

Towards a Tool Support for a Living Software Development Process 1 2

Michael Gnatz, Frank Marschall, Gerhard Popp,
Andreas Rausch and Wolfgang Schwerin

Technische Universität München, Arcisstr. 21, D-80290 München, Germany
{gnatzm|marschal|popp|rausch|schwerin}@in.tum.de

1 This work originates form the research project ZEN – Center for Technology, Methodology and Management of Software & Systems Development –
 a part of Bayerischer Forschungsverbund Software-Engineering (FORSOFT), supported by the Bayerische Forschungsstiftung.
2 Copyright 2002 IEEE. Published in the Proceedings of the Hawai'i International Conference on System Sciences, January 7 – 10, 2002,
 Big Island, Hawaii.

Abstract

Change and evolution of business and technology im-
ply change and evolution of development processes. Be-
sides that for a certain enterprise or a project we will
usually integrate elements from a variety of existing proc-
ess models, comprising generic standards as well as spe-
cific development methods. In this paper we propose a
process model framework which is modularly structured
on the basis of the concept of Process Patterns. This
framework allows us to describe development processes
in a way such that change, evolution, and integration of
processes are facilitated. Founded on our framework we
sketch the idea of a Living Software Development Proc-
ess. An important step in this direction is a proper knowl-
edge management tool support. In this paper we discuss
and propose the approaches and requirements to fulfill
the users specific needs of a sophisticated tool support for
a Living Software Development Process.

1. Introduction

Nowadays, many different software development proc-
ess models exist. These models range from generic ones,
like the waterfall model [21] or the spiral model [6], to
detailed models defining not only major activities and
their order of execution but also proposing specific nota-
tions and techniques of application. Examples of the latter
kind are the Objectory Process [13], the Unified Software
Development Process [15], the Catalysis Approach [11],
the V-Modell 97 [12], or eXtrem Programming [4] – just
to name some of them.

All these process models have their individual assets
and drawbacks. Hence, one would wish to take all the
different assets and benefits of the various process models
as a basic construction kit for an integrated development
process tailored to the specific needs of the individual
team, project, company, and customer.

To assemble a specific development process from ex-
isting models we have to identify and characterize explic-
itly the building blocks and their relations of a process
model in general. Therefore we need a set of basic notions
and definitions common for all process models – a so
called process model framework. This framework must
allow us to integrate the various existing process models.
The process model framework can serve as a common
basis for the definition of a development process that in-
corporates the assets and benefits of the different existing
process models and that can be flexibly adapted to differ-
ent kinds of project requirements and situations.

Once you have defined your standardized development
process in terms of the framework, you still have to adapt
this development process to different projects and project
situations. This is often referred to as static tailoring. But,
our business is changing almost every day: the require-
ments of our customers change, new technology has to be
adopted, and finally the way we work together evolves. To
be successful in a changing environment we not only need
static adaptation but also a more flexible way of adapta-
tion - the dynamic adaptation, i.e. the openness and flexi-
bility to enhance the process model itself while the proc-
ess is enacted within a project.

Tom DeMarco even mentioned about the nature of
process models and methodologies in [10]: „It doesn’t
reside in a fat book, but rather inside the heads of people
carrying out the work.“ Thus, our process model frame-
work must additionally offer the ability to incorporate the
process knowledge of the whole company. It must provide
a platform for a learning organization recording the evolu-
tion steps of a Living Software Development Process.

In this paper we introduce our process model frame-
work that is discussed more in detail in [30]. However, a
framework like this can only add value to an organization
if it is applied reasonable and supported with appropriate
tools in practice. Thus the main objective of this paper is
to demonstrate how our approach of a Living Software
Development Process can be adopted in real world or-
ganizations.

Since we strongly believe that the application of such a
flexible and dynamic approach must be accompanied by a
sophisticated tool support we will focus on this tool sup-
port to demonstrate how our framework can be used suc-
cessfully.

The desired tool support must address dynamic as well
as static adaptation of the development process models.
Moreover the tool has to support the project team during
the whole lifecycle of the development project.

In the following section we give an overview of the dif-
ferent levels of development processes and models,
namely the project, method and metamodel level. We pre-
sent the requirements of an evolutionary process model
based on these views. In the next section, Section 3, we
define our process model framework. In Section 4 we pre-
sent scenarios for the application of our approach and
extract the requirements of a sophisticated tool support for
the presented concepts, including definition and im-
provements of process models as well as support for the
project level. A conclusion is given at the end of the paper
in Section 5.

2. The Living Software Development Process

Various people and groups get into touch with process
models and metamodels. In the following two sections, we
present the two main views on process models – the pro-
ject view and the method view. We will discuss their spe-
cific way of interaction with the Living Software Devel-
opment Process we are going to propose in this work.
Thus, we can show the needs and benefits of the two dif-
ferent user groups mentioned above. Finally, we present
the different levels of a software development process and
show how tool support is related to these levels.

2.1. The Project View

Companies, which are on Capability Maturity Model
(CMM) level 3 or higher, have a standardized process
model [20]. This standard process model provides guide-
lines and support for an organization’s projects in general.
A tool is needed to document and offer the standard proc-
ess models to project managers and project team mem-
bers. While performing their daily tasks they are creating
documents that follow predefined templates. The tool
should offer these templates and the applications to edit
the templates.

Managing a concrete project implies the selection of a
suitable process from a set of existing, possibly standard-
ized alternatives as shown in Figure 1. This process can
flexibly be build by iteratively choosing Process Patterns
as proposed in this paper. Decision support is needed to
find an appropriate process for a concrete project. Once a
process is chosen, it has to be tailored dynamically ac-

cording to the project’s situation, i.e. more fine-grained
Process Patterns have to be chosen as the project contin-
ues. Again a proper tool support is needed to tailor the
development process to the specific needs of the project.
The tailored process represents the guidelines, which are
intended to provide guidance for project team members.

Figure 1: Project view on the Living Software
Development Process

In terms of our process model framework, given in
Section 3, the tailored process defines which Process Pat-
terns are to be applied in a concrete project, which model-
ing concepts and notations are to be used and also which
work products are to be produced.

Figure 2: Method view on the Living Software
Development Process

2.2. The Method View

Process improvement, as required on CMM level 5
[20] for example, means the evolution of process models.
The formulation of process models on the basis of a well-
defined ontology facilitates comprehension and hence

changes of development processes. Elements of the proc-
ess model framework are supposed to play the role of such
an ontology defining terms like “Activity”, “Process Pat-
tern”, “Work Product” and their interrelations.

An ontology for development processes provides both,
the developers and the methodology group, with a com-
mon vocabulary. On the one hand a methodology group
can use such an ontology for the definition of standardized
processes. On the other hand developers can use this vo-
cabulary for the description of proposals for changes or
additional process elements, which reflect their experience
made with formerly applied processes. On the basis of
these proposals redefinitions by the methodology group
can be done.

Figure 2 shows the method view on the Living Soft-
ware Development Process. The Process Pattern library
which is depicted by a bookshelf has to be supported by a
proper tool as proposed in this paper.

2.3. Process Models and Metamodels

According to [28, 29] we can divide the software de-
velopment process into the production process, that is the
process in charge of developing and maintaining the prod-
uct to be delivered, and the meta process, that is the proc-
ess responsible for maintaining and evolving the whole
software process. Using this terminology, we may see the
project view as the production process, and the methodol-
ogy view as the meta process.

Figure 3 combines these concepts into an overall
model for software development processes where the
aforementioned views can be mapped on.

The Instance Level in Figure 3 captures those elements
that belong to a certain process in a certain project, such
as analysis documents or a certain Process Pattern applied
in a concrete project, for example. This level corresponds
to the project view already mentioned.

The Model Level describes a certain software devel-
opment process. This process definition might contain a
description of an analysis document, guidelines of how to
develop software according to a waterfall process model
or guidelines of how to organize and hold a workshop
with customers to elicit requirements. This level offers
guidelines for project managers as well as team members.
A specific process model, as defined in [28], expressed in
a suitable process modeling language, would be an ele-
ment of the Model Level.

The Metamodel Level provides the basic framework to
establish a living process model. It offers clear definitions
for terms like „Work Product”, “Process Pattern” or „Ac-
tivity”. The Metamodel Level represents the common
conceptual base for a company’s methodology group to
improve and evolve the underlying standard software de-
velopment process model. It is on this level where the

concepts of process modeling languages, such as EPOS
SPELL and SOCCA (cf. [9, 28]) are defined.

Process Model

Process Model Framework

Process

Instance Level

Model Level

Metamodel Level

«instance»

«instance»

analysis document description,
 requirements

elicitation pattern, static structure
modeling, UML class diagram

waterfall pattern,

analysis documents, applied
waterfall pattern in a concrete
project, etc.

Work Product, Process Pattern,
Activity, Modeling Concept,
Notation, etc.

Tool Support:

 Documentation and Evolution
 of the Living Software
 Development Process

o

Tool Support:

 Tailoring

 applicable Process Patterns,
 Modeling Concepts, Notations

o

o

o

o

o

Guidance for the project team
 Decision Support regarding

 Cooperation Support
Feedback to the Methodology

 Group

Figure 3: Overall Model of the Living Software
Development Process

On each of these levels specific features of a sophisti-
cated and universal tool support can be identified. On the
Model Level, a tool has to deal with documentation and
evolution of the proposed process model. Supporting this
level with a suitable tool is the prerequisite for supporting
the Instance Level of a living development process. On
the Instance level some among many desired features are
tailoring of the generic model to a project-specific one,
guidance of the project team, decision support regarding
applicable Process Patterns, modeling concepts and nota-
tions, as well as cooperation support. Next to supporting
the project an important requirement is to provide a feed-
back loop to the methodology team to ensure the evolu-
tion of the process on the Model level. These high-level
requirements of tool support are further elaborated in Sec-
tion 4.

3. The Process Model Framework

In the previous section we have shown how developers
and the methodology group may interact for elaborating
and improving a standard software development process
establishing a Living Software Development Process. Our
basic ontology is defined in the process model framework,
which is on the Metamodel Level in Figure 3.

The framework must provide the ability to define and
maintain a process model, which integrates elements of all
the various existing process models, like for instance the
Rational Unified Process [17] or the V-Modell 97 [12].

Thus, the framework must enable the methodology group
to state clearly the correlations between the elements of
the different process models in terms of a common meta
model, to allow their seamless integration. Additionally,
the framework must support static as well as dynamic ad-
aptation of the process model with respect to the evolution
and learning of a living organization.

The new, upcoming concept of Process Patterns seems
to be an approach which basically follows our ideas and
which may fulfill our requirements. Process patterns are a
very general approach allowing us to integrate existing
process models without having to develop a new model
from scratch [2, 3, 7, 8]. For example in [1] we have al-
ready shown the integration of the V-Modell in the Proc-
ess Pattern approach.

The basic idea of the concept of Process Patterns is to
describe and document process knowledge in a structured,
well defined, and modular way. Moreover patterns pro-
vide information helping us in finding and selecting alter-
native development steps, similar to strategies and selec-
tion guidelines in [22]. Conform with most authors, pat-
terns in our approach consist mainly of an initial context,
a result context, a problem description and a solution. The
initial context is an overall situation giving rise to a cer-
tain recurring problem that may be solved by a general
and proven solution. The solution leads to the result con-
text [5].

Figure 4: Process Model Framework

Figure 4 illustrates the basic concepts of the proposed
process model framework. It develops further the Process
Pattern approach from [7, 8], and integrates it with an
enhanced variant of the widely accepted process model
framework given in [9]. The framework is based on a
clear separation of concerns between the overall result

structure, the consistency criteria, and the Process Patterns
themselves.
A Process Pattern defines a general solution to a certain
recurring problem. The problem mentions a concrete
situation that may arise during the system development. It
mentions internal and external forces, namely influences
of customers, competitors, component vendors, time and
money constraints and requirements. A Process Pattern
suggests an execution of a possibly temporally ordered set
of activities. Activities themselves may be carried out fol-
lowing the guidelines of other, subordinated Process Pat-
terns realizing the activity in question. Therefore Process
Patterns and activities in our framework may be structured
hierarchically, but iterative activities like the application
of the spiral model [6] may also result in more complex
structures that contain loops.

Process Patterns in our framework represent strategies
to solve certain problems. Activities represent develop-
ment steps and are executed by Process Patterns. An activ-
ity does only describe what is to be done but not how it is
to be done. In contrast to that a Process Pattern provides a
solution for realizing an activity. Hence generally one
activity might be realized by different Process Patterns.
Activities are performed by definite roles. In turn roles are
assigned to corresponding persons.

Each Process Pattern as well as each activity needs an
initial context to produce a result context. The initial con-
text describes the required project situation to perform an
activity or pattern, respectively. The result context de-
scribes the situation we reach when performing an activity
or pattern, respectively. The context captures the internal
state of the development project and can be characterized
by constraints over the set of work products. Simple con-
straints are that certain work products have to exist.

A process model assigns certain Process Patterns, as
for instance the pattern “Planning the Project”, to certain
work products, as for example the “Project Schedule”.
These work products are described by means of modeling
concepts, as for instance “Time Flow Modeling”. The
modeling concepts are represented by certain notations,
such as “UML Sequence Diagrams”.

The initial and result context of a Process Pattern may
not only require the existence of certain work products,
but also that certain modeling concepts and notations are
to be applied for these work products. This is important
when a pattern proposes the application of notation spe-
cific techniques. For instance in [18] methodical guide-
lines for the refinement of specifications are introduced.
These refinement techniques require the modeling concept
“Interaction Modeling” based on the notation “Message
Sequence Charts”.

For the executes and realizes relationships in Figure 4
we require certain relationships between the contexts of
related Process Patterns and activities. The work products
in the result context of a Process Pattern have to be a su-

*

1 11 1

1

assign

perform
execute

realize

describe

describe

describe

relationship

relationship relationship

Person Role

Activity
Process
Pattern

Problem

Context

Modelling
Concept NotationWork

Product

relationship

Conceptual
Model

initial result initial result

perset of the result context of each realized activity. The
initial context of a Process Pattern yet has to be a subset
of the initial context of each realized activity. With these
consistency criteria we cover the intuition that a realizing
pattern does require at most the input of the realized activ-
ity, to produce at least those results “promised” by the
activity.

Consistency is also required for the contexts regarding
the executes relationship. The union of the result contexts
of the executed activities form the result context of the
executing Process Pattern. The initial contexts of the ac-
tivities have to be subsets of the initial contexts of the
Process Pattern they are executed by. Thus inter-mediate
results produced in the workflow of the executed activities
need not necessarily be part of the initial context of the
executing activity. Preserving consistency is an important
feature of our tool support proposed in Section 4.

The precise definition of the meaning of, and context
conditions between work products can be achieved by the
use of a so-called conceptual model. Work products that
are based on sound description techniques have not only a
well-defined notation, but also a possibly even formal
semantics in form of a mapping from the set of work
products into the set of systems (cf. [16, 23, 25]). A con-
ceptual model characterizes, for instance, the set of all
systems that might ever exist. This integrated semantics
provides the basis for the specification of a semantic pre-
serving translation from specification work products to
program code. This can serve as a basis for correct and
comprehensive code generation.

The circular relationship associations assigned to vari-
ous elements in Figure 4, such as work product and con-
ceptual model, cover the general idea of structuring these
elements, for example hierarchically.

4. Tool Support for a Living Process

In contrast to “traditional” methods of software devel-

opment the pattern-based Living Software Development
Process cannot be documented very well within a static
medium such as a book or static HTML-Sites in a com-
pany’s intranet. The Living Software Development Proc-
ess represents the methodological knowledge base of a
company or organization. However, it is typical for
knowledge that its amount, structure and content change
over time while the organization gains more experience
and professionals as well as science provide new solutions
and also new problems. Thus we strongly believe that the
application and the definition of a Living Software Devel-
opment Process needs a much more flexible medium that
allows not only its documentation but also its maintenance
in real-time. Therefore we are currently developing the
web-based “Living Software Development Process Sup-
port Application” (LiSA), which allows the definition,

maintenance and documentation of Process Patterns in
terms of our process model framework (cf. Section 3).

In this section we present a concrete scenario to dem-
onstrate the application of our Process Pattern approach.
We will show how methodologists and projects can make
use of appropriate tools like LiSA to introduce and apply
a Living Software Development Process. Finally, we iden-
tify the basic concepts and requirements of such a tool and
show how to support projects applying the Living Soft-
ware Development Process.

4.1. Tool support for the Methodology Team

In our scenario we will start with the methodology

group of a larger software development company called
“SuperSoft”. This group is responsible to define and
document the development process for the different pro-
jects at SuperSoft.

SuperSoft’s methodology team would like to be able to
combine different existing development methods with
their own experiences to provide projects with a flexible
set of Process Patterns that can be combined to an ideally
adapted process. Therefore SuperSoft’s methodology
team decides to apply the tool LiSA to establish the Liv-
ing Software Development Process we introduced in the
previous sections. LiSA allows defining a complete pat-
tern-based process at the Model Level (cf. Figure 3) and
thus integrating various existing methods with own ap-
proaches.

First the methodology team has to define the set of
work product descriptions and templates according to
those a project develops software. The work product
structure serves as a common basis for the integration of
development process knowledge. Most of these work
product definitions may already exist in some way, since
the projects use a lot of existing templates like templates
for test reports, use case descriptions, and so on. Thus, the
methodology team has to build up a description of a whole
work product filing cabinet by hierarchically arranging the
work product structure in the tool. For every work product
definition there is a short description and an explanation
of the work products purpose. Furthermore, there are links
that lead to available templates and best practice samples
for every work product.

After the creation of a complete filing cabinet the
methodology team uses the tool to define typical activities
that may be performed during software development.
Typically, they will choose activities that may be per-
formed in different ways. Hence, the realization of these
may be described by different Process Patterns. For every
activity they give a short explanation of the development
issue and mark a set of work products in their filing cabi-
net as necessary input and another set as guaranteed out-
put. For example for the new activity “Testing” the work

products “Specification” and “Code” may serve as input
while the output are work products of the type “Test Re-
port”. Therefore, the tool allows the definition of input
and output contexts, just by selecting the appropriate work
product descriptions from the tools filing cabinet tree.

Now SuperSoft has already a consistent description of
what has to be produced and which artefacts are needed to
produce other artefacts. In the next step SuperSoft’s
methodology team starts to document the companies exist-
ing processes.

Figure 5: Defining a new Process Pattern within LiSA

Figure 5 shows an example dialog from our process
development tool LiSA. The dialog for editing a Process
Pattern allows filling the description fields of the pattern
template which make up a pattern description, as for ex-
ample intent, problem and solution. In the left frame of the
dialog in Figure 5 some of the other editable entities of
our process model framework are shown in a tree struc-
ture.

When creating a new Process Pattern the user can de-
fine an input and an output context like when creating a
new activity. After that LiSA offers a set of already de-
fined activities that the new pattern may realize according
to the consistency criteria explained in Section 3. Human
interaction is then required to determine the intended, i.e.
semantically realized activities among those suggested by
the tool.

The pattern’s description also comprises a description
of all the executed activities and how their different inputs
and outputs relate. Therefore the user can enter plain text.

Whenever he wants to refer to an executed activity he can
select this activity from the list of activities and LiSA will
record a new “executes” relationship between pattern and
activity.

Based on the already given work product filing cabinet
and the activities SuperSoft’s methodology team defines a
set of Process Patterns that may originate from various
established methods and/or from own experience different
SuperSoft projects have gained over time. During the
process of writing new Process Patterns it may be neces-
sary to add new activities or work product descriptions to
integrate all kinds of methodological approaches. So in
the end SuperSoft has created its own process model for a
Living Software Development Process.

Probably it may be necessary to define several of these
pattern-based development processes to support very dif-
ferent kinds of projects, such as the development of web-
based business applications and embedded controller
software. These process definitions may originate from a
common set of core work products and patterns, which
help to integrate the company’s processes.

A Living Software Development Process is alive, not
only because it offers flexibility to those who apply it, but
also because it allows to be extended and modified when-
ever necessary or desired. It has to be ensured, that the
consistency of the complete process definition is not vio-
lated by modifications of the process. For example, a
change in the input context of an activity may result in the
fact that several patterns don’t realize this activity syntac-
tically any more while some others could do so now. So,
whenever a member of SuperSoft’s methodology team
does perform such a modification, she will be informed
about the impacts and may chose additional steps to keep
the process definition sound and easy to apply.

Of course, the tool also allows browsing the resulting
set of work product descriptions, activity descriptions, and
Process Patterns. Thus LiSA can also be used by the pro-
jects that apply the company’s new living process as a
comfortable process documentation.

Project team members can submit proposals via LiSA’s
web interface and the people of the methodology group
enter a consolidated and sound description of the pro-
posed or enhanced pattern including the problem domain,
when the pattern’s application is advisable and its pur-
pose. Involving project members in the definition and
later in the improvement of Process Patterns helps to en-
sure that the defined process is lived within the company.

As we have seen, a tool like LiSA must meet a set of
requirements to allow the definition of a company’s own
Living Software Development Process. This includes
o the definition and maintenance of

- a work product filing cabinet,
- development activities,
- Process Patterns with consistent realizes and exe-

cutes associations,

o and the ability to browse and search within the proc-
ess definition to use it as an integrated guide book.

The LiSA tool serves as documentation of the process and
therefore can be used as a guide by projects. However, our
vision of a more sophisticated tool support for projects is
introduced in the next section.

4.2. Tool support for Projects

There are already web-based documentations of meth-

ods like the Rational Unified Process [17] or Catalysis
that offer a set of development activities and work product
descriptions. However, all these approaches are stuck with
a given methodology and usually they do not deal with
instances of work products and processes in software de-
velopment. Hence in this paper we suggest our vision of
an enhanced tool support for projects that also deals with
concrete instances of work products and activities – not
just their definition. The proposed tool support for pro-
jects is based on our generic process model framework
(cf. Figure 4). Thus it does not come along with the re-
strictions of currently available tools.

While developing the tool LiSA to support the method
view our group is already planning to extend this tool to
support projects in the application of a pattern-based de-
velopment process. To illustrate these considerations we
extend our scenario and show how development projects
can profit from such an approach and how a tool can sup-
port them. In the extended scenario we take a closer look
at the project “Banking Account Management System”
(BAMS) at SuperSoft.

When the project manager of BAMS initially begins to
use the extended tool “LiSA for Projects” (LiSA-Pro) he
selects an appropriate software development process
model defined by SuperSoft’s methodology team. In this
case he might chose SuperSoft’s standard process model
for information systems development.

Next the project manager tailors the filing cabinet, i.e.
he starts to drop out certain work products his specific
project does not need. For example, if BAMS is build
from scratch without the need to fit in an existing envi-
ronment, he might drop out all the work products concern-
ing the “As-Is Analysis”. Consequently the tool will not
show him any development activities or Process Patterns
that rely on these work products in the further course of
the project.

After tailoring the selected work product filing cabinet
the project manager instantiates it. Therefore the tool gen-
erates a complete directory structure of all work products
in the project’s home directory and fills it with the avail-
able work product templates. For every work product de-
scription initially one instance exists. If a project member
wants to create an additional work product instance he can
do so at any time. The tool will add the new instance to

the tool’s work product instances tree and create a new
empty template for the instance. For example the work
product description “test case” naturally gets instantiated
several times during the BAMS project.

For each work product instance the status “empty”,
“under work”, “released” is tracked by the tool. Initially
all work product instances are “empty”. The status of
these instances has to be coupled with a sophisticated ver-
sion control system. This allows the project members to
use their version control system to reconstruct old ver-
sions of the work product instances including their state.

Now, after the project’s structure has been created for
BAMS the project team can start filling it with work prod-
ucts that are initially present, such as contracts with cus-
tomers, a vision statement or even existing code from a
predecessor project can be reused. The new work products
replace the empty templates and their state is set to “re-
leased”, which indicates that the work product may be
used as input for further activities.

At this point all initial configuration work is done and
the team can start “productive” work. As the project man-
ager looks at the tool he gets offered a list of applicable
development activities he can perform with the given set
of “released” work products.

As a first step the project manager chooses a very
coarse grained activity called “Project”. The tool offers
him a set of applicable Process Patterns that realize this
activity. These might be for example the “Extreme Pro-
gramming-Project Pattern” or the “Waterfall Develop-
ment-Project Pattern” that are based on well known exist-
ing methods [4, 21]. The manager reads the problem de-
scriptions, Pros and Cons of these patterns and then de-
cides which description fits best for the situation of the
BAMS project. For example there might be a pattern that
is very recommendable because it fits to project situations
of high time pressure.

Whenever a user decides to perform a certain Process
Pattern he chooses the pattern in the tool. In an additional
dialog he can choose the work product instances he wants
to lock, e.g. if someone decides to perform a testing pat-
tern he has to select at least one module of code he wants
to test, but not all work products of the type “code”. All
the selected work products are marked “under work” and
thus locked within the revision control system. After the
pattern has been applied all the work products of the ini-
tial and the result context are set to “released”, until no
other user has set some of them “under work” again.

From now on most of the time there will be an active
Process Pattern that guides the project team through its
work. The tool indicates all these active patterns (or proc-
esses) and lists the activities that still have to be per-
formed to finish each process. In choosing the appropriate
patterns to realize these activities the project can flexibly
and dynamically react to external forces such as changing

requirements, the loss of team members or budget cuts at
any time throughout the project.

The focus of the LiSA tool is on the guidance of the
project team members in their daily work – the enforce-
ment of a prescriptive process is not addressed. Next to
supporting projects the focus of the tool is to narrow the
sometimes existing gap between methodology depart-
ments and daily project work.

Therefore after offering a Process Pattern as a guide to
a project team member the tool automatically provides a
feedback loop to the methodology team. Thus the tool
stimulates the recording of experiences, pros and cons of
patterns, suggestions for improving existing patterns or for
new patterns based on experiences gained within a pro-
ject. Therefore the tool is also intended to support the
methodology team with process elicitation and to ensure
that the process is evolving and thus living.

5. Conclusion

In this paper we have introduced a framework for a
Living Software Development Process that is based on the
idea of Process Patterns. We discussed the project view
and the method view on processes. On top of these views
we established our process model framework that allows
us to integrate and evolve existing and new processes
models.

We have shown that a pattern-based approach in soft-
ware engineering is a great benefit for both, methodology
group and project teams. With an appropriate tool support
as presented in this paper the application of this approach
appears to be very promising and can be applied for both
of the two views on processes.

At the moment we are developing the J2EE-based web
application LiSA that helps to define and maintain an or-
ganization’s software development process. Thus LiSA
may serve an organization as an enterprise-wide knowl-
edge management platform that provides all the informa-
tion about a companies development processes. The con-
cept of Process Patterns allows the flexible adoption of
the process at the method level, while it enables the soft-
ware developers to choose the process that fits best for
their individual project situation at any time.

For most projects the outlined tool support will be a
great added value. However there are some features
someone might still miss. For example a sophisticated
workflow and cooperation support or tighter integration
with other development tools are desirable. Furthermore
project managers might want additional help for choosing
the right Process Pattern in a certain situation. Therefore
we are currently planning the integration of the tool Pro-

ChoiceII3 that helps to choose an appropriate Process Pat-
tern for cost estimation depending on certain project pa-
rameters.

6. References

[1] Dirk Ansorge, Klaus Bergner, Bernd Deifel, N. Hawlitzky, C.
Maier, Barbara Paech, Andreas Rausch, Marc Sihling, Veronika
Thurner, Sascha Vogel. Managing Componentware Development
- Software Reuse and the V-Modell Process. In Lecture Notes in
Computer Science 1626, Advanced Information Systems
Engineering, Page 134-148, Editors Matthias Jarke, Andreas
Oberweis. Springer Verlag. 1999.

[2] Scott W. Ambler. Process Patterns: Building Large-Scale
Systems Using Object Technology. Cambridge University Press.
1998.

[3] Scott W. Ambler. More Process Patterns: Delivering Large-
Scale Systems Using Object Technology. Cambridge University
Press. 1999.

[4] Kent Beck. Extreme Programming Explained: Embrace
Change. Addison-Wesley. 1999.

[5] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter
Sommerlad, Michael Stal. Pattern-Oriented Software
Architecture, A System of Patterns. John Wiley & Sons. 1996.

[6] Barry Boehm. A Spiral Model of Software Development and
Enhancement. ACM Sigsoft Software Engineering Notes, Vol.
11, No. 4. 1986.

[7] Klaus Bergner, Andreas Rausch, Marc Sihling, Alexander
Vilbig. A Componentware Development Methodology based on
Process Patterns. Proceedings of the 5th Annual Conference on
the Pattern Languages of Programs. 1998.

[8] Klaus Bergner, Andreas Rausch, Marc Sihling, Alexander
Vilbig. A Componentware Methodology based on Process
Patterns. Technical Report TUM-I9823, Technische Universität
München. 1998.

[9] J.-C. Derniame, B. Ali Kaba, D. Wastell (eds.): Software
Process, Principles, Methodology, and Technology. Lecture
Notes in Computer Science 1500, Springer, 1999.

[10] Tom DeMarco, Timothy Lister. Peopleware, Productive
Projects and Teams, Second Edition Featuring Eight All-New
Chapters. Dorset House Publishing Corporation. 1999.

[11] Desmond Francis D'Souza, Alan Cameron Wills. Objects,
Components, and Frameworks With Uml: The Catalysis
Approach. Addison Wesley Publishing Company. 1998.

[12] Wolfgang Dröschel, Manuela Wiemers. Das V-Modell 97.
Oldenbourg. 1999.

[13] Ivar Jacobson. Object-Oriented Software Engineering: A
Use Case Driven Approach. Addison Wesley Publishing
Company. 1992.

[14] Ivar Jacobson. Component-Based Development Using
UML. Invited Talk at SE:E&P’98, Dunedin, Newzealand. 1998.

3 The tool ProChoiceII is also developed within the research project
FORSOFT.

[15] Ivar Jacobson, Grady Booch, James Rumbaugh. Unified
Software Development Process. Addison Wesley Publishing
Company. 1999.

[16] C. Klein, B. Rumpe, M. Broy: A stream-based mathematical
model for distributed information processing systems - SysLab
system model. In Proceedings of the first International Workshop
on Formal Methods for Open Object-based Distributed Systems,
Chapmann & Hall, 1996.

[17] Philippe Kruchten. The Rational Unified Process, An
Introduction, Second Edition. Addison Wesley Longman Inc.
2000.

[18] Ingolf Krüger. Distributed System Design with Message
Sequence Charts. Dissertation, Technische Universität München.
2000.

[19] Object Management Group (OMG). Meta Object Facility
(MOF) Specification. http://www.omg.org, document number:
99-06-05.pdf. 1999.

[20] Mark C. Paulk, Bill Curtis, Mary Beth Chrissis, and Charles
V. Weber. Capability Maturity Model for Software, Version 1.1.
Software Engineering Institute, CMU/SEI-93-TR-24, DTIC
Number ADA263403. 1993.

[21] Winston W. Royce. Managing the Development of Large
Software Systems: Concepts and Techniques. In WESCON
Technical Papers, Western Electronic Show and Convention,
Los Angeles, Aug. 25-28, number 14. 1970. Reprinted in
Proceedings of the Ninth International Conference on Software
Engineering, Pittsburgh, PA, USA, ACM Press, 1989, pp. 328-
338.

[22] C. Rolland, N. Prakash. A. Benjamen: A multi-Model View
of Process Modelling. Requirements Engineering Journal, to
appear.

[23] Bernhard Rumpe: Formale Methodik des Entwurfs verteilter
objektorientierter Systeme. Herbert Utz Verlag Wissenschaft,
1996.

[24] A.-W. Scheer: ARIS, Modellierungsmethoden,
Metamodelle, Anwendungen. Springer Verlag, 1998.

[25] B. Schätz, F. Huber: Integrating Formal Description
Techniques. In: FM'99 - Formal Methods, Proceedings of the
World Congress on Formal Methods in the Development of
Computing Systems, Volume II. J. M. Wing, J. Woodcock, J.
Davies (eds.), Springer Verlag, 1999.

[26] OMG: Unified Modeling Language Specification, Version
1.3 alpha R5, March 1999, http://www.omg.org/.

[27] Workflow Management Coalition: Terminology &
Glossary. Document Number WFMC-TC-1011, Status 3,
www.wfmc.org, February 1999.

[28] A. Finkelstein, J. Kramer, B. Nuseibeh: Software Process
Modelling and Technology. Research Studies Press Ltd,
JohnWiley & Sons Inc, Taunton, England, 1994.

[29] R. Conradi, C. Fernström, A.Fuggetta, R. Snowdon:
Towards a Reference Framework for Process Concepts. In
Lecture Notes in Computer Science 635, Software Process
Technology. Proceedings of the second European Workshop
EWSPT’92, Trondheim, Norway, September 1992, pp. 3-20,
J.C. Derniame (Ed.), Springer Verlag, 1992.
[30] M. Gnatz, F. Marschall, G. Popp, A. Rausch, W. Schwerin:
Towards a Living Software Development Process based on

Proscess Patterns, Proceedings of the Eight European Workshop
on Software Process Technology 2001, Lecture Notes in
Computer Science 2077, V. Ambriola (editor), pp. 182-202,
Springer, 2001

