
Towards a Model-Based and Incremental Development Process for
Service-Based Systems∗

Martin Deubler, Johannes Grünbauer,
Gerhard Popp & Guido Wimmel

Institut für Informatik
Technische Universität München

Boltzmannstr. 3, D-85748 Garching

{deubler, gruenbau, popp, wimmel}@in.tum.de

Christian Salzmann

BMW Car IT
Petuelring 116

D-80809 M̈unchen

christian.salzmann@bmw-carit.de

ABSTRACT
In this paper we introduce the concept of service-based
modeling and integrate the modeling techniques into ex-
isting development processes. We focus on services in the
different phases of the modeling and introduce appropri-
ate models as well as suitable notations. A small example
from the automotive domain is used throughout the paper
to illustrate the approach.

KEY WORDS
Service-Based Systems, Software Design and Develop-
ment, Software Methodologies, Software Architecture,
Automotive Software, Model-Based Development

1 Introduction

Software is getting a leading role in automotive develop-
ment and innovation. It is stated that software and elec-
tronics account for 90 percent of all innovations in mod-
ern cars. Already today cost for software and electronics
in current premium cars make up 40 percent of the over-
all cost. The next generation of premium cars is expected
to host a cumulated amount of up to one gigabyte of binary
code of software deployed via a set of embedded platforms.
The types of applications in the automotive domain are not
anymore limited to classical embedded systems, such as
airbag control software, but cover a broad range from mis-
sion critical embedded systems in the X-by-wire field to in-
fotainment and personalization in the MMI (Man Machine
Interface) area. The MMI is a central software system in
the car that manages the access of the user (driver) to the
functions of the car such as infotainment, phone and Inter-
net access, climate control and navigation system. The ac-
tual functions are not deployed on the MMI platform itself,
but are distributed over a set of ECUs (Electronic Control
Units) that are interconnected via different bus systems. In
the actual 7 series of BMW, for example, the MMI system
consists of a set of about 270 functions that can be triggered
by the user and are deployed over about 40 ECUs.

∗This work was supported by the Bavarian high-tech funding program
(High-Tech Offensive), within the project MEWADIS [1].

A fundamental difference of such a system in com-
parison to classical applications is in the interaction and
dependencies of the functions. One function, such as the
volume control of the amplifier, can be triggered not via
one single user interface, but by a set of other functions,
e.g. when the navigation system informs the driver with a
voice output the software lowers the volume of the audio
system for the time of the voice information.

Since we have to deal with multiple function inter-
actions, strong interrelations and dependencies between
functions, we call this type of systemmultifunctional sys-
tem, where one function may be used in different contexts.
In such a multifunctional system, the functional aspect is
more important than the whole application. For this reason
we have to deal, apart from the functions themselves, with
the encapsulation of them, their dependencies and their
combination with other functions. The unit of function with
its encapsulation, dependencies and combination is called
aservice.

Today’s development methods are purely function
oriented or in the newer forms of object oriented develop-
ment methods they are use case oriented. Such function
and object oriented methods are a priori not suited for such
a flexible modeling of services, but they are open to adapt
new development strategies.

In this paper, we suggest such an adaptation of exist-
ing development methods to service-based modeling, i.e.
we integrate the service representation into a development
process. In this context we also look at suitable notations
for the representation of services in different diagram types
and we identify necessary and appropriate models for a
service-oriented development process.

2 Description of the Development Process

In this section we present a development process for
service-based systems. The basis for our development pro-
cess is a phase oriented development process like the wa-
terfall model [2] or object oriented development methods
such as the Unified Software Development Process [3] or
the Catalysis Approach [4], just to name a few of them. We
integrate services as a central concept and guideline of the



Inception

Service Identification

Use Case Modeling

Service Modeling

Component Design

Construction

Transition
S

e
rv

ic
e
 r

e
la

te
d
 p

h
a
s
e
s

Figure 1. Phases of the Service Oriented Development Pro-
cess

development. The presented process is model-based, i.e.
the development is driven by explicit models of both the
development artifacts (product model) and of the process it-
self. The models of the development artifacts have a prede-
fined structure (which does not rule out textual parts), and
the process model describes how development proceeds in
the different phases, in terms of the product model. The
process is incremental in that it can be repeatedly applied
to add new functionality in small steps, which considerably
reduces risk (see Section 2.5).

Figure 1 shows the phases of the service oriented pro-
cess. We give a short overview about them and explain the
service related ones in more detail in the following sections.

We assume that we have anInception Phase, in which
the project is born and both a project mission and the re-
quirements are elaborated. This is the starting point of our
process. The concept of service does not yet appear and
thus the Inception Phase is not affected by our approach.
The results of this phase are documented in a project mis-
sion document and in a requirements specification list.

After the Inception Phase the sequences of actions at
a high abstraction level are modeled in theService Identifi-
cation Phase. In this phase a separation of the system takes
place. The service identification is covered in Section 2.1.
Results of this phase are activity diagrams modeling the run
of service functions.

A first elaboration of the services, which are identi-
fied in the Service Identification Phase, is worked out in
the Use Case Modeling Phase. The flow of events of ev-
ery service function (as a subfunction of a service) is spec-
ified as well as the input and output data, preconditions
for the processing, security requirements and service de-
pendencies. The Use Case Modeling Phase is discussed in
detail in Section 2.2. As a result this phase leads to a use
case model with a structured textual specification of the use
cases, sequence diagrams for one or more flows of events

for a service function, a textual description of the security
requirements, and alogical service architecture.

The sequence diagrams from the Use Case Modeling
Phase make up a first version of the analysis model, which
will be worked out in theService Modeling Phase. The be-
havior of a service is specified formally in an abstract way
by relating its inputs and outputs, e.g. using state transition
diagrams. Execution scenarios are derived as compositions
of services (logical architecture), and the security require-
ments are concretized in terms of the formal model. The
service modeling is described in detail in Section 2.3.

The next phase, theComponent Design Phase, ends
the service specific activities in the process. Here the ser-
vices are mapped to system components and thereby the
logical architecture is transformed into a system architec-
ture. This phase is summarized in Section 2.4. Result of
this phase is a set of components with assigned services
and a behavioral modeling of the components.

Afterwards, the system development is commonly
(e.g. according to [5]) continued with theConstruction
Phaseand theTransition Phase. These phases can be car-
ried out conventionally, as service-specific issues have been
resolved previously by the above mentioned mapping.

We explain our approach by referring to an industrial
case study from the automotive domain, an onboard diag-
nostic system. The purpose of this system is to monitor de-
vices of an automobile for malfunctions, to conduct diag-
noses by downloading device-specific diagnosis software
into the MMI system, and to suggest and take appropriate
measures such as initiating a software update or offering to
contact a dealer’s workshop with relevant information for
them to prepare a repair. As an example for a monitored
device, we consider a climate control unit.

2.1 Service Identification

In this phase, requirements have to be divided and they
have to be arranged to actors, whereby actors can be repre-
sented by roles, systems or services.

In a first step the requirements of the requirements
specification list from the former phase are transformed to
flows of activities, which are sufficiently fine-grained such
that each activity can be carried out by one actor.

In a second step after this division we have to arrange
these activities to their executing actors, i.e. the actor who
gets information from this activity or who sends informa-
tion to it. In the model the actors are swim lanes within an
activity diagram, the nodes are the activities and the arrows
show their causal (and temporal) relationship.

Since we deal with service-based modeling we have
to extend the actor model. Conventionally we have to deal
with two types of actors. The first actor type is the ab-
straction of a real person within a role, e.g. a driver role as
abstraction for a person who drives and operates a car. The
second actor type represents external systems interacting
with the system to be developed (e.g. via the different auto-
motive bus systems) which are not modeled in our specifi-



cation. For service-based development, we add a third actor
type, aservice. The system to be developed is not modeled
by one actor but rather by a set of actors of type service,
i.e. small self-contained functional entities responsible for
a number of activities belonging together. Since services
interact both with the above mentioned two actor types and
with other services, we can treat service-interactions in the
same way as other actor-interactions.

In the context of service modeling, we call the ac-
tivities performed by actors of type serviceservice func-
tions; otherwise we call themactions(human actor) and
system functions(other interacting system), respectively.
The needed functionality of a service is given by all ser-
vice functions assigned to the corresponding service actor.
In such a way we build up a usability driven model of ser-
vices and service functions.

For a better understanding of the diagrams we have
annotated the swim lanes with the belonging actor type
symbol, whereby the stickman (Figure 2a) represents a hu-
man actor and the box symbol (Figure 2b) stands for an
interacting system. For our extended actor model we in-
troduce a new symbol for the actor typeService, which is
shown in Figure 2c.

Example An example of an activity flow from our case
study is given in Figure 3, namely for the requirementOn-
board Diagnosis. We have to deal e.g. with the human ac-
tor Driver, the subsystem actorAutomotiveand the service
actorsDisplay, Climate Control UnitandOnboard Diag-
nosticall represented by swim lanes. Service functions are
e.g.show error messageor start onboard diagnosis.

2.2 Use Case Modeling

In the last years, the concept ofUse Cases[6, 3, 7, 8] has
become widely accepted within object oriented develop-
ment methods. The basic idea of this approach is that both
the domain objects as well as the user interaction of the
system are modeled within early development phases. The
use cases are more than a construct for capturing system
requirements: they drive the whole development process
and they provide major input when finding and specifying
classes, subsystems, interfaces and test cases (for more in-
formation cf. [3]). Furthermore, use cases are adequate for
an iterative development, as we will see in Section 2.5.

While uses cases have already been integrated into
object oriented development, they do not cover aspects of

Role
(a)

System
(b)

Service
(c)

Figure 2. The Extended Actor Model

Automotive
System

Driver
Display
Service

CCU Service
Onboard

Diagnostic
Service

Offboard Server
Inventory

Server
CCU

Diagnostic Service

recognizes
fault in climate
control service

(CCU)

monitor
car

message: CCU
fault

onboard fault
recovery

start
onboard
diagnosis

execute
CCU diagnostic

service

check CCU

instruction:
stop on next

car-park

show error
message

head for next
car-park

request
CCU diagnostic

service

Figure 3. Activity Diagram for the Requirement “Onboard
Diagnosis”

service-based modeling. In this case, we have to deal with
the following particularities:

There is no need for acommon domain model, which
has to be worked out e.g. in information systems during
the business modeling and has to be refined during the Use
Case Modeling Phase. Services only deal with a subset of
system objects, the ones we need for information storage
within the services and as input and output objects for the
service.

Furthermore, we considersecurity requirements
within this phase. In common systems, we describe use
cases in a structured textual way. Beside the actors a textual
description covers the processing, variants illustrate pecu-
liarities in the processing, the types of input and output
data are specified and often a precondition for the execu-
tion is given. Here we add a security section where we de-
scribe possible threat scenarios for every security objective.
Thereby we have to check possible violations of the objec-
tives confidentiality, authenticity, integrity, non-repudiation
and availability. More information about security within
the requirements phase is given in [9].

Finally we add a section “involved services”, that
highlights all concerned services. In a later step we can
refine the use case and connect the involved services by re-
lations likeaffects, usesorcontrols, which leads to alogical
service architecture. It provides us a structured view on the
system functions and how they are related (cf. [10, 11]),
and eventually a chance to cope with feature interaction
problems from the beginning of the development.

Thus we have a structured textual description. For a
complete service use case model we have to include every
service function we have identified in the Service Identifi-
cation Phase (cf. Section 2.1) in such an extended use case.
Note that this is a partial description, since the activity flow
diagram shows just an exemplarily run of the service. We



Table 1. Use Case Description for the Partial Onboard Di-
agnostic Service

Field Description

Use Case On Board Diagnostic

Actors Driver, Automotive System, Offboard Server,
CCU Service, Onboard Diagnostic Service,
Display Service, CCU Diagnostic Service

Precondition Engine running, hand brake tightened

Processing 1. Onboard Diagnostic Service checks error
cause 2. Inform Driver 3. Download CCU
Diagnostic Service from Offboard Server 4.
Start CCU Diagnostic Service

Variants (a) Error cause can’t be detected (b) Error can
be fixed by CCU Diagnostic Service, no
download required (c) No download possible
(various reasons) (d) Termination by Driver,
resumption at a later date

Input Message on CCU fault, data from system test,
confirmation message by Driver after
notification, downloaded CCU Diagnostic
Service

Output Status Message for Driver, diagnosis request,
download request, start signal for CCU
Diagnostic Service

Security Objectives Confidentiality:no threats; Authenticity: no
threats; Integrity: to ensure for internal
communication; Non-Repudiation:no threats;
Availability: possibly Internet connection,
non-critical

Involved Services Display Service, CCU Service, CCU
Diagnostic Service

obtain a complete service description by merging all partial
use case descriptions.

In addition to the textual description we build in the
Use Case Modeling Phase first analysis diagrams in form
of sequence diagrams. For each service function with its
belonging textual description we model the textually spec-
ified processing within a sequence diagram, where we de-
pict the message flow between the different actors. In this
diagram our introduced symbol for services (cf. Figure 2)
comes into action, where we use it to mark services as spe-
cial actor types.

In the following we sum up the steps which have to
be done for service functions to model them as use cases.
Note that we have no step for modeling an object model,
because we do not have a domain model in service-based
modeling as mentioned above.

1. Elaborate structured use case descriptions.

2. Specify threats and security objectives and add them
to the textual use case descriptions.

3. Identify service relations and add them to the textual
use case descriptions.

4. Formalize the use case descriptions exemplarily in one
or more sequence diagrams.

Automotive
System

Driver
Display
ServiceCCU Service

Onboard
Diagnostic Service

Offboard
Server

CCU Diagnostic
Service

CCU
fault

Diagnosis

Check further
checks

inform driver

Information

Acknowledgement

find CCU diagnostic service

load CCU diagnostic service

start CCU diagnostic service

Figure 4. Sequence Diagram for Use Case

S

in1:type1

in2:type2

out1:type3

out2:type4

Figure 5. Service Actor

Example Table 1 shows the use case description for the
Onboard Diagnostic Service according to Figure 3. Fig-
ure 4 shows the corresponding sequence diagram for our
use case.

2.3 Service Modeling

In the Service Modeling Phase, we use the sequence dia-
grams and the textual use case descriptions developed in the
Use Case Modeling Phase as a basis to develop a more de-
tailed analysis model. The analysis model we employ is a
formally (i.e., mathematically precisely) defined model for
service architectures; it is described in more detail e.g. in
[12]. We make use of tool support for these models in form
of the CASE toolAUTOFOCUS [13], which offers graphi-
cal description techniques similar to a subset of UML-RT.

The analysis model of a service-based system consists
of a number of actors, which are of the three actor types de-
scribed above. For the development of service-based sys-
tems, we focus on the specifications of the service actors.
Human roles and external systems form their environment.

Figure 5 shows the representation of a serviceS. Ser-
vices have an interface consisting of input and output ports
(denoted by empty and filled circles) and communicate
with their environment via typed input and output channels
connected to the ports. The arrow symbol (the same as we
used in the use case modeling, cf. Figure 2c) at the top of
the box identifies this actor as a service.

We specify the behavior of services as partial func-
tions from sequences of inputs to sets of sequences of out-
puts. Partiality is characteristic for services in that only the



CCU Service

A

Automotive
System

A

Onboard Diagnostic
Service

A

Display Service

A

Driver

A

A

Offboard
Server

A

Inventory
Server

A

CCU Diagnostic
Service

DisplayToDriver: TMessage

DriverToCCUDiag: TMessage

Figure 6. SSD of the “Onboard Diagnostic”

service relevant behavior is specified. The security require-
ments are concretized in terms of this model.

In the CASE toolAUTOFOCUS, the behavioral func-
tions are specified in an executable way, as state transition
diagrams. AUTOFOCUS can be used to model an actual
execution scenario, given as a network of actors connected
via the channels. These models provide a basis for con-
sistency checks, behavioral verification of safety and secu-
rity properties specified in temporal logic, test case genera-
tion, generation of monitor code, and further development
(Component Design Phase).

Example In Figure 6, we find the system structure
diagram (SSD) of the execution scenario correspond-
ing to the sequence diagram in Figure 4. We added
safety and security properties to the model and verified
them using the SMV model checker [14] connected
to AUTOFOCUS. At the modeled abstraction level,
model checking performance was not an issue as the
computation time is in the order of a few seconds per
property. For example, one of the required properties
for the onboard diagnosis system is that before the CCU
diagnostic service can be started, the driver must have been
instructed (via the display service) to drive to a parking
lot and halt his car. In our formalism, this is specified
by “precedes(DisplayToDriver == DriveToParkingLot,
DriverToCCUDiag == startDiag)”, which could be
shown to be true for the model.

2.4 Component Design

The logical service architecture provides a functional view
on the system, i.e. the definition of services and service
dependencies, respectively. Until the Component Design
Phase there are no structural constraints taken into account.
Here, the services can be mapped to one or even a number
of component architectures.

However, designing components with respect to com-
posing services into components is not the focus of this

paper. For detailed investigations see for instance [15] or
[12].

Example In our example, the service infrastructure is an
OSGi [16] platform, a Java framework supporting the de-
ployment of services. The services are mapped to a number
of so-called OSGi “bundles”: an “Onboard Diagnosis”, a
“Software Download” and an “CCU Diagnosis” bundle.

2.5 Incremental Development

In the waterfall model, the system is analyzed as a whole,
designed as a whole, implemented as a whole and tested as
a whole. Feature interactions are often recognized in later
development phases and it is very difficult, expensive and
time-consuming to solve such kinds of problems. For this
reason, especially object oriented systems are built up over
time incrementally rather then all at once near the end when
change become expensive [3]. Another reason for applying
an incremental development process is that the staff can
work more effectively.

In the domain of service-based modeling we begin an
iteration with the elaboration of one or more requirements
from the requirements specification list into an activity flow
for each requirement. This elaboration is done in the Ser-
vice Identification Phase, as described in Section 2.1.

Afterwards, in the Use Case Modeling Phase and in
the Service Modeling Phase (see Sections 2.2 and 2.3) the
service functions, which are identified and specified in the
logical service architecture, are modeled in detail.

Services, which consist of sets of service functions,
can now be mapped to system architectures in the compo-
nent design. The construction and transition phases can be
carried out, because all service functions corresponding to
the currently elaborated requirements have been modeled
so far.

In a next increment new requirements are transformed
into activity flows. It is possible that either new service
functions will be added to a formerly modeled and con-
structed service (i.e. the service will be enriched with addi-
tional functionality), or new services need to be elaborated.
The new service functions have to be modeled in the Use
Case Modeling Phase and in the Service Modeling Phase
and afterwards to be added in the component design and
in the construction as well as in the transition. The log-
ical service architecture evolves due to changed or newly
introduced service relations, which results both from the
inclusion of new service functions and from the elimina-
tion of early discovered (undesirable) feature interactions,
of increased service complexity or contradictions.

We repeat the iterations with further requirements
from the requirements specification until all requirements
are treated.

Example In a second iteration in the presented case
study, we intend to add a feature to the diagnostic services



to carry out software updates for the corresponding devices.

3 Conclusion and Future Work

To cope with the increasing complexity and the large num-
ber of mutually dependent functionalities in current and fu-
ture systems (as in the automotive domain), we presented a
model-based development approach based on the concept
of services as the basic building blocks in the elaboration
phase of development. We abstract as long as possible from
concrete component architectures but instead focus on the
system as a logical network of units of function (the ser-
vices) with abstract behavioral patterns and relationships
to other services.

We sketched a phase oriented process related to the
Unified Process, defined in terms of particular modeling
techniques to be used in the different phases. We integrated
the concept of services into these phases. Services are in-
troduced in the service identification phase by defining a
new actor type and refined during the following phases un-
til they are mapped to components. An important feature of
our approach is the consideration of safety and security as-
pects throughout the development. The behavioral service
models are defined in formal terms and supported by the
CASE toolAUTOFOCUS, allowing for verification, simu-
lation or test case generation for service-based scenarios.
Our process can be applied in an iterative and incremental
way. We demonstrated the process at the example of an in-
dustrial case study carried out in cooperation with a major
car manufacturer.

In the area of telecommunications the concept of ser-
vice (there called feature) has been used for quite some
time. More recently, frameworks have been developed to
offer Web services in Internet-based architectures. Only
lately, services have been applied in the domain of embed-
ded systems such as in automobiles. These approaches pri-
marily focus on specification of syntactical service inter-
faces, whereas we consider it important to include abstract
behavioral specifications and attributes such as dependen-
cies or security requirements as early as possible. First con-
cepts of such service models are presented in [10, 11, 12].
To our knowledge, no development processes are available
yet based on this extended concept of services. First ideas
that inspired the presented process are also given in [12].

In future, we plan to extend the given service-based
approach in different directions, e.g. by more fine-grained
ways to define relationships between services leading to
more comprehensive logical service architecture models.
In addition, we will look both at the problem of model-
ing quality of service attributes and of incorporating service
contexts (such as the current speed of the car) for context-
adaptive services. We also plan to develop a generic se-
curity model for service-based systems in the automotive
domain.

References

[1] MEWADIS website at http://www4.in.tum.de/
˜mewadis . In German.

[2] W. W. Royce. Managing the Development of Large Soft-
ware Systems. InProceedings of the Ninth Interna-
tional Conference on Software Engineering, pages 328–338.
IEEE, 1987.

[3] Ivar Jacobson, Grady Booch, and James Rumbaugh.The
Unified Software Development Process. Addison Wesley
Longman, Inc., 1999.

[4] D. F. D’Souza and A. C. Wills.Objects, Components, and
Frameworks With UML: The Catalysis Approach. Addison
Wesley Publishing Company, 1998.

[5] Philippe Kruchten.The Rational Unified Process: An Intro-
duction, Second Edition. Addison Wesley Longman, Inc.,
2000.

[6] Ivar Jacobson, Magnus Christerson, Patrik Jonsson, and
GunnarÖvergaard.Object-Oriented Software Engineering:
A Use-Case Driven Approach. Addison Wesley Longman,
Inc., 1992.

[7] Ruth Breu. An Integrated Approach to Use Case Based De-
velopment, 2004. To appear.

[8] Ruth Breu. Objektorientierter Softwareentwurf – Integra-
tion mit UML. Springer-Verlag, 2001. In German.

[9] Ruth Breu, Klaus Burger, Michael Hafner, Jan Jürjens, Ger-
hard Popp, Guido Wimmel, and Volkmar Lotz. Key Issues
of a Formally Based Process Model for Security Engineer-
ing. In Proceedings of the 16th International Conference
on Software & Systems Engineering and their Applications
(ICSSEA03), Paris, December 2–4, 2003, 2003.

[10] Manfred Broy. Modeling Services and Layered Architec-
tures. In H. K̈onig, M. Heiner, and A. Wolisz, editors,For-
mal Techniques for Networked and Distributed Systems, vol-
ume 2767 ofLecture Notes in Computer Science, pages 48–
61. Springer, 2003.

[11] Manfred Broy. Multi-view Modeling of Software Systems,
2003. Keynote. FM2003 Satellite Workshop on Formal As-
pects of Component Software, 8–9 September, Pisa, Italy.

[12] Bernhard Scḧatz and Christian Salzmann. Service-Based
Systems Engineering: Consistent Combination of Services.
In Proceedings of ICFEM 2003, Fifth International Confer-
ence on Formal Engineering Methods. Springer, 2003.

[13] F. Huber, S. Molterer, A. Rausch, B. Schätz, M. Sihling,
and O. Slotosch. Tool supported Specification and Simula-
tion of Distributed Systems. InInternational Symposium on
Software Engineering for Parallel and Distributed Systems,
pages 155–164, 1998.

[14] K. L. McMillan. Symbolic Model Checking. Kluwer Aca-
demic Publishers, Boston, 1993.

[15] Christian Salzmann. Modellbasierter Entwurf spontaner
Komponentensysteme. PhD thesis, TU M̈unchen, 2002. In
German.

[16] Open Services Gateway Inititative. OSGiTM Ser-
vice Platform Specification. Release 3, March 2003,
http://www.osgi.org.


