
An Evaluation of Two Bug Pattern Tools for Java

Stefan Wagner, Florian Deissenboeck
Technische Universität München
Garching b. München, Germany
{wagnerst,deissenb}@in.tum.de

Michael Aichner∗

beck et al. projects GmbH
München, Germany

michael.aichner@bea.de

Johann Wimmer
Cirquent GmbH†, München, Germany
{johann.wimmer}@cirquent.de

Markus Schwalb‡

mobileX AG, München, Germany
{Markus.Schwalb}@mobilexag.de

Abstract

Automated static analysis is a promising technique to de-
tect defects in software. However, although considerable
effort has been spent for developing sophisticated detection
possibilities, the effectiveness and efficiency has not been
treated in equal detail. This paper presents the results of
two industrial case studies in which two tools based on bug
patterns for Java are applied and evaluated. First, the eco-
nomic implications of the tools are analysed. It is estimated
that only 3–4 potential field defects need to be detected
for the tools to be cost-efficient. Second, the capabilities
of detecting field defects are investigated. No field defects
have been found that could have been detected by the tools.
Third, the identification of fault-prone classes based on the
results of such tools is investigated and found to be possible.
Finally, methodological consequences are derived from the
results and experiences in order to improve the use of bug
pattern tools in practice.

1. Introduction

The automated static analysis of software code has been
a subject of research for many years now. The hope is that
many quality defects that would need human inspectors or
elaborate dynamic tests can be checked automatically. The
aim is to reduce the effort needed for finding and removing
defects from the software. For various languages there are
such tools available now with varying degrees of sophis-
tication. Some tools use advanced techniques such as ab-
stract interpretation while others resort to simple detection
of so-called bug patterns. These capture common pitfalls
∗Was with TU München at the time of the study
†At the time of the study Cirquent was called Softlab
‡Was with Cirquent at the time of the study

in a programming language and thereby help a developer
to avoid them. Several tools are able to detect certain bug
patterns, e. g. FindBugs [11] or PC-Lint1.

Although significant effort is spent for researching bug
patterns and implementing them in tools, there has not been
the same amount of research on the effectiveness and ef-
ficiency of the tools. Although several efforts were made
[15, 18, 19], there are still several open questions. In partic-
ular, each of these attempts is only able to analyse a small
number of case studies. Especially the wide variety of tools
and their differing detection capabilities make an evaluation
difficult. Hence, empirical analyses must be repeated and
gradually extended to come to conclusive results. There-
fore, we concentrated on investigating two bug pattern tools
for Java in two industrial projects to improve the empirical
knowledge.

Problem The underlying problem is to achieve economi-
cally efficient quality assurance for software. Automation is
a way for more efficiency and automated analysis using bug
pattern tools claims to find defects automatically. Hence,
we need to investigate whether such tools can be used to
improve the efficiency of defect-detection. In detail, the fol-
lowing questions need to be answered:

1. When is the use of the tools economically reasonable?

2. Can bug pattern tools detect faults detected by other
means and field defects?

3. Can fault-prone classes be identified using the tools?

Results The main results are that the analysed bug pat-
tern tools are not well suited to detect potential field defects.
The defects occurring in the field are predominantly logical

1http://www.gimpel.com/html/pcl.htm



faults that cannot be characterised by a bug pattern that is
not very domain-specific. The warnings are able to improve
the code and support the learning process of the develop-
ers but the tools cannot understand the logics of the system.
Nevertheless, it is still possible that a small amount of po-
tential field defects are detected and our analysis shows that
this can be enough to economically justify the use of such
tools. Moreover, we are also able to show that the results of
the tools can be used to identify fault-prone classes which
in turn can increase the efficiency of other defect-detection
techniques.

Contribution The main contribution of this paper is ad-
ditional empirical knowledge for bug pattern tools in the
areas effectiveness, efficiency, and fault-proneness. We are
able to quantify the costs of field failures and the use of the
tools with real monetary values from practice. Moreover,
we give a list of methodological consequences that allow a
better use of the tools in practice.

2. Bug pattern tools

The term bug has a long history in computer science to
denote something erroneous. Today, it is used most com-
monly as a synonym for fault [12]: “An incorrect step, pro-
cess, or data definition in a computer program. [. . . ] In
common usage, the terms “error” and “bug” are used to ex-
press this meaning.”

2.1. Bug pattern

Patterns are a common technique in Software Engineer-
ing and other fields to document and reuse specific and
important examples. They are most popular in software
design [9]. Bug patterns use the same idea that specific
constructs and constellations in software code lead to de-
fects. Common pitfalls of a programming language are doc-
umented so that developers can learn to avoid them. For ex-
ample, a collection of bug patterns for Java can be found in
the book by Allen [1].

A typical example for a bug pattern is the Split
Cleaner [1] that is used to describe programs that improp-
erly manage resources, either by leaking them or by freeing
them too early. This usually is caused by execution paths of
the program that free resources like files or database handles
not exactly one time.

Similar to bug patterns are anti-patterns which also
denote unwanted situations but relate mainly to architec-
tural patterns. Another related concept is that of “code
smells” [8]. These are unclean code, for example very long
methods, that is not a fault but contributes to a difficult un-
derstanding of the code and hence the introduction of faults.

In fact, the distinction between “code smells” and “bug pat-
terns” is sometimes blurry.

2.2. Tool support

Having established bug patterns for a language, the idea
to identify them automatically is straightforward. There-
fore, there is a variety of tools available that support au-
tomatic checking of software code. These tools, that are
commonly seen as part of static analysis, are usually able to
analyse other issues as well such as conformance to coding
styles. The tools contain a set of detectors or rules that de-
fine concretely the bug patterns they identify. These tools do
neither distinguish between “bug patterns”, “anti-patterns”
and “code-smells” nor illustrate which rules actually ad-
dress defects and which concern maintainability issues.

Commercial software manufacturers as well as the open
source community have produced a wide range of bug pat-
tern tools for many popular programming languages. Two
well-known examples for Java that are available as open
source are FindBugs [11] and PMD2. Popular tools for C,
C++ and C# are PC-Lint3, Klocwork4 and FxCop5.

3. Study setup

To answer our research questions, we use three different
designs on two tools and two industrial projects.

3.1. Subjects

For the present work we chose to use FindBugs and PMD
as these are widely used in the Java world and are open
source, which is a requirement in the context of the analysed
projects. Additionally, these tools produced the smallest
number of false positives in one of our earlier studies [18].
Our quality controlling framework CONQAT6 [5] is applied
to correlate results generated by both. For the analysis we
use two different sets of configurations for both tools: (1)
the standard configuration (StdConfig) and (2) an individual
configuration (IndConfig), a subset that focuses exclusively
on bug patterns and does not include checks that are only
concerned with the readability/maintainability of the code.
The IndConfig was developed in an iterative manner based
on the number of false positives generated.

3.2. Projects and context

We use two projects in order to evaluate the bug pattern
tools in real project environments. Both analysed projects

2http://pmd.sourceforge.net/
3http://www.gimpel.com/html/pcl.htm
4http://www.klocwork.com
5http://www.gotdotnet.com/Team/FxCop/
6http://conqat.cs.tum.edu

2



were done at at Cirquent,7 an international IT service and
consulting company based in Germany. It offers services
for the design, implementation, operation, and maintenance
of business software systems in the domains production –
especially automotive –, banking, insurance, and telecom-
munication. Cirquent has more than 1,500 employees work-
ing in several European countries.

Both projects are sales-support systems and typical ex-
amples of software developed in the Java Enterprise Envi-
ronment (J2EE). For reasons of confidentiality we renamed
the two projects to project X and project Y . Project X is a
larger and mature system with almost 600,000 lines of code
and 2,900 classes. It mainly contains a product configurator
and customer management and has been in production since
2002. Project Y is smaller with about 40,000 lines of code
and about 250 classes. It is also a sales-support system that
is web-based and is used to create and manage product of-
fers. The system has just been finished and entered system
testing at the time of analysis. In both projects no formal
inspections have been performed but the usual steps of unit,
integration and system tests were in place.

3.3. Research questions

The aim of this study is to investigate in which ways bug
pattern tools are best employed in the quality assurance pro-
cess for software. Such tools can be used early in the devel-
opment process directly after the code is written. Because
early defect removal is cheaper than later removal [16] and
because of the high degree of automation, the use of bug
pattern tools is a chance for cost-reduction. We see three
research questions that need to be answered in order to in-
vestigate whether this chance can be utilised.

RQ 1 How many field defects need to be detected by the
tools to be cost-efficient?

Defect-detection techniques are used in the software de-
velopment process to find and remove defects before they
can manifest in field defect. Hence, it is necessary to com-
pare the costs of defects during operation with the costs
caused by the usage of the tools. Based on the assump-
tion that defect removal in the field is more expensive than
in-house, the number of defects to be detected for cost-
efficiency can be analysed.

RQ 2 Can bug pattern tools detect field defects or faults
detected by other defect-detection techniques?

Having established the necessary number of defects, it
needs to be investigated whether bug pattern tools are effec-
tive in detecting defects that later would occur in the field.

7At the time of the study Cirquent was called Softlab

Moreover, assuming that removal in later phases is also ex-
pensive, it should be analysed whether defects are found
that would also be detected with other defect-detection tech-
niques.

RQ 3 Can fault-prone classes be identified using the tools?

Finally, bug pattern tools do not need to detect defects
directly to be efficient. They can also be valuable by iden-
tifying classes that likely contain such defects. This iden-
tification method can be based on the density of warnings
from the tools for classes.

3.4. Study design: cost-efficiency

For the analysis of the cost-efficiency, we use our model
of quality economics for defect-detection [17] as basis. It
structures the costs of quality in different costs types as
shown in Fig. 1.

cost of quality

external failure

nonconformanceconformance

internal failure

fault removal e�ect

appraisal costs

executionsetup

Figure 1. The structure of the cost types

Direct costs The appraisal costs comprise the main costs
that are specific for a defect-detection technique. We detail
those costs especially for bug pattern tools. The setup costs
for the tools contain (1) tool costs, (2) installation costs, and
(3) configuration costs. The tool costs are the price of the
software itself and possibly costs for maintenance contracts.
The installation costs are the effort necessary to install the
tool on a machine so that it is usable with its StdConfig.
Finally, the configuration costs contain the effort for reading
the documentation of the detectors and creating a suitable
IndConfig for the situation. The latter effort can usually be
reused over several projects.

The execution costs of the tools can be divided into (1)
tool execution costs and (2) report analysis costs. In gen-
eral, the tool execution costs are negligible because the exe-
cution does not need human attention. Even starting the ex-
ecution can be automated. Hence, the report analysis costs
are decisive.

3



Depending on the used defect-detection technique, there
are different costs for removing the found defects [16], the
internal fault removal costs. This is separate from the report
analysis costs that incur by identifying whether the warn-
ing is truly a fault. The removal costs stem from actually
changing the code. Hence, it is mainly important how many
real faults are detected by the bug pattern tools. We call the
setup, execution and internal fault removal costs combined
also the direct costs [17] because they occur directly when
applying the tools.

Saved costs The costs that should be saved by using
defect-detection techniques are the external removal costs.
They contain all costs that occur when a failure takes place
during operation of the software. Cirquent has a 3-level sup-
port system for project X. Only the failures that come to the
third level are of actual interest. Those failures have their
cause in code faults. Others might stem from wrong us-
age or configuration. When those costs can be avoided by a
defect-detection technique, we call them saved costs [17].

Break even point We use the following equation to calcu-
late the break even points for project X and project Y under
the assumption that Y will have a similar support process as
X .

break even =
direct costs

saved costs per defect
(1)

Hence, the break even point gives us the answer to RQ1:
How many defects need to be detected in order to be cost-
efficient?

3.5. Study design: effectiveness

We use two analysis approaches: (1) changes in differ-
ent versions and (2) documented field defects. In the first
approach, we analyse several versions of the systems and
compare the warnings. This allows a comprehensive analy-
sis of all the warnings of the tools and also of undocumented
changes. This actually analyses whether defects were de-
tected by other techniques like unit tests or reviews. The
second approach analyses defects that occurred in the field.
It constitutes the “hard” test whether it would actually have
been possible to avoid a field defect by using a bug pattern
tool. In combination, these two approaches can give us a
complete picture of the defect-detection capabilities.

Different versions approach A comprehensive evalua-
tion is possible by analysing several consecutive versions
of the software (released and internal). This way, we see
changes in the warnings and can retrace the reasons for the
change by analysing the code changes. This involves three
steps: (1) applying the tool to two consecutive versions,

(2) comparing the warnings, and (3) analysing why certain
anomalies appear in the old version and not in the new ver-
sion.

For further analysis, the reasons for the discrepancies
are classified in four categories: (1) documented failure:
the anomaly caused a documented failure, (2) other code
change: change without a documented failure, (3) tool er-
ror: the warning was incorrect, or (4) unknown: it was not
possible to retrace the cause. This categorisation is based
on the comments provided when the code is stored in the
version management systems. If available, the change man-
agement systems and the original developers are consulted
to confirm the categorisation. In summary, this approach
answers part of RQ2: Can the tools detect defects that are
detected by other techniques?

Field defects approach The second approach uses the
field defect database and traces back these defects to code
changes. Then it is analysed whether those code pieces
could have been identified by tool warnings. This approach
has also three steps: (1) extracting the documented field
failures from the database, (2) analysing the failure cause
in the corresponding version of the source code, and (3)
checking the failure cause using the tools. One problem,
besides empty commit comments, is that the tool FindBugs
analyses the byte code and hence we need to recompile the
whole software version which can be elaborate depending
on the version control system used. This approach yields
the second part of RQ2: Can the tools detect field defects?

3.6. Study design: fault-proneness

We also want to analyse if the tools can help to identify
pieces of source code that are fault-prone. This is useful for
focusing inspection and test activities. We therefore exam-
ine if classes with warnings from different tools are more
likely to be changed during a bug fix than classes with no
warnings or warnings from only one tool.

For this, we use our quality control framework CON-
QAT [5] to correlate results generated from both tools
and thereby identify classes that contain (1) no warning,
(2) warnings generated by one of the tools and (3) warn-
ings from both tools. We then identify which classes were
changed during a removal. For this analysis we defined a
class to be fault-prone if it was changed during the correc-
tion of more than one defect. This answers RQ3: Can fault-
prone classes be identified by the tools?

3.7. Threats to validity

Internal validity Because the analyses are all after-the-
fact, no effects caused by instrumentation or other influ-
ences by us should have taken place. Because of effort lim-

4



itation we do not analyse all field defects but select a subset
randomly. From our experience with the kind of defects re-
ported, we believe that the subset is representative but it is
a threat to the validity of the study.

External validity Both studies were conducted at the
same company. Hence, similar processes and guidelines
in software development were used. Moreover, only two
different tools were used on two different projects. Be-
cause FindBugs and PMD are open-source, well-known and
widely used, we believe that they are representative for bug
pattern tools in Java. However, results may be different with
commercial tools because they might put different empha-
sis on specific detection capabilities. Only two tools were
chosen because of the high effort for individual configura-
tions. The results can only partly be transfered to other pro-
gramming languages as there are other bug patterns. For
example, bug patterns related to pointer arithmetics are not
relevant for Java but are important for C. Furthermore, the
results might not be valid for other static analyses that use
more sophisticated means to detect anomalies in software.

4. Cost-efficiency results

For the two projects, the calculated internal costs for a
developer hour are 60 Euro including all additional costs.
For all analyses, we use the two different configurations de-
scribed above: (1) the standard configuration of the tools
(StdConfig) and (2) an individual configuration (IndConfig)
that uses only a subset of the available bug patterns.

Configuration costs The effort needed for configuring a
tool varies strongly. If the StdConfig of the tool is used, the
effort is small. An IndConfig can require considerable ef-
fort that depends on the quality of the documentation, pre-
ciseness of the detector analysis, and the total number of
detectors. We analyse the needed efforts for FindBugs and
PMD from the case studies. All of the about 200 detec-
tors in each tool were evaluated for the particular domain
and purpose. A problem that arises there is that some of
the detectors cannot be separated in the tool. For example,
the detectors possible null dereference and redundant null
check are combined in one detector although one hints at
a fault whereas the other aims at improving the readability
of the code. The usefulness of a detector cannot be deter-
mined by only reading the documentation but needs also be
run and evaluated against real code in order to reduce false
positives. This results in an average effort of 2 minutes per
detector. With 200 detectors in a tool, this amounts to about
7 hours or 420 Euro.

Report analysis costs The report analysis costs depend
strongly on the number of warnings produced by the tool

which in turn depends on the configuration. A small, very
focused configuration limits the number of warnings and
hence the effort to analyse them. We discussed above that
creating the configuration can be elaborate but it can avoid
the analysis of many false positives. Moreover, we observed
that the reporting of the warnings has a large influence on
the analysis cost. Both tools can be integrated into the de-
velopment environment Eclipse8. Thereby it is possible to
link the warnings directly with the code in the editor. This
simplifies analysis and removal. A report in a separate tool
or in an HTML format creates a much higher hurdle. Fur-
thermore, the size of the project, i. e. its number of lines of
code, is important. The experience shows that on average
the needed effort to analyse a single warning is 1 minute.
In the StdConfig, Project X had 2,240 warnings that cor-
respond to 2,240 Euro. The IndConfig produced only 178
warnings that cost 178 Euro. Project Y had 402 (StdConfig)
and 141 (IndConfig) warnings with the corresponding costs
of 402 Euro and 141 Euro.

Internal removal costs The effort for the change of the
software is small because the tools explain the direct cause
of the anomaly. The experience in the case studies was that
on average it took 1 minute to remove a fault based on a
tool warning. In project X, we found by consultation with
the developers that 155 of the warnings are real faults that
should be removed. Hence, the removal costs are 155 Euro.
In project Y, the removal costs are 122 Euro.

External removal costs The third-level support needs an
average effort of 3.3 hours per defect. In addition, the
second-level support invested .5 hours before forwarding it
to the third-level support. Hence, an average defect causes
an effort of 3.8 hours which correspond to 228 Euro. Fur-
ther failure effect costs are not considered in detail be-
cause they vary strongly over the various defects. However,
we want to note that severe defects can cause unscheduled
patches and releases that amount on average to over 2,000
Euro. We do not have data for the external removal costs of
project Y yet.

Break even point A summary of the economic analyses
including break even points for the two projects and config-
urations is shown in Tab. 1. All costs are given in Euro. It
shows first the governing direct costs of applying bug pat-
tern tools in a standard configuration and an individual con-
figuration for each project. The potentially saved costs per
defect are given where the costs for project Y are assumed
to be similar to the costs in X. Using Eq. 1, we calculated
the average break even point. The StdConfig in project X
needs to find the most – 15 – potential field defects. The

8http://www.eclipse.org/

5



Table 1. Summary of the costs and break even points

Cost type Project X Project Y
StdConfig IndConfig StdConfig IndConfig

Configuration costs 0 420 0 420
Report analysis costs 2,240 178 402 141
Internal removal costs 1,120 155 201 122
Saved costs (per defect) 228 228 228 228
Break even (average) 14.7 3.3 2.7 3.0
Saved costs (severe defect) 2,388 2,388 2,388 2,388
Break even (severe defect) 1.4 0.3 0.3 0.3

IndConfig is more realistic with 4 defects. In project Y both
configurations seem to be able to be efficient. Finally, the
costs for a severe defect as discussed above are given. In the
case that the tools find a severe defect, they need to find in
nearly all cases only a single one to be cost-efficient. Hence,
for research question RQ1, the tools only need to detect a
single severe defect or 3–15 normal defects in order to be
cost-efficient.

5. Effectiveness results

Having investigated the number of defects that need to
be detected in order to be cost-efficient, it is now impor-
tant how many defects are actually found. We apply both
analysis approaches to project X due to the existence of a
well-kept database of field defects. For project Y we had
to limit our analysis to the different versions approach as
the project is not yet in production and therefore there is no
database of field defects yet.

5.1. Project X

Different versions approach To apply this analysis ap-
proach, the bug pattern tools were run on the five versions
a–e of project X with the IndConfig configuration set. A
version can be internal or external. These five versions were
developed within a time period of 2.5 years. For each new
version we examined the set of warnings generated by the
tools and analysed which warnings were present in the pre-
vious version but not in the current one.

The 600,000 lines of code of project X consist of the
application’s client, server and test code. Our analysis ex-
cluded the test code and focused on the server code from
version b on. Unfortunately, we were not able to distin-
guish between client and server modules in version a as a
package-level separation was introduced only in version b.
In the four comparison steps we found a total number of 67
warnings that were removed from one version to the next.

These removed warnings were analysed and categorised ac-
cording to the schema described in Sec. 3.5. The results of
this approach are shown in Tab. 2.

Table 2. Removed warnings in project X

Versions Fault Change Tool Unknown Σ

a b 0 11 9 2 22
b c 0 22 3 2 27
c d 0 8 4 0 12
d e 0 5 1 0 6

Σ 0 46 17 4 67
% 0.0 68.6 25.4 6.0 100.0

The most important result of the analysis is shown in
column Fault that illustrates that none of the warnings was
removed because it actually was a fault that lead to a fail-
ure. One can see that the majority of warnings (46) were
removed from one version to the next due to code changes
that were not directly related to the warning. Examples are
a refactoring that moved utility methods to a central loca-
tion and a migration from Java version 1.3 to 1.4. Eleven of
these warnings were removed during a bug fix but did, how-
ever, not describe the actual cause of the defect. Yet, for
some faults an undocumented defect-detection technique,
such as a peer review, can be the reason for the removal.

The second biggest group of removed warnings are tool
errors, i. e. warnings that were not reported anymore al-
though they were not fixed. Reasons for this are minor
refactorings (e. g. extract method) that do not actually fix the
problem but make it invisible for the tool. In four cases we
were not able to figure out why the warning was removed
as the corresponding commit messages were either empty
or did not contain enough information.

Field defects approach To determine how many of the
defects that really occurred in the field could have been
found by using bug pattern tools we use our other analysis

6



approach. We analyse a four-year period in the bug track-
ing database and randomly select a subset of the failures.
For each failure we analyse its cause in the corresponding
source code version and check if the cause could have been
identified by one of the tools. The bug tracking database
contained 615 reports of which we randomly selected 99
reports (16.1%). Of the 99 reports we had to discard 27 as
their resolution could not be linked to particular locations
in the source code. For each of the remaining 72 reports
we retrieved the corresponding source code from the ver-
sion management system, analysed the fault that caused the
defect and checked if it would have been indicated by one
of the bug pattern tools.

Interestingly, we could not find a single case where a
field defect could be related to a warning generated by one
of the bug pattern tools. We see the reasons for this in the in-
herently limited power of the bug patterns used in the tools
as they mainly work on a syntactical level. We illustrate
different types of defects and explain why those bug pattern
tools are not able to detect them.

The majority of the defects (39) were caused by logi-
cal faults that fully elude static analysis. Examples are in-
complete case differentiations and calls to wrong API meth-
ods. Another group of defects (8) that can hardly be found
by static analysis, are defects caused by improperly cho-
sen constant values. Examples are font size and paper size
for the print functionality. A rather large group of the de-
fects is purely user interface related. Examples are improper
distances between UI elements and inappropriate screen
layouts or the flawed display of the application’s logo on
a particular operating system version. We found that the
UI related defects could be divided in a group of defects
caused by logical faults and a group that we suspect to be
identifiable by special bug patterns. An example is a user
customisation mode of the application that requires every
UI element to be visible to be customised. We can imag-
ine a special bug patterns that checks if the corresponding
setVisible() method is called at least once for every
UI element. However, we did not evaluate the application
of specialised bug patterns in this study.

Discussion The results of both analysis approaches sug-
gest that commonly used bug pattern tools are not well
suited for finding field defects. As pointed out we believe
that this is mainly due to the tools’ inherent inability to
find logical defects as they purely focus on the source (or
byte) code of the system under investigation. As research
in reverse engineering shows, the source code is a relatively
poor source of information with respect to questions of this
kind [3, 6] and does not encode the information to detect
such defects.

An additional reason for the unsuccessful application of
the tools in this study may be the relatively late application
of the tools. Project X was already in production for four

years and reached a high level of maturity during this time.
As no bug database was available for initial development,
test and early operation phase we cannot say if the applica-
tion of the tools would have been more effective in earlier
phases of the project’s life cycle.

5.2. Project Y

To investigate the influence of the project life cycle phase
on our results we conducted a similar study for project Y .
As no bug tracking database was used in this early devel-
opment phase, we had to limit our analyses to the different
versions approach where we used the analysis tools to com-
pare different versions of the code. We analysed six ver-
sions a–f that were developed in a period of two months.
Again, we used our custom tool configuration IndConfig.

In five comparison steps we found a total number of 24
warnings that were removed from one version to the other.
We analysed and categorised them by examining the com-
mit messages and occasionally interviewing the develop-
ers. Due to their support we could exclude the category un-
known for this analysis. The results of the study are shown
in Tab. 3.

Table 3. Removed warnings in project Y
Versions Fault Change Tool Σ

a b 1 2 5 8
b c 3 10 0 13
c d 0 0 0 0
d e 0 3 0 3
e f 0 0 0 0

Σ 4 15 5 24
% 16.7 62.5 20.8 100.0

Most importantly, this time, we found 4 warnings that
were removed because they actually caused a defect. Two
of these warnings related to database connections that were
opened but never closed. The other two concerned possible
null pointer dereferences. Hence, there is a small overlap to
other defect-detection techniques.

Again, the most frequent reason for the removal of warn-
ings were changes to the code that did not relate to the warn-
ing itself. This included refactorings as well as deletion of
the pieces of code that raised the warning.

Similar to our experience with project X we found that a
number of warnings was not reported due to deficiencies of
the tools. An example is the change from x.equals("")
to x.trim().equals(""). Here PMD suggests to re-
verse the former expression to avoid a possible null pointer
dereference, but does not complain about the latter expres-
sion that exhibits the same risk.

7



5.3. Discussion

Our study results suggest that bug pattern tools do gen-
erally not fulfil what some of their manufacturers’ website
claim. Due to their syntactic nature they are limited to find-
ing simple patterns and miss many kinds of logical bugs.
Unfortunately, we found the latter kind of defects to dom-
inate in a system that reached a certain degree of maturity.
For a project in earlier development phase the bug pattern
tools were able to identify a small number of faults. How-
ever, it is not clear if these faults would have caused a field
defect later on. Hence, we need to answer RQ2 rather neg-
atively. There is only a small number of defects detected by
other techniques and in the field that are detectable by bug
pattern tools.

Furthermore, we found that bug pattern tools do not only
create a large number of false positives but do also miss pat-
terns that we expected them to identify correctly. We found
that bug pattern tools in general need to be configured care-
fully in order to keep the total number of generated warn-
ings in check.

6. Fault-proneness results

Although we did not find field defects that the bug pat-
tern tools could detect directly, we analysed if they can help
to identify pieces of source code that are fault-prone (RQ3).
To achieve this we classified the classes of project X into
the categories None, One and Both which means that nei-
ther tool, one of the tools or both tools raised a warning.
The classification for project X is shown in Tab. 4. Note
that we excluded version a from this analysis as we limited
our analysis to the client component of the application. Be-
fore version b the separation of client and server modules
was not reflected in the package structure of the program
and we could therefore not distinguish between the mod-
ules. For all analyses we used the custom tool configuration
IndConf.

Table 4. Analysis results for project X
V. # Classes LOC None One Both
b 689 151,913 77.4% 18.4% 4.2%
c 764 168,729 77.9% 18.2% 3.9%
d 774 175,534 77.4% 18.3% 4.3%
e 954 227,201 76.1% 19.3% 4.6%

For investigating in how far the presence of warnings
for a class is an indicator for fault-proneness we examined
which classes were changed in Version e during the correc-
tion of the 72 analysed defects. For each corrected class we
determined to which of the categories None, One and Both
it belongs.

Overall 28 classes were changed during the correction of
the 72 bugs. Classes were changed at most 5 times and no
class was changed only once. For each category Table 5,
column Σ gives the number of classes in this category and
the columns 1x–5x show how many classes of a category
were changed 1 to 5 times.

Table 5. Fault-proneness categorisation

Category 1x 2x 3x 4x 5x Σ

Both 0 2 2 2 2 8
One 0 7 3 4 5 19
None 0 1 0 0 0 1
Σ 0 10 5 6 7 28

To answer RQ 3 we analyse if there is a correlation be-
tween the category membership (None, One, Both) and the
number of times a class is changed during bug correction.
We use the Spearman rank correlation as it can be applied
for ordinal scales and does not require a linear relation be-
tween the variables.

For the 954 observations we find a positive correlation
coefficient of 0.34 with a 2-tailed p-value < 0.0001. This
result indicates that classes for which both tools raised
warnings are more likely to “participate” in a bug than
classes that are annotated by only one tool. These classes
are again more likely to be fault-prone than classes without
warnings raised by either of the tools.

It is not clear yet how far these results can be generalised
as they largely depend on the selected tools and their con-
figurations. However, the results indicate quite strongly that
bug pattern tools can be used to find system “hot-spots” that
are prone to contain faults. Additionally, these results rein-
force the findings on the benefit of using multiple analysis
tools in combination.

7. Discussion & consequences

The experiences from the case studies and the results dis-
cussed above lead to several methodological consequences
w.r.t. the use of bug pattern tools in the development of soft-
ware systems. Automation in general is a key to more effi-
ciency and we believe that bug pattern tools can contribute
to this automation. However, it is still not completely un-
derstood when and how to use the tools effectively and effi-
ciently. We derive a set of guidelines to improve this situa-
tion:

• Use the tools often and early in the development to
keep the number of warnings small. This helps to
exploit learning effects of the developers that prevent
introducing defects by avoiding code that produces
warnings. Moreover, the psychological barrier to even

8



start on working on a large number of warnings is high.
The repeated use of the tools avoids this problem.

• Use different tools in combination. The experience
here and in other studies [15, 18] shows that there is
only a small subset of similar detectors in the various
tools. A combination can fully use the potential of de-
tecting bug patterns.

• Create an individual configuration for each tool. One
clear result from the case studies is that this can
largely reduce the false positives produced by the tools.
Thereby, the efficiency is increased because less warn-
ings need to be analysed and the acceptance raises be-
cause the reports are more useful to the developers.
Moreover, the effort of creating these configuration is
spent not only for one projects but the configuration
can be reused.

• Integrate the warnings into your IDE. The tools should
be able to annotate the warnings directly in the text
editor that you use and allow also a direct link to the
description of the warning. This fosters a quick and
easy fault removal and also avoids a psychological bar-
rier. The need to change from the tool to the text editor
might keep the developers from working with the tools.

• Accumulate and analyse the results from the tools into
a report. This can be done most efficiently using a
quality report tool. Tools such as CONQAT [5] allow
an easy integration of different tools to simple reports.
The reports can be used for status overviews or trend
analyses. Moreover, the identification of fault-prone
components (cf. Sec. 6) can be used here to focus fur-
ther quality assurance.

8. Related work

We analysed in [18] several systems at the mobile net-
work provider O2 using three different bug pattern tools
for Java. One aim was to investigate the classes of defects
found and a comparison with reviews and tests. The main
results were that tests detect different defect types but re-
views similar types as bug pattern tools. Furthermore, it
was identified that the tools have high false positive rates
and that this hampers the use of the tools in practice.

Rutar, Almazan and Foster [15] compared several bug
finding tools for Java. In detail, they used five different
tools on five rather large open source software packages.
The results were that the tools generate only a small over-
lap in the warning for a software. They concluded, similar
to our findings, that different tools should be used in combi-
nation. Finally, they also found that the amount of informa-
tion produced is problematic but they did not use individual
configurations.

Hovemeyer [10] analysed FindBugs in commercial and
student projects. He found that the false positive rates of
different detectors in FindBugs vary strongly. This supports
our finding that an individual configuration can reduce the
false positives. Moreover, he conducted an informal sur-
vey with FindBugs users. One observation there supports
our fault-proneness approach: “code which confuses static
analysis is also likely to confuse developers trying to un-
derstand it.” Also the learning effect of bug pattern tools is
confirmed in the survey. Ayewah et al. [2] continued the ap-
plication of FindBugs on industrial strength software. They
found defects in production software that was severe and
was later removed. This supports our conjecture that at least
some field defects are detectable by bug pattern tools.

Zheng et al. [19] analysed three systems developed at
Nortel Networks. They also looked into the economical im-
plications of using static analysis tools. However, the main
difference is that the software was written in C/C++ that al-
lows a whole class of additional defects, for example misus-
ing pointer arithmetic. Nevertheless, they had conclusions
similar to our findings. Firstly, they also confirmed that the
results of static analysis can be used to detect fault-prone
components. Secondly, the costs of a detected fault are on
average comparable to a fault detected by manual inspec-
tion. However, it was not analysed how many field defects
need to be found by a tool in order to reach the break even
point. Finally, they also observed that the defects reported
in the field are mainly of a different class than the defects
reported by the tools. However, Reimer et al. [14] showed
that domain-specific bug patterns can be very effective to
this end.

Nagappan and Ball [13] found that the density of warn-
ings of their PREfix and PREfast tools can be used to predict
pre-release defect density.

9. Conclusions

We analysed two widely-used bug pattern tools for Java
in two industrial projects in order to evaluate their use in
defect-detection. The main aim was to investigate whether
bug pattern tools are able to detect defects that would occur
in the field. The study could not confirm that this is pos-
sible. However, because it contains only two case studies
a more detailed evaluation is needed. We believe that as-
suming that a few field defects can be found is still realistic.
Therefore, we analysed the break even point – the number
of defects needed to detect so that the tools avoid more costs
than they incur. We found that about 3–4 of such defects are
needed. However, using bug pattern tools has more effects.
It can reduce efforts in later inspections and tests and also
supports the continuous learning of the developers. This
way the introduction of defects can be prevented.

We see the application in the wider spectrum of qual-

9



ity assurance of software. We specifically work on quality
models for software [7] that also support automatic analysis
of certain aspects of the model. Bug pattern tools are one
way to achieve that, especially when they are extensible. In
this context, our experience was that it pays off most of the
time to automate such analyses. In any case, the output of
the tools is a valuable part of analysing quality.

Several further questions arise from our work. It would
be interesting to investigate the limits of static analysis and
especially bug patterns. When is static analysis possible,
when does it make sense? When do we need dynamic tests?
Can we generate “generic” dynamic tests for specific bug
patterns that cannot be checked statically? When is it worth-
while to develop custom bug patterns for problems that oc-
cur repeatedly? How could the development of such custom
bug patterns be supported in an efficient manner (cf. [4])?
Moreover, for some of the bug patterns it might be possible
to automatically correct them. To what extent is this possi-
ble? Is this really useful because the learning effect is de-
stroyed? Finally, it is necessary that further studies confirm
our findings. In particular, it is important to note that we
concentrate on the effects of the use of bug pattern on the
reliability of a system. Specific anomalies, however, may
have a strong influence on the maintainability, security, or
safety of a software. These aspects have not been specifi-
cally investigated by this study. Nevertheless, our work in
combination with the related work is already able to give
insights into various aspects of static analysis tools in prac-
tice.

References
[1] E. Allen. Bug Patterns in Java. Computer Bookshops, 2002.

[2] N. Ayewah, W. Pugh, J. D. Morgenthaler, J. Penix, and
Y. Zhou. Evaluating static analysis defect warnings on pro-
duction software. In Proc. 7th Workshop on Program Anal-
ysis for Software Tools and Engineering (PASTE ’07), pages
1–8. ACM Press, 2007.

[3] T. J. Biggerstaff. Design recovery for maintenance and
reuse. Computer, 22(7):36–49, 1989.

[4] B. Chelf, D. Engler, and S. Hallem. How to write system-
specific, static checkers in Metal. In Proc. 2002 ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for
Software Tools and Engineering (PASTE ’02), pages 51–60,
2002.

[5] F. Deissenboeck, M. Pizka, and T. Seifert. Tool Support for
Continuous Quality Assessment. In Proc. 13th IEEE Inter-
national Workshop on Software Technology and Engineer-
ing Practice (STEP ’05), pages 127–136. IEEE Computer
Society Press, 2005.

[6] F. Deissenboeck and D. Ratiu. A unified meta-model for
concept-based reverse engineering. In Proc. 3rd Interna-

tional Workshop on Metamodels, Schemas, Grammars and
Ontologies for Reverse Engineering (ATEM ’06). Johannes
Gutenberg-Universität Mainz, 2006.

[7] F. Deissenboeck, S. Wagner, M. Pizka, S. Teuchert, and J.-F.
Girard. An activity-based quality model for maintainability.
In Proc. 23rd International Conference on Software Mainte-
nance (ICSM ’07). IEEE Computer Society Press, 2007.

[8] M. Fowler. Refactoring. Improving the Design of Existing
Code. Addison-Wesley, 1999.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[10] D. Hovemeyer. Simple and Effective Static Analysis to Find
Bugs. PhD dissertation, University of Maryland, 2005.

[11] D. Hovemeyer and W. Pugh. Finding bugs is easy. SIGPLAN
Notices, 39(12):92–106, 2004.

[12] IEEE Std 610.12-1990. IEEE Standard Glossary of Software
Engineering Terminology, 1990.

[13] N. Nagappan and T. Ball. Static analysis tools as early in-
dicators of pre-release defect density. In Proc. 27th Inter-
national Conference on Software Engineering (ICSE ’05),
pages 580–586. IEEE CS Press, 2005.

[14] D. Reimer, E. Schonberg, K. Srinivas, H. Srinivasan,
B. Alpern, R. D. Johnson, A. Kershenbaum, and L. Koved.
SABER: Smart analysis based error reduction. In Proc.
International Symposium on Software Testing and Analysis
(ISSTA ’04), pages 243–251. ACM Press, 2004.

[15] N. Rutar, C. B. Almazan, and J. S. Foster. A comparison
of bug finding tools for java. In Proc. 15th IEEE Interna-
tional Symposium on Software Reliability Engineering (IS-
SRE ’04), pages 245–256. IEEE CS Press, 2004.

[16] S. Wagner. A literature survey of the quality economics
of defect-detection techniques. In Proc. 5th ACM-IEEE In-
ternational Symposium on Empirical Software Engineering
(ISESE ’06). ACM Press, 2006.

[17] S. Wagner. A model and sensitivity analysis of the quality
economics of defect-detection techniques. In Proc. Interna-
tional Symposium on Software Testing and Analysis (ISSTA
’06), pages 73–83. ACM Press, 2006.

[18] S. Wagner, J. Jürjens, C. Koller, and P. Trischberger. Com-
paring bug finding tools with reviews and tests. In Proc. 17th
International Conference on Testing of Communicating Sys-
tems (TestCom ’05), volume 3502 of LNCS, pages 40–55.
Springer, 2005.

[19] J. Zheng, L. Williams, N. Nagappan, W. Snipes, J. P. Hude-
pohl, and M. A. Vouk. On the value of static analysis for
fault detection in software. IEEE Transactions on Software
Engineering, 32(4):240–253, 2006.

10


