenarios and State Machines

(SCESM), 2005.

[10] I. Kriiger, R. Mathew, and M. Meisinger. Efficient
Exploration of Service-Oriented Architectures using
Aspects. In Proceedings of the 28th International
Conference on Software Engineering (ICSE), 2006.

[11] L. H. Kriiger. Capturing Overlapping, Triggered, and
Preemptive Collaborations Using MSCs. In M. Pezze,
editor, FASE 2003, volume 2621 of LNCS, pages 387-402.
Springer Verlag, 2003.

[12] I. H. Kriiger, J. Ahluwalia, D. Gupta, R. Mathew,

P. Moorthy, W. Phillips, and S. Rittmann. Towards a
Process and Tool-Chain for Service-Oriented Automotive
Software Engineering. In Proceedings of the ICSE 200/
Workshop on Software Engineering for Automotive
Systems (SEAS), 2004.

[13] I. H. Kriiger and R. Mathew. Systematic Development and
Exploration of Service-Oriented Software Architectures. In
Proceedings of the 4th Working IEEE/IFIP Conference on
Software Architecture (WICSA), pages 177-187. IEEE,
2004.

[14] R. Mathew. Systematic Definition, Implementation and
Evaluation of Service-Oriented Software. Master’s thesis,
University of California, San Diego, 2004.

[15] R. Mathew and I. H. Kriiger. Full Service Specification for
CTAS System, 2006. http://sosa.ucsd.edu/
publications/icse2006/CTASServiceSpecification.pdf.

[16] OMG Model Driven Architecture.
http://www.omg.org/mda.

[17] J. A. Robinson. Computational Logic: The Unification
Computation. In Proceedings of the 6th International
Conference on Machine Intelligence, 1971.

[18] SCSEM 2006 Case Study. 5th Int. Workshop on Scenarios
and State Machines: Models, Algorithms, and Tools. CTAS
Case study Overview, Requirements, 2006. http:
//ise.gmu.edu/scesm06/case-study-2/requirements.pdf.

[19] UML 2.0. http://www.omg.org/uml.

[20] Xerox Corp., Palo Alto Research Center Inc. The AspectJ
Programming Guide. http:
//www.eclipse.org/aspectj/doc/released/progguide,
2004.

[7

B

9

