
Clone Detection Beyond Copy&Paste

Elmar Juergens, Florian Deissenboeck, Benjamin Hummel
Institut für Informatik, Technische Universität München

{juergens,deissenb,hummelb}@in.tum.de

Abstract

We argument three positions: 1) independently devel-
oped semantically similar code is unlikely to be represen-
tationally similar, 2) existing clone detection approaches
are ill-suited for detecting such similarities and 3) dynamic
clone detection is a promising approach to detect semanti-
cally similar yet representationally different code.

Numerous clone detection approaches have been pro-
posed [4]. They differ in many aspects. However, all of
them use the same fundamental detection approach, namely
to statically search a suitable representation of a program
for similar parts. Independent of whether they work on text,
tokens, ASTs, PDGs or models [1], they are thus limited to
detection of code clones with similar representation.

This works well for clones created by copy&paste, since
copying maintains representational similarity. Recent ap-
proaches [3, 4] can also cope acceptably well with minor
differences resulting from copy&paste&modify. However,
similarity in programs is not limited to copy&paste. Pro-
grammers that face the same problems can independently
produce semantically similar solutions. But how represen-
tationally similar is semantically similar code that has been
developed independently?

To better understand this question, we asked students to
implement a simple specification of an email address val-
idator. Of the 155 implementations we received, 89 were
correct (compiled and passed our unit test suite). We per-
formed a very tolerant clone detection1 using CloneDetec-
tive [2]. Only 154 of the overall 3916 pairs of imple-
mentations were found to have at least one common clone.
Hence, only 3,9% of the independently developed semanti-
cally similar code exhibited sufficient representational sim-
ilarity. Due to very substantial variation between different
solutions, we do not expect PDG based approaches to per-
form significantly better.

Although of limited transferability, these results coincide
well with our experiences from industry: in several case
studies of cross-project-cloning, detected clones were lim-

1Min. clone length 5 stmts, max. edit dist. 1, aggressive normalization

public static String fillString(int length, char c) {
char[] characters = new char[length];
Arrays.fill(characters, c);
return new String(characters);

}

private static String padding(int repeat, char padChar) throws ... {
if (repeat < 0) {

throw new IndexOutOfBoundsException(”...”+repeat); }
final char[] buf = new char[repeat];
for (int i = 0; i < buf.length; i++) {

buf[i] = padChar;}
return new String(buf);

}

Figure 1. Examples of behavioral clones

ited to projects with developer overlap and can thus likely
be attributed to copy&paste. Hence, we strongly suspect
program-representation-based clone detection approaches
to be poorly suited to detect semantically similar code of
independent origin.

Instead of searching for similar representation, we pro-
pose to detect such similarities by searching for similar be-
havior. While undecidable in general, we are optimistic that
it can be approximated acceptably well in practice using dy-
namic clone detection. As proof of concept, we have im-
plemented a prototypical dynamic clone detector for Java
using techniques similar to random testing, with encourag-
ing results. An example of detected semantically similar
functions from CCSM commons2 and Apache commons is
depicted in Figure 1.

References
[1] F. Deissenboeck, B. Hummel, E. Juergens, B. Schätz, S. Wag-

ner, J.-F. Girard, and S. Teuchert. Clone detection in automo-
tive model-based development. In ICSE ’08. ACM, 2008.

[2] E. Juergens, F. Deissenboeck, and B. Hummel. Clonedetec-
tive - A workbench for clone detection research (Tool Demo).
In ICSE ’09. IEEE, 2009. To appear.

[3] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner. Do
code clones matter? In ICSE ’09. IEEE, 2009. To appear.

[4] C. K. Roy and J. R. Cordy. A survey on software clone detec-
tion research. TR 2007-541, Queen’s University, 2007.

2conqat.cs.tum.edu/index.php/CCSM_Commons


