Visual Process Model Design using Domain-specific Languages

Marco Kuhrmann Georg Kalus

Eugen Wachtel =~ Manfred Broy

Technische Universitit Miinchen
Institut fiir Informatik — Software & Systems Engineering

{kuhrmann,kalus,wachtel,broy }@in.tum.de

Abstract

Process models can be seen as constructive and structured guid-
ance for the organization of a projects’ daily work. Those models
have to reflect the diversity of software & systems development
projects. The need for variability by tailoring processes to a par-
ticular project’s circumstances makes design of process models a
complex undertaking. Process engineers need comprehensive sup-
port to model processes, validate consistency, to prepare enactment
and at the same time to design in a visual manner to communi-
cate with process stakeholders. This paper presents research that
uses domain-specific languages for the graphical design and the
validation of process models. The paper highlights aspects of the
Process Development Environment, which provides visual design
capabilities for process model design. It gives an overview over the
concepts, the technical foundations and further work.

Categories and Subject Descriptors D.2.2 [Design Tools and
Techniques]: Programmer workbench; D.2.6 [Programming En-
vironments]: Graphical environments, Integrated environments;
D.2.9 [Management]: Software process models; D.2.10 [Design]:
Representation

General Terms Management, Design, Languages.

Keywords meta-modeling, domain-specific language, software
development process, visual modeling, modeling environment

1. Introduction

Software development methods and processes span a wide range
from lightweight methods such as XP [1] and Scrum [15] to heav-
ier, formal process models like RUP [10] and the V-Modell XT [7],
each having its appropriate field of application. One of the char-
acteristics of heavier process models is that these are based on a
formal meta-model and as such usually are machine-readable. Pro-
cess models that can be processed by software are perfectly suited
for tool support during all stages of the process life cycle: from au-
thoring over customization and tailoring to enactment in a project
environment. A formal meta-model also defines the shape of pro-
cess contents and how elements can be meaningfully assembled.
The underlying structure affects the modeling methodology in two
ways: On the one hand it limits the process engineer’s freedom. On
the other hand it simplifies modeling because the possibilities are

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

FlexiTools@SPLASH2010 Monday, October 18, 2010, Reno Nevada, USA.
Copyright (© 2010 ACM [to be supplied]. .. $10.00

constrained by what the meta-model allows. With a process model
typically containing a couple of thousands of (structured) elements,
the complexity to (1) fill the structure consistently by (2) respect-
ing the meta-model’s constraints is a hard task. Classical free-form
modeling techniques such as whiteboard brainstorming or Power-
Point drawings are insufficient for authoring of such models except
for maybe very small, selected aspects. A process engineer needs
tool support to handle the sheer volume of process models.

Problem When discussing the process with stakeholders such
as a project manager, it may be helpful to sketch certain aspects
quickly — for example on a whiteboard. Such sketches would later
have to be translated into to the formal structures of the process
meta-model. The translation is a source for mistakes or misun-
derstandings. Generally, free-form authoring only works for very
small, selected aspects — not for the process design as a whole.
Even small details of the model may be too complex to be easily
represented in a normal, two-dimensional diagram. However, ex-
isting process authoring tools such as the V-Modell XT Editor [6]
or the EPF Composer [5] are too close to the technical implemen-
tation of a process model, e.g. representing data in tree- or data
grid views. They make use of the meta-model, but, due to missing
higher-level visual representations, are expert tools not appropri-
ate for communication with non-technophile stakeholders. A pro-
cess modeling tool should support consistent modeling by follow-
ing the constraints of the meta-model thus helping to make com-
plexity manageable but at the same time facilitate communication
between process engineers and stakeholders.

Contribution In this paper we present work on process modeling
using domain-specific languages. The Process Development Envi-
ronment (PDE) is a prototypical modeling tool, which is generated
from a DSL. After a process model has been described in the DSL,
the Process Development Environment allows process engineers
to collaborate with stakeholders, facilitating interactive design and
validation of the process. The tool can also be used to create vari-
ous outputs like for example documentation and work product tem-
plates. This output can be used for process enactment (some of our
work on that subject is described in [12]).

Outline This paper is organized as follows: In Sect. 2 we give
a brief overview over authoring of meta-model-based processes
and tool support for it. In Sect. 3 we outline our approach for
process modeling based on domain-specific languages. In Sect. 4
we show how a process meta-model can facilitate tool support for
authoring and validation. The paper is concluded with a discussion
and outlook in Sect. 5.

2. Process Meta-Model-based Authoring

As outlined in [8], a software development process is an instance
of a process (or method) model, which in turn is based on a process

meta-model. Popular meta-models for development process mod-
els are e.g. the Software & Systems Process Engineering Meta-
Model (SPEM) [13], the V-Modell XT meta-model [17] and the
ISO/IEC 24744 [9]. The first one is the basis for RUP [10] and also
for the Eclipse Process Framework (EPF) [5]. The second one is
the basis for the German V-Modell XT [7]. The third standard at the
moment only describes a meta-model. At least we are not aware of
any accepted or popular implementation of the ISO/IEC 24744. A
process meta-model defines the data structures (primitive/complex
types and relations). Furthermore it defines the process interfaces
for customization, extension and variability, which are necessary
for creating customized process lines [11, 14, 16] derived from so-
called standard processes.

Because of the size of modern process models, tool support for
process authoring is mandatory. However, right now authoring does
require a lot of expertise and still is to a large extent manual work.
The tool to edit EPF is the EPF Composer based on the Eclipse
framework [4]. The tool to manipulate the V-Modell XT is called
V-Modell XT Editor [6]. As powerful as those tools are, they are
not always appropriate for interactive and rapid process design as
the model has to be edited at a fairly low level. The editor for the V-
Modell XT is not much more than a specialized XML editor, only
allowing schema-based editing. There is no visual representation
of higher-level model structures or user-defined views that process
engineers or other stakeholders are familiar with. A similar state-
ment can be made for the EPF Composer. It also requires a lot of
expert knowledge — both about the tool itself and about the process
that is modeled.

3. Process Modeling using DSLs

To handle the increasing complexity, particularly of process model
families or process lines, we have developed the Process Develop-
ment Environment (PDE). It is inspired by integrated development
environments for coding and shall provide a similar level of assis-
tance and editing comfort.

3.1 DSL-based Process Model Designer

At the heart of PDE is a family of domain specific languages to de-
scribe the process model, how it is serialized, visualized, validated,
etc. We have implemented the DSL family using the Microsoft DSL
Tools [3]. The PDE process editor itself is generated from the in-
formation in the DSL. Without much coding effort it is therefore
possible to support different process models. Currently we have a
PDE editor for the German V-Modell XT meta-model version 1.3.x
[17], for a proprietary process model of a large industrial partner
and for a small demonstration model — each with its own visual
editors, serialization rules and design-time validation constraints.
Some important components of PDE are discussed in the follow-
ing:

Language Meta-Model The language meta-model is the vocabu-
lary for the description of process meta-models. The main building
blocks are (compositional) process elements and dependencies be-
tween those elements.

Process elements are abstractions from typical process artifacts,
such as work products, activities or roles. Those we call atomic pro-
cess elements. The compositional structure describes the composi-
tion of atomic process elements to complex ones, e.g. integrated
process modules for a tailoring. We call those integrated process
elements. There also exist relations between integrated process el-
ements, as they can build systems on a higher level of integration.
Furthermore the DSL defines relations between process elements,
e.g. arole is responsible for a work product, and relations that rep-
resent operations between artifacts, e.g. the union of work prod-
ucts. The dependency structure is an abstraction of the composi-

tional structure and relates process elements respecting several cri-
teria, e.g. two work product types have a creational dependency
that states one of both is required to create the other one. Depen-
dencies are modeled using relationships that are either classified
as embedding (integration) or referencing (dependency). The lan-
guage meta-model also contains predefined elements that are used
to specify the serialization as well as a set of important properties
that are required for design-time validation.

Domain Meta-Model The domain meta-model describes a con-
crete meta-model (e.g. V-Modell XT meta-model). It is defined us-
ing the vocabulary provided by the language meta-model. The do-
main meta-model’s information is used to automatically generate
the model parts that are integrated into the tool framework.

Tool Framework The tool framework is an extensible framework
used to integrate the domain-meta model. It consists of several
predefined parts that are extended by the generated models, which
include the domain model.

The domain model is a concrete instance of the domain meta-
model and as such consists of elements and relationships described
in the domain meta-model. The domain model is generated in
source code, e.g.: a class is generated for each element and rela-
tionship. The tool framework is essentially built around the idea
of presenting and modifying the domain model. Validation real-
izes just-in-time feedback for the process engineer (e.g. errors or
possible inconsistencies). As such it is not generated but has to be
implemented by hand specifically for a meta-model in large parts.
However, certain basic validation constraints are generated auto-
matically [3, 18].

3.2 Visual Modeling

The last model to be considered is the view model. It is the core
of the presentation and can host multiple anonymous view models
such as model trees, property grids, visual editors or error lists. The
standard views provide access to the domain model instance loaded
in the tool. A tree is used for structure visualization, navigation, and
simple model element operations, e.g. creation. A property grid is
used for structured information input and modification. The error
list displays error, warning or information messages.

Graphical or otherwise specialized editors for several tasks ex-
tend those simple views where possible and appropriate (e.g. visual
modeling of processes for planning [18]). Depending on the model,
the simple views can also be extended — we have a HTML editor in
the property grid for two of the implemented models for example.
The visual modeling capabilities enable process engineers to use
a notation that supports cooperative design. Process engineers and
relevant stakeholders can work together in “pictures and symbols”
instead of e.g. XML data structures.

4. Discussion

Basing the editor on a DSL has a couple of noteworthy implications
both for the developer of the editor and for the user, namely the
process engineer. A downside of our approach with regards to
development of the tool itself is that the process model is “baked
into” the tool. Different models need different instances of PDE.
Compare this to the V-Modell XT Editor that allows manipulation
of any kind of XSD schema-based model. On the other hand it is
exactly the approach of baking the (meta-)model into the tool that
allows for the biggest improvements over “generic” editors:

Process Design Support Based on the DSL and the correspond-
ing Tool Framework, an individualized workbench for the process
engineer is generated. The generated editor is quite similar to stan-
dard editors for classical coding. The distinguishing feature is that
because the editor has “knowledge” of the process meta-model,

Yl 18K = example.xml - FamilyTreeEditor %17 @ [|5 v-Modell-AeOpTest.xml - V-Mod... e onformator . -
= - - -
s Home Home Edit View Plugins Operations
t [r < Dependencies Select a Mappings-File (corresponds to [~ 1,9 — ‘ N R By
;(/ ‘ — J (x] a specific VMX Editor version) V4 | {
: — Diagram Surface 2 J <
Delete o o Undo Re Back Model | Property | Error MetamodelMapping-3.3.7.xml v| Analyze Tree |Table | Exportas Exportas Exportas PDF
Treewew)—ova 1ot CSV-File HTMLWebsite Document
Analyze View Export
Model Tree X Designer x
4 [Family Tree Model Tree X | \V-Modell XT X
Alex (Person) A Y 4 [1} V-Modell Kritikalitat Lfd. Nummer Anderungsgruppe Anderungsoperationsty «
Anatolij (Person) Y4 1 D Disziplint
Eugen (Person) & * * X 2 Diszipli Diszi n
Eugen (Person) .
Mar (Person) Anatoli Maria b 4 3 Produktanderungen ProduktEntfernen
[X 4 Produktanderungen ProdukttextErsetzen
X 5 Produktanderungen ProduktEntscheidungspunktZuordr]
(2] 6 Produktanderungen Disziplinindern
Y4 7 Produktanderungen ErzeugendeAbhangigkeitUmbenenr
X 8 Produktanderungen ErzeugendeAbhangigkeitTextErsetze
~ o) X 9 Produktanderungen InhaltlicheAbhangigkeitUmbenenne
A A . . 4 2 X 10 Produktanderungen InhaltlicheAbhangigkeitTextErsetzer!
11 Produktanderungen TailoringabhangigkeitUmbenennen
| pvariante
[e e AN-Projekt mit Entwicklung, Weiterentwick Bedingte Projektmermale:
copyas ¢ Delete | Undo o e AG-AN-Projekt mit Wartung und Pflege (Projek| - -
Image 43 Paste AG-Projekt mit einem Auftragnehmer (Projektty Systemsicherheit (AN) % X
Common Delete | Commands Insert K } | - .
AG-Projekt mit mehreren Auftragnehmern (Proj Kaufménnisches Projektmanagement % X
Model Tree X | Designer x
9 3 AN-Projekt mit Entwicklung, Weiterentwicklun Messung und Analyse % X
Ablaufbausteinpunkto (A a | AN-Projekt mit Wartung und Pflege (Projekttyp) Projektgegenstand % X
Ablaufbausteinpunktl (A . . _—
P Ablaufbaustein (PDS) , EinfGhrung und Pflege eines organisationsspe Fertigprodukte % 3
Ablaufentscheidungspur
Ablaufentscheidungspur Quellen Benutzerschnittstelle % X
Endepunkt <>—’ . ey Q Rollen
Startpunkt Textbausteine
Uebergang0 (Ubergang)
= V-Modell-Struktur
2t gangl (Ubergang)
ng2 (Ubergang) q b Fhensbausteine
ing3 (Ubergang) i iloring
ceergangd (Ub:
19ang4 (Ubergang) Werkzeugreferenzen
Uebergangs (Ubergang)
Ablaufbaustein0 (Ablaufbau:l
Ablaufbausteint (Ablaufbau:
Ablaufbaustein2 (Ablaufbat Ablaufentscheid...
uibaustel utbau il ’ Designer | Property Grid ‘ Tailoring ‘
Ablaufbaustein3 (Ablaufbau:
Ablaufbausteind (Ablaufbau: v ults
Ablaufbausteins (Ablaufbau:
Designer | Tailoring | V-Modell XT Konformator

Figure 1. Examples of visual/interactive PDE Editors

specialized views can be defined with little coding effort. Sections
(1) to (4) in Fig. 1 are all examples for such specialized model-
dependent views. Section (1) in Fig. 1 shows a specialized edi-
tor for the simple demonstration model of a family tree (close to
role models of development processes). Section (2) displays a vi-
sual editor for Project Execution Strategies of the V-Modell XT
[2, 18]. Section (3) shows an interactive feedback mechanism for
process model conformity validation (a task that requires to com-
bine several conceptual and technical sub-models). Section (4) fi-
nally shows an editor for V-Modell XT Project Types (an element
that is used to configure process tailoring). Fig. 1 also shows bits of
the context-specific Ul-frame. Similar to the Microsoft Office suite,
process engineers are provided with specific sets of operations de-
pending on the actual context of their activity.

The editors (1), (2), (4) support drag & drop and can be used in-
tuitively (one can drag elements from the model tree onto the design
surface, etc.). The low-level model structures — especially those be-
hind the views displayed in (2) and (4) — are very complex and edit-
ing these aspects of the process has been a common source of errors
in our projects with industrial or public service partners. Taking the
design of tailoring criteria [17] as an example, one would normally
not want to (i) have to look up the proper dependency container,
(ii) add a new dependency, (iii) look up and pick the dependency
source element, and (iv) look up and pick the dependency target
element. More intuitive would be to (i) pick a project type, (ii) drag
an activity that shall be included in this project type onto some “in-

cluded activities” area. The specialized editor depicted in section
(4) of Fig. 1 allows just that and takes care of the lower level model
operations behind the scenes — always ensuring a consistent state
of the model. Many typical modeling mistakes are thus avoided be-
cause they cannot be made. Of course, the user does not have to use
the specialized editors and can still edit the model “by hand”.

Process Validation Support Model consistency is another area
that greatly benefits from the approach of baking the meta-model
into the tool. Purely schema-based editors can check for consis-
tency based on the schema. It can for example be ensured that only
valid child elements are added below a certain element. This kind
of consistency checks are generated into the PDE editor based on
the constraints defined in the DSL. Not only does the editor check
the validity of the model, it only presents the allowed operations to
the user. If the DSL for example does not allow relations between
roles and activities, no such operation would be provided at the user
interface.

Beyond those simple checks it is possible to build in custom
rules and constraints — similar to the model-specific editors. This is
especially useful for properties of the process model that cannot be
expressed in the schema. Examples would be a check for circular
references between elements, determination of whether the process
terminates or not, whether all work products have a corresponding
activity, etc (more on this kind of checks can be found in [18]).

In almost all our process improvement projects, we experienced
design errors that caused the export of process documentation or
work product templates to fail (e.g. forgotten or incorrect relations).
This is a typical translation problem while remodeling a free-
form design as discussed with the customer. A whiteboard drawing
by nature cannot respect complex and mostly hidden constraints
and interdependencies. Guided visual modeling on the other hand
provides context-specific artifacts and operations. Invalid artifacts
are not available for a specific design task, while missing ones are
displayed by the validation.

5. Conclusion

In this paper we presented our work on the interactive Process De-
velopment Environment (PDE), which is based on domain-specific
languages. The different layers of DSLs provide a flexible frame-
work for tool development based on a concrete process meta-
model. As examples, the V-Modell XT 1.3.x meta-model and a
proprietary process model of a large software company have been
implemented in the domain meta-model. This model is used to gen-
erate the tool framework. The generated design tool supports pre-
sentation, graphical modification, and validation of process mod-
els. Additionally, the tool framework can be further extended e.g.
to provide more sophisticated views or custom design-time valida-
tion, thus allowing for a customization that is specific to the meta-
model.

The presented approach is a significant step towards more “user-
friendly” and rapid process design and offers design comfort simi-
lar to modern IDEs. Process engineers can work in their domain and
in their (graphical) language without having to deal with low-level
process model definitions, such as XML documents. This eases the
communication to the (non-technophile) stakeholders of the pro-
cess, too.

Ongoing Work We are currently working on a concept to “mod-
ularize” the underlying DSLs: Right now the process to be edited
has to be defined in one domain meta-model, which can get quite
large. The generation of the V-Modell XT work product templates
involves a couple of models: The core V-Modell XT plus an addi-
tional model that contains text modules to be included in the tem-
plates. In the current version of PDE, the meta-models of these two
models would have to be combined into one domain-model. The
goal is to get an environment that supports a process meta-model
family with all its aspects. We are working on support for this kind
modularity of models.

In addition to the foundational work, we are continuously iden-
tifying aspects of the models we work with that could be repre-
sented in more sophisticated and intuitive views. Currently we pro-
vide views for tasks we consider critical (Fig. 1). But there are
many areas left for visual editors. So for instance the design of
complex, hierarchical and interdependent artifact structures is a
complex undertaking. Sometimes, artifact dependencies reference
elements of the model from within another module. This kind of
dependencies requires consistency checks because the participat-
ing elements are “loosely coupled”. Currently, ascertaining consis-
tency is entirely left to the process engineer. The author has to have
an overview over (potentially) the whole model. Another topic of
interest is the visualization of process model variants [11, 14] to
highlight commonalities and variabilities.

Another area of work is the integration of the process design
and planning with project setup and support for project runtime.
The PET framework [12] is a tool we are using to address this
phase of the process life cycle. To support the transition from a
process standard to projects we are in the early planning stages for
a model that describes the structure of work product templates to
be filled with the contents of the process model. It would be another

example for multiple model modules that play together to generate
output (freely structured work product templates in this case).

Evaluation We are currently introducing the tool in our industrial
cooperation projects. We hope to get some (informal) feedback on
usability from those partners. Using the tool internally for three dif-
ferent models has already proven to be valuable in our daily work:
(1) we can create a customized editing environment quickly to test
modeling ideas and (2) editing a model has become easier and less
error-prone. The tool was developed based on our requirements —
it is no surprise that it suits our needs. A next step is to do a sys-
tematic (empirical) evaluation with independent users. We will plan
such an evaluation once we have collected the feedback from our
“beta users”.

References

[1] K. Beck and C. Andres. Extreme Programming Explained: Embrace
Change. Addison-Wesley Longman, 2nd edition, 2004.

[2] K. Bergner and J. Friedrich. Using Project Procedure Diagrams for
Milestone Planning. In Proceedings of the International Conference
on Software Process (ICSP), 2010.

[3] S. Cook, G. Jones, S. Kent, and A. C. Wills. Domain-Specific De-
velopment with Visual Studio DSL Tools. Addison-Wesley Longman,
2007.

[4] Eclipse Foundation.
http://www.eclipse.org.

[5] Eclipse Foundation. Eclipse Process Framework, 2010. URL
http://www.eclipse.org/epf.

[6] Federal Ministery of the Interior. V-Modell XT Editor, 2010. URL
http://sourceforge.net/projects/fourever.

[7] J. Friedrich, U. Hammerschall, M. Kuhrmann, and M. Sihling. Das
V-Modell XT. Springer, 2nd edition, 2009.

[8] B. Henderson-Sellers. Method Engineering: Theory and Practice. In
Information Systems Technology and its Applications, 2006.

[9] Joint Technical Committee ISO/IEC JTC 1. Software Engineering
- Metamodel for Development Methodologies. Technical Report
ISO/IEC 24744:2007, International Organization for Standardization,
2007.

[10] P. Kruchten. The Rational Unified Process. An Introduction. Addison-
Wesley, 2003.

[11] M. Kuhrmann. Konstruktion modularer Vorgehensmodelle. PhD
thesis, Technische Universitit Miinchen, 2008.

Eclipse Project, 2010. URL

[12] M. Kuhrmann and G. Kalus. Providing Integrated Development Pro-
cesses for Distributed Development Environments. In Workshop on
Supporting Distributed Team Work at Computer Supported Coopera-
tive Work (CSCW), 2008.

[13] OMG. Software & Systems Process Engineering Metamodel Speci-
fication (SPEM) Version 2.0. Technical report, Object Management
Group, 2008.

[14] D. Rombach. Integrated software process and product lines. In Pro-
ceedings of International Software Process Workshop (SWP), 2005.

[15] K. Schwaber. Agile Project Management with Scrum. Microsoft Press,
2004.

[16] T. Ternité. Process lines: a product line approach designed for process
model development. In Proceedings of 35th SEAA, 2009.

[17] T. Ternité and M. Kuhrmann. Das V-Modell XT 1.3 Metamod-
ell. Technical Report TUM-I0905, Technische Universitidt Miinchen,
2009.

[18] E. Wachtel, M. Kuhrmann, and G. Kalus. A Domain Specific Lan-
guage for Project Execution Models. In Proceedings of 39th Annual
Conference of the German Computer Society, 2009.

