
Service-oriented Commonality Analysis Across Existing Systems∗

Alexander Harhurin and Judith Hartmann
Technische Universität München

Department of Informatics
Chair of Software and Systems Engineering
Boltzmannstr. 3, 85748 Garching, Germany

{harhurin,hartmanj}@in.tum.de

Abstract

This paper introduces an extractive approach to
building-up a product line based on existing systems.
Thereby, we focus on the analysis of common functionali-
ties across different systems. Our commonality analysis is
performed on the functional level which offers the highest
reuse potential. We use the service diagram, a formally
founded specification technique, for the functional specifi-
cation. This allows us to perform the commonality analysis
based on a formal definition of the system behavior. Con-
cepts for the comparison of service diagrams and a method-
ology for building-up a service diagram of a product line
are described in the paper. Additionally, since legacy sys-
tems rarely have an accurate functional specification, we
present a methodology for extracting such a specification
out of a given logical architecture.

1 Introduction

Increasing complexity due to a multitude of different
functions and their extensive interaction as well as a ris-
ing number of different product variants are just some of
the challenges that must be faced during the development
of multi-functional system families.

Addressing this trend, we presented an approach to
model-based development of software product lines (PLs)
and to supporting the configuration of concrete variants
(see [4]). In this paper, we show how to use it for the reverse
engineering of a PL based on existing systems. Thereby, we
focus on the analysis of common functionalities across dif-
ferent systems. According to Clements and Northrop [2],
a PL is “a set of software-intensive systems sharing a com-
mon, managed set of features that satisfy the specific needs

∗This work was partially funded by the German Federal Ministry of Ed-
ucation and Research (BMBF) in the framework of the VEIA project under
grant 01ISF15A. The responsibility for this article lies with the authors.

of a particular market segment or mission and that are de-
veloped from a common set of reusable core assets in a pre-
scribed way”. Thus, the exploitation of commonality across
related systems plays an important role in establishing the
baseline for PL development. Moreover, a profound com-
monality analysis is crucial for deciding about the adequacy
of setting up a PL. “One must have confidence that there is a
family worth building. Performing a commonality analysis
is a systematic way of gaining such confidence and of de-
ciding what the scope of the family is. It reduces the risk of
building systems that are inappropriate for the market and
provides guidance to architects.” [17]

According to Krueger [12], approaches to analyzing
commonalities can be categorized into three classes, namely
proactive, reactive, and extractive ones. While the proactive
approach (a PL is analyzed from the very beginning) is well
explored (see [2, 15]), it is not obvious how PL techniques
can be applied in the presence of legacy software. How-
ever, building a PL is rarely a green-fields process: differ-
ent already implemented systems have to be integrated into
a family. Thereby, the PL development may borrow heavily
from existing artifacts (specification, architecture) of related
legacy systems. Consequently, we present an extractive ap-
proach to building a PL based on existing systems.

Our commonality analysis is performed on the functional
specification – the most abstract description – of single sys-
tems. We are guided by the fact that the component ar-
chitecture and the source code are usually a very poor ex-
pression of the user-visible functionality. They include a
lot of details which are not observable at the overall sys-
tem boundaries. Abstracting from technical realizations and
capturing the pure functionality of systems, the functional
specification offers the highest potential of reuse. To that
end, we introduced a formally founded specification tech-
nique, namely service diagrams, in [6]. They describe sys-
tems as a set of related user-visible functional requirements
(services). In contrast to prevalent commonality analyses
(e. g. FORM [9] or FAST [18]) which primarily compare

feature names, we use a formal definition of the system
behavior to identify functional commonalities between sys-
tems. The result of our analysis is a common service dia-
gram which explicitly specifies common and different func-
tionalities of a PL including the existing systems.

Drawing from our experience, we assume that model-
based software development generally starts with the de-
sign of a logical architecture. Consequently, legacy systems
rarely have an accurate functional specification. Therefore,
the first part of our approach deals with extracting func-
tional specifications based on the logical architectures of
existing systems.

Contributions With the concepts described in this paper
we make the following contributions.

We analyze the internal structure of the existing architec-
ture and the behavior of single components to define black-
box interaction patterns of the system. These result in a
functional specification (a service diagram) - the formal ba-
sis for an accurate commonality analysis.

Based on the formal semantics and not on the names of
the services, we compare service diagrams mined from dif-
ferent systems. Thereby, we also consider the possibility
that services are similar but not identical or that the same
functionality is specified by different sets of services. Thus,
our approach allows to identify functional commonalities
based on differently decomposed or labeled services.

Running Example The concepts introduced in the re-
mainder of the paper will be illustrated by a simplified ex-
ample of a cruise control. In this example, the legacy ar-
chitectures of two different cruise control systems already
exist. The basic cruise control (BCC) controls the vehicle
speed for a constant target speed. The advanced cruise con-
trol (ACC) additionally offers a distance control to automat-
ically follow a target vehicle and a pre-crash warning which
displays a warning as soon as a potential crash is detected.
Both controls comprise the acceleration/deceleration of the
vehicle triggered by the respective pedals. In the remain-
der of the paper, based on the given logical architectures of
both systems, the respective service diagrams are systemat-
ically extracted and compared to each other. Furthermore,
a common service diagram of the cruise control PL is set
up. All relevant details of the example are described at the
appropriate places.

Outline The rest of this paper is organized as follows. In
Section 2, the semantics of the service diagram is briefly
presented. In Section 3, we introduce our approach to min-
ing a service diagram of a single system based on its legacy
architecture. Section 4 describes our commonality analysis
across single service diagrams and shows the methodology
to obtain a common service diagram of a PL. Finally, we

compare our concepts to related approaches in Section 5
before we conclude in Section 6.

2 Service Diagram

This section introduces the service diagram, a hierarchi-
cal model for the specification of the functionality of a PL.
The behavior is specified from a black-box view, i. e. as re-
lation between input and output messages observable at the
system boundaries. An implementation satisfies the specifi-
cation formalized by a service diagram if it shows the same
I/O behavior as specified by the diagram.

A service diagram consists of hierarchically decomposed
services – modular specifications of single functionalities –
and four kinds of relationships between them, namely ag-
gregation, functional dependencies, optional and alterna-
tive relations (cp. Figure 4). Structurally, a service diagram
reminds of a FODA tree [8]. In contrast to features where
behavior is only informally associated by choosing suitable
names, the behavior of services is formally defined in our
approach.

All relevant concepts are briefly sketched in the follow-
ing paragraphs. A more detailed description of the basic
concepts can be found in [6].

Services The service diagram is based on the notion of a
service [1] as the fundamental concept. Intuitively, a service
represents a piece of functionality by specifying require-
ments on the I/O behavior. Hence, the service diagram is
a restrictive specification. Each service imposes a require-
ment on the system and, thus, further restricts the valid I/O
behavior. Formally, a service is a stream-processing func-
tion which maps streams of input messages to streams of
output messages. Here, a stream s of elements of type Data
can be thought of as a function s : N → Data .

Each service provides a syntactic interface I I O, which
consists of a set I of typed input ports and a set O of typed
output ports. With each port we associate a set of streams
representing the syntactically correct communication over
this port. Formally, for a given set of ports P , a port history
is a mapping which associates a concrete stream to each
port: h : P → (N → Data). H(IS) × H(OS) denotes the
set of all syntactically correct I/O history pairs (x, y) for a
service S with interface (IS I OS).

There are different ways to specify the semantics – the
stream-processing function – of a single service, e.g. I/O
automata [13], first-order logic predicates or a tabular nota-
tion. By specifying the semantics, the set of all syntactically
correct histories is restricted to a subset of (semantically)
valid histories. We say, the behavior of a service is the set
of all valid history pairs for this service.

Note, a service restricts the output histories only for a
subset of input histories (service domain). For the input his-

tories outside its domain, a service specifies no restrictions
on the outputs – any arbitrary value is allowed.

Structuring of Services The aggregation relation ar-
ranges individual services into a service hierarchy. The se-
mantics of a compound service (composed of several sub-
services) is defined as being the union of all concurrently
operating sub-services.

The alternative relation is defined as a relation between
a variation point and a set of mutually alternative services
(variants). An variation point specifies a set of history pairs
which are valid for at least one of its variants, respectively.

An optional service represents an alternative between the
presence and the absence of this service. Consequently, it
can be transferred into an alternative variation point.

By functional dependencies, we denote relations be-
tween services in a way that the behavior of one service
influences the behavior of other ones. As our approach
aims at the specification of the user-visible behavior, only
those dependencies are specified which are observable at the
overall system boundaries. There are a lot of methodolog-
ical significant dependencies. However, our cases studies
have shown that all of them can be realized by introducing
additional services and priority dependencies. A priority
dependency “service S1 takes priority over service S2” de-
fines that if both services require different messages on their
common output ports within a time interval, the message of
S1 takes priority over the message of S2. Within this time
interval, a valid output history has to fulfill the requirements
formalized by S1 but not those of S2 – only service S1 is ef-
ficacious.

3 Mining Service Diagrams

This section describes our approach to extracting a ser-
vice diagram based on a legacy logical architecture. In the
following, we shortly sketch our definition of the logical ar-
chitecture. Then, we explain our methodology for extract-
ing single services out of a logical architecture. Finally, we
concentrate on the hierarchical structuring of services and
their dependencies.

3.1 Logical Architecture

The logical architecture describes the system as a hier-
archical network of communicating components connected
by channels (cp. Figure 1). Analogously to services, each
component provides a syntactic interface and a behavioral
semantics. The syntactic interface of a component is given
as a set of I/O ports. For the behavioral specification of
a component, several specification techniques can be used
(e. g. I/O automata, statecharts). In contrast to the service
diagram, the view on the system is changed from a pure

black-box to a white-box view. While each service de-
scribes an aspect of the black-box behavior, the logical ar-
chitecture focuses on how the black-box behavior is real-
ized by (internally) communicating components. Thereby,
the formation of the logical architecture can be influenced
by different criteria, especially by non-functional require-
ments. Depending on the considered criteria, the resulting
logical architecture will turn out differently.

3.2 Mining Services

To extract services out of an existing logical architec-
ture, we analyze the static structure as well as the behavior
of the component architecture. We propose the following
three steps. First, analyze the static dependencies between
input and output ports. Then, identify input patterns which
classify inputs according to their behavioral effects on the
outputs and output functions which describe different output
reactions. Lastly, combine input patterns which provoke an
equivalent output reaction into one service.

Static Analysis of I/O Dependencies In the first step, the
dependencies between input and output ports of the overall
system are analyzed. For each output port, we determine
the set of input ports which influence the given output port.
Therefore, the data flow (a chain of internal components
connected by channels) is retraced starting from the output
port back to the input ports. The result of this analysis is
mirrored by a predicate d : I×O 7→ B, which indicates if a
port o ∈ O depends on a port i ∈ I . The set P = {(I ′, o) |
o ∈ O ∧ I ′ = {i ∈ I | d(i, o)}} consists of tuples where o
is an output port of the system and I ′ is the set of all input
ports o depends on.

In our example (cp. Figure 1(a)), port instr de-
pends on all input ports, while port warning only de-
pends on ports currSpeed and currDist. Thus, P =
{(I,instr), ({currSpeed,currDist},warning)}.

Identification of History Patterns In the next step, for
each tuple (I ′, o) ∈ P , we analyze the I/O histories on
the respective ports. We identify a finite number of his-
tory patterns mapping input patterns to corresponding out-
put functions. An input pattern is a predicate which char-
acterizes a set of input histories until a time interval t:
IP t : H(I ′) 7→ B. An output function Ft defines the out-
put on a given port at time interval (t+1) depending on the
inputs until time interval t. Given an input history x, an out-
put function Ft can be seen as a predicate over the output
histories: Ft(x) : H(o) 7→ B. A history pattern HP relates
an input pattern to an output function such that inputs satis-
fying the input pattern must be mapped to outputs in com-
pliance with the output function. Intuitively, it defines un-
der which circumstances (which input pattern) which output

On/Off
Switch

SC

DC

PCW

CC
switch

reqSpeed

reqDist

currSpeed

currDist
brake
acc

instr

warning

(a) Advanced Cruise Control

Speed
Control

Pedal
Control

Cruise
Control

reqSpeed
currSpeed

brake
acc

instr

switch

(b) Basic Cruise Control

Figure 1. Legacy Logical Architectures

function is efficacious. Formally, a history pattern defines a
set of history pairs which fulfill the following condition: for
all time intervals t in which the input history satisfies the
input pattern, the output at (t + 1) must be defined by the
corresponding output function:

HP =(IP , F) def= {(x, y) ∈ H(I ′)×H(o) |
∀t ∈ N : IP t(x) ⇒ Ft(x, y)}

Note, for any time interval, a set of history patterns par-
titions the I/O histories into different (not necessarily dis-
junctive) subsets.

While identifying the history patterns, we apply es-
tablished concepts used in the generation of white-box
tests [14]. Based on the internal structure of the logical ar-
chitecture and the specifications of single components, the
domain of each port is partitioned into equivalence classes
such that every guard of each branching in the control flow
from inputs to outputs is set to both true and false at least
once. In the test community this method is called condition
coverage. For example, component On/Off Switch
(automaton omitted here) partitions the domains of the
ports switch, reqDist, reqSpeed into two equiva-
lence classes, respectively: dom(switch) = {0} ∪ {1},
dom(reqSpeed) = {x | x < 30} ∪ {x | x ≥ 30} and
dom(reqDist) = {x | x < 300}∪{x | x ≥ 300}. Follow-
ing the data flow up to the output port instr, subsequent
components cause a decomposition of other port domains.

In summary, the result of this step is a table of history
patterns for each tuple of the set P . The number of the
tables equals the number of the output ports.

Table 1 shows the history patterns for the output port
instr of the ACC. Each column of the table defines a
single history pattern. Besides concrete values of the re-
spective type, variables and predicates (first-order logic) are
used to describe the inputs. The asterisk * denotes an arbi-
trary value.

The first column specifies the following pattern: if the
value on port brake is greater than 0 (brake pedal is
pushed) and all other values are arbitrary, then the speed
instruction on port instr is calculated by means of func-
tion k.1 The second column describes the situation in
which the acceleration pedal is pushed (acc>0). In this
case, the speed instruction is calculated by means of func-
tion k, too. The next three history patterns describe
the situation in which brake and acceleration are not ap-
plied (brake=0 and acc=0) and either the ACC is off
(switch=0), the required speed is less than the specifi-
cation allows (currSpeed<30) or the required distance
is less than permitted (reqDist<300). In this case, the
speed instruction equals 0. Otherwise, if the distance con-
trol is on and a target vehicle is detected (currDist6= ε),
the speed instruction is calculated by the function f , else by
the function g (described by the last two history patterns).

Combination of History Patterns into Services Finally,
we build a set of initial services based on the tables from the
last step. The resulting services describe disjunctive sub-
functionalities. Thus, they are neither hierarchically struc-
tured nor related by dependencies.

For each table, all history patterns with the same output
function are combined into one service. The syntactic inter-
face of this service consists of a set of input ports I ′′ ⊆ I ′

and the output port o. Thereby, an input port is included in
I ′′ only if it is further specified (i. e. not identified by *) in
at least one of the combined patterns. Otherwise, the port
is of no importance in the history patterns and, therefore,
excluded from I ′′. The semantics of the service (i. e. the
mapping from inputs to outputs) is defined as conjunction
of the concerned history patterns. Whenever the input his-

1Functions k, f , g and h are four different methods to calculate the
speed instruction. Their details implemented in component CC of ACC
and Cruise Control of BCC are of no importance for our approach.

switch * * 0 * * 1 1
reqSpeed * * * <30 * s ≥ 30 s ≥ 30

reqDist * * * * <300 d ≥ 300 ≥ 300

currSpeed * * * * * x x

currDist * * * * * y 6= ε y = ε

brake x > 0 x 0 0 0 0 0
acc y y > 0 0 0 0 0 0
instr k(x, y) k(x, y) 0 0 0 f(x, y, s, d) g(x, s)

Table 1. I/O History Patterns of Advanced Cruise Control

I Ports O Ports Semantics
1 acc, brake instr (acc > 0 ∨ brake > 0)⇒ instr = k(acc, brake)

2 acc, brake, reqDist, reqSpeed,
switch

instr acc = 0 ∧ brake = 0 ∧ (switch = 0 ∨ reqSpeed < 30 ∨
reqDist < 300)⇒ instr = 0

3 acc, brake, reqDist, reqSpeed,
switch, currSpeed, currDist

instr acc = 0 ∧ brake = 0 ∧ switch = 1 ∧ reqSpeed ≥
30 ∧ reqDist ≥ 300 ∧ currDist 6= ε ⇒ instr =
f(currSpeed, currDist, reqSpeed, reqDist)

4 acc, brake, reqDist, reqSpeed,
switch, currSpeed, currDist

instr (acc = 0 ∧ brake = 0) ∧ (switch = 1 ∧ reqSpeed ≥
30 ∧ reqDist ≥ 300) ∧ currDist = ε ⇒ instr =
g(currSpeed, reqSpeed)

5 currSpeed, currDist warning warning = h(currSpeed, currDist)

Table 2. Services of the Advanced Cruise Control

tory is in accordance with at least one of the input patterns,
the output must be defined by the common output function.
Since every initial service describes different output func-
tions, the input patterns of the initial services are required
to be disjunctive in order to avoid inconsistencies.

In our example, Table 1 yields four services for the out-
put port instr. For the output port warning there is
only one history pattern (table omitted here), thus, only one
service. Together, this results in five initial services for the
logical architecture from Figure 1(a) (cp. Table 2). Note, we
purposely use numbers instead of names to label services in
order to emphasize the role of the service semantics but not
the terminology in our subsequent analysis.

3.3 Construction of Service Diagrams

The result of the service mining is a set of services that
unambiguously specify the black-box behavior of the sys-
tem. As already mentioned, this set is unstructured and the
services are completely independent from each other. As a
consequence, the initial services have more input ports and
specify more constraints on the inputs than they actually
need for the calculation of their outputs. Exemplary, even
though the output function f of Service 4 from Table 2 only
depends on the current and the requested speed, it also in-
cludes other input ports. They are required to define the
situation in which the service is efficacious (cp. Section 2).

Drawing from our experience, the commonality analy-
sis (see Section 4) performs better on a service diagram
which hierarchically structures modular services and ex-
plicitly models dependencies. Therefore, the goal of the
second stage of the mining process is to rebuild the set of
initial services into a service diagram. Thereby, we aim at
separating the pure functionality specified by a service from
the preconditions under which the service is efficacious.

We analyze the syntactical interface of the initial services
and order them according to an inclusion relation between
the input ports: S1 < S2 ⇔ I1 ⊂ I2. The resulting ordering
is not total, since two services S1 and S2 with I1 * I2 ∧
I2 * I1 are not comparable. Looking at the initial services
influencing the output port instr (cp. Table 2), we notice
the following inclusion relation: I1 ⊂ I2 ⊂ I3 = I4. Thus,
the services are ordered according to their interfaces: 1 <
2 < 3 = 4.

Now, we differentiate the input ports in necessary and
additional ports. For each service, we classify an input port
as necessary if the respective output function depends on it.
The port is essential for the functionality of the service. All
ports, which have no influence on the output function but
only define the precondition of a service to be efficacious
are classified as additional.

In the following behavioral analysis, we aim at eliminat-
ing redundant conditions by introducing priority dependen-
cies between services. Furthermore, we remove additional

ports if they are no longer needed in the precondition.
Starting with the “smallest” service, we compare the

conditions on the common input ports. If a service S2 has as
input condition a negation of the input condition of a service
S1, there is an implicit priority dependency between them.
As introduced in Section 2, a priority dependency “service
S1 takes priority over service S2” defines that S2 is only ef-
ficacious if the input condition of S1 is not fulfilled. Thus,
the introduction of an explicit priory dependency between
both services allows us to avoid a repeated treatment of the
common condition in service S2. By this, the services can
be stepwise reduced to their pure functionality.

In our example, Service 1 requires acc > 0∨brake > 0.
All other services require acc = 0 ∧ brake = 0, the nega-
tion of the input pattern of Service 1. Furthermore, acc and
brake are additional input ports of all services except for
Service 1. By introducing a priority dependency between
Service 1 and the rest, the acc/brake-part can be eliminated
from all other services. In the service diagram depicted in
Figure 2(a), this step results in two new services: Service 1
and the service aggregating the rest. The analysis of Service
2 and the remaining services yields that the negation of the
input condition of 2 is reformulated in the input patterns of 3
and 4 – an explicit priority dependency makes sense. How-
ever, only port switch can be eliminated since all other
ports are necessary and can not be eliminated from the com-
pound service of 3 and 4. The resulting service diagrams of
the completed analysis of both systems are depicted in Fig-
ure 2 and Tables 3 and 4. To improve the comprehensibility
of the example, the tables additionally contain an informal
description of the resulting services.

ACC

1

5

2

3 4
(a) ACC

BCC

6 7
(b) BCC

Figure 2. Service Diagrams

4 Commonality Analysis

Having mined service diagrams from logical architec-
tures, we have reached an appropriate abstraction level to
start with a formal commonality analysis across legacy sys-

tem functionalities. The main goal of the analysis is to ob-
tain a common service diagram of the (potential) PL. The
common diagram explicitly specifies common and different
functionalities of the existing systems. Thus, this diagram
serves both as basis for the decision to create a PL or not and
as starting base in the model-based development of a future
PL according to [4]. Thereby, we use the formal definition
of the service behavior to identify functional commonalities
between systems. To that end, we introduce three different
matching relations to reason about the similarity of two sin-
gle services, before we describe our methodology to com-
pare diagrams and to build up the common service diagram.

4.1 Matching Relations

Additionally to the basic relation which classifies two
services as identical or not, we introduce two further match-
ing relations. These relations indicate whether one service
specifies a sub-functionality of the other one or whether
both services have common sub-functionalities.

Note, services describe the black-box behavior of sys-
tems embedded in the same environment. Since the set of
sensors/actuators is relatively small and well-known to all
designers, we assume that the port names are unambiguous
to all services. Thus, the same port names refer to the same
ports and different port names refer to different ports.

Identical Services We consider two services S1 and S2

as identical if they exactly match – syntactically and be-
haviorally. Formally, this is the case if they have the same
syntactic interface and describe the same set of valid I/O
histories.

In our example, Services 4 of ACC and 7 of BCC are
identical (cp. Tables 3 and 4). They have the same syntactic
interface and they show the same behavior. Both services
describe a simple speed control which calculates the speed
instruction based on the difference between current and re-
quested speed.

Sub-Service Intuitively, a sub-service specifies a sub-
functionality of its super-service (cp. compound service in
Section 2). More precisely, S2 is a sub-service of a S1 if
the interface of S2 is a sub-interface of S1 and every valid
history pair of S2 is extendable to a valid history pair of S1.
In other words, if a pair is valid for the sub-service S2, then
there is a pair valid for the super-service S1 such that they
are equal on all common ports.

Service 1 of ACC is a sub-service of Service 6 of BCC
(cp. Tables 3 and 4). The interface of 1 is a sub-interface of
6. For each history pair valid for Service 1 there is a his-
tory pair valid for Service 6 such that they are equal on the
ports acc, brake and instr. This results from the fact
that both services describe the same behavior, given acc>0,

I Ports O Ports Semantics Informal Description
1 acc, brake instr acc > 0 ∨ brake > 0 ⇒ instr =

k(acc, brake)
Reaction to the actuation of the brake or ac-
celeration pedal.

2 reqDist, reqSpeed,
switch

instr switch = 0 ∨ reqSpeed < 30 ∨ reqDist <
300⇒ instr = 0

ACC is off, the required speed or the re-
quired distance is less than permitted.

3 reqDist, reqSpeed,
currSpeed, currDist

instr currDist 6= ε ⇒ instr =
f(currSpeed, currDist, reqSpeed, reqDist)

A target vehicle is detected. The speed de-
pends on the distance to the vehicle.

4 reqSpeed,
currSpeed

instr instr = g(currSpeed, reqSpeed) The speed instruction only depends on the
current and required speed values.

5 currSpeed, currDist warning warning = h(currSpeed, currDist) Warning signal depends on the current
speed and distance values.

Table 3. Leaf Services from Figure 2(a)

I Ports O Ports Semantics Informal Description
6 acc, brake, switch instr acc > 0 ∨ brake > 0 ∨ switch = 0 ⇒

instr = k(acc, brake)
If one of the pedals is actuated or the speed
control is off, the reaction is the same.

7 reqSpeed,
currSpeed

instr instr = g(currSpeed, reqSpeed) The speed instruction depends on the cur-
rent and required speed values.

Table 4. Leaf Services from Figure 2(b)

brake>0, and switch=0. In other words, each history
pair valid for Service 1 can be enlarged to an I/O pair valid
for 6 by setting switch=0.

Common Sub-Service The third matching relation de-
scribes situations in which neither S1 is a sub-service of
S2 nor vice versa, but both services have a common sub-
service – they specify the same sub-functionality. Formally,
both services have a subset of common I/O ports on which
they specify the same behavior.

In our example, Service 2 of ACC and Service 6 of BCC
have a common sub-service. Service 2 requires on port
instr the output 0 whenever switch=0 (independently
of the values on the ports reqDist and reqSpeed). If
additionally acc=0 and brake=0, the output calculated by
Service 6 is also 0 since k(0, 0) = 0. Thus, if switch=0,
acc=0, and brake=0 both services require the output 0.
This means, whenever the automatic cruise control is turned
off and the pedals are not pushed, the speed instruction is 0.
This holds for both systems.

4.2 Comparison of Service Diagrams

Now, we show how the introduced matching relations
can be used to compare service diagrams.

Comparison of Leaf Services We start the analysis by
syntactically comparing the leaf services of the considered
diagrams. This yields three sets of potential candidates for

the introduced matches: the set Cid of services with identi-
cal interfaces, the set Csub of pairs of services (S, T) where
S has a sub-interface of T , and the set Cc of services which
have at least one input and one output port in common. Ac-
cording to the definitions from the last subsection, these sets
are not disjunct, rather Cid ⊆ Csub ⊆ Cc.

Based on these candidate sets, we start our behavioral
analysis. We identify the behaviorally identical services
from the candidates in Cid. The analysis of the second set
Csub yields the services which are in a sub-service relation.
Thereby, we do not consider services already identified as
identical. Lastly, we eliminate identical services and sub-
services from Cc and analyze the remaining services in or-
der to determine the services which have a common sub-
functionality.

In our example, the syntactical analysis yields the fol-
lowing sets Cid = {(4, 7)}, Csub = {(4, 7), (1, 6), (7, 3)}
and Cc = {(4, 7), (1, 6), (7, 3), (2, 6), (2, 7)}. The behav-
ioral analysis of Cid shows that the Services 4 and 7 are
identical. Consequently, the pair (4, 7) can be removed
from the remaining candidate sets. The behavioral analy-
sis of the remaining set C ′

sub = {(1, 6), (7, 3)} classifies 1
as sub-service of 6. By analyzing the remaining candidate
set C ′

c = {(7, 3), (2, 6), (2, 7)} we see that the Services 2
and 6 have a common sub-functionality. Summarized, we
have the pair (4, 7) of identical services, the pair (1, 6) of
services in a sub-service relation, and the pair (2, 6) of ser-
vices with common sub-functionalities.

Comparison of Compound Services Besides leaf ser-
vices, we also include compound services into our analysis.

Two compound services are identical if they aggregate
exactly the same sub-services, or if all sub-services of one
compound service are sub-services of the second one and
vice versa. In the former case, the same functionality is
exactly divided into the same set of sub-functionalities. In
the latter case, the same functionality is divided into two
different sets of sub-functionalities.

A compound service and a leaf service are identical if
each sub-service of the compound service is a sub-service
of the leaf service and the leaf service is a sub-service of the
compound service. In this case, the same functionality is
divided into a set of sub-functionalities within one diagram
and remains undivided within the other diagram.

The sub-service and common sub-service relations for
compound services are defined analogously.

Note, the sub-service relation allows us to avoid the in-
troduction of a normal form of the service diagram. The
same functionality described by two different sets of ser-
vices will be identified by means of the sub-service relation.
In our experience, differing decompositions of the over-
all functionality are quite usual if functionalities are mined
from different logical architectures.

4.3 Common Service Diagram

Having identified related services of both diagrams, we
rebuild them into a common service diagram.

Extracting Common Services Before building up the
common service hierarchy, we treat situations where a ser-
vice of one diagram is a sub-service of a service of the other
diagram or where two services describe a common sub-
functionality. We aim at extracting the maximum identical
part of the behavior from the diagrams. For that propose,
each of these services is split up into a common sub-service
which is identical across the different diagrams and a rest
sub-service.

In our example, Service 1 is a sub-service of 6, Services
2 and 6 share a common functionality. We decompose Ser-
vice 6 into two sub-services, 6A and 6B (cp. Figure 3 and
Table 5). Service 6A exactly specifies the sub-functionality
specified by Service 1 – the reaction to the actuation of the
brake or acceleration pedal. Service 6B specifies the speed
instruction instr=0 if the automatic is off (switch=0).
A priority dependency between 6A and 6B determines that
6B is only efficacious if neither the acceleration nor the
brake pedal is pushed. Furthermore, Service 2 is decom-
posed in a Service 2A, which is identical to 6B, and a rest
Service 2B. This service describes, that the speed instruc-
tion is 0 if the requested speed or the requested distance are

too low. Note, that the new Services 2A and 2B are inde-
pendent. There is no priority relation between them.

ACC

1

5

2

3 42A 2B

(a) ACC

BCC

6 7

6A 6B

(b) BCC

Figure 3. Adapted Service Diagrams

Building Up a Service Hierarchy Now, we have identi-
fied the maximum identical part of the behavior from both
diagrams. All pairs of identical services – original ones, as
well as the ones extracted in the last step – become manda-
tory services within the common diagram. If services are
sub-services or have a common sub-functionality, but it is
not possible to extract a common part, these services be-
come alternative variants of a variation point. All other ser-
vices become optional.

In our example, the commonality analysis of the leaf ser-
vices of the adapted service diagrams (cp. Figure 3) yields
the set of identical services {(1, 6A), (2A, 6B), (4, 7)}.
The identical services result in three mandatory services,
namely Pedal Control (reaction to the actuation of the
pedals), SC (speed control), and On/Off (functionality to
switch the automatic on/off) within the common diagram of
Figure 4. All other services of the ACC result in optional
services. The newly introduced Service 2B is mirrored by
the Service CorrectValues (functionality to check the
requested speed and distance ranges), the distance control
functionality represented by 3 becomes Service DC, and the
pre-crash warning 7 results in PCW. To advance the intu-
itive comprehensibility of the common service diagram, we
assigned meaningful names to the leaf services. However,
from a technical point of view, this is not necessary.

CC

Pedal Control

PCW

DC SCCorrectValues On/Off

Figure 4. Common Service Diagram

I Ports O Ports Semantics
2A switch instr switch = 0 ⇒ instr = 0

2B reqDist, reqSpeed instr reqSpeed < 30 ∨ reqDist < 300⇒ instr = 0

6A acc, brake instr acc > 0 ∨ brake > 0 ⇒ instr = k(acc, brake)

6B switch instr switch = 0 ⇒ instr = 0

Table 5. Additional Sub-Services from Figure 3

Analysis of Functional Dependencies The next step is to
analyze the dependencies between services. There is a de-
pendency between two mandatory services within the com-
mon diagram if both single diagrams contain the same de-
pendency between the original services. Thereby, transitive
relations – via ancestors – must be considered adequately.

In our example, the direct relation between Services 6
and 7 causes a transitiv relation between 6A and 7 in Fig-
ure 3(b). The same relation exists between Services 1 and 4
in Figure 3(a). This results in a transitive relation between
Services Pedal Control and SC in Figure 4. The same
goes for the remaining relations.

A common service diagram may contain optional depen-
dencies. It is obvious that dependencies which involve op-
tional or alternative services are efficacious only if the in-
volved services are selected within the configuration of a
product. Also, dependencies between mandatory services
are optional if they are not present between the original ser-
vices within all single diagrams.

In our example, if the BCC had no dependency between
Services 6 and 7, then the common diagram would have an
optional instead of a mandatory dependency between the
compound services of On/Off and SC.

Identification of PL Specific Dependencies The last
methodological step is to analyze the common service di-
agram for PL specific dependencies. In the beginning, there
are requires dependencies between all variable (optional or
alternative) services which originate from the same service
diagram and excludes dependencies between all variable
services coming from different diagrams. This results in
a PL which exactly consists of the original products. How-
ever, we aim at stepwise enlarging the product space by new
combinations of variable services even though they origi-
nally belong to different products. This requires a further
analysis of the involved services.

If two variable services are not functionally related, the
options can be selected independently. In this case, the re-
quires dependency is eliminated. If two services cause no
functional conflict, e. g. they specify no conflicting behav-
ior on common output ports, the excludes dependency is
eliminated. Otherwise, an excludes dependency may be re-
placed by a priority dependency. For more details about
conflict detection and resolution between services within a

PL see [6].
In our example, since no optional service functionally

depends on any other variable service, as well as no inter-
service conflicts exist, the common diagram contains nei-
ther requires nor excludes dependencies. This leads to a set
of new systems, e. g. the basic cruise control with a pre-
crash warning.

5 Related Work

Related work to our approach can be mainly found in
two different areas, namely approaches to mining existing
assets and commonality analyses.

Several methods have been recently proposed for locat-
ing features in existing systems (see, e. g. an overview by
Wilde et al. [19]). For example, a semi-automatic tech-
nique introduced by Koschke et al. [11] combines dynamic
and static analysis to reconstruct the mapping of features to
code. The software reconnaissance method introduced by
Wilde et al. [20] uses test cases to locate features. An obvi-
ous drawback of these approaches is the same as those of the
classical feature-oriented reuse approaches like [9, 5, 10] –
they all only focus on the modeling of relationships between
features, using uninterpreted features as the corresponding
basic concept. In contrast, we use a formal definition of the
system behavior to identify functional commonalities be-
tween systems.

Another class of researches focuses on discovering Use
Cases from source code. For example, El-Ramly et al. [3]
analyze traces of the interaction between a system and its
users to discover the behavior of the system. However, the
absence of a formal semantics of Use Cases prevents a com-
monality analysis of different systems.

Several commonality analyses are proposed in the con-
text of software reuse, library retrieval and PL design (see,
e. g. an overview by Thevenot et al. [16]). For example,
so-called specification matching approaches are introduced
in [21, 7]. These approaches compare software components
based on formal descriptions of its behavior. The compo-
nents are specified using pre- and postconditions written in
first-order logic. Even though containing some inspiring
ideas, these approaches address a different problem and are
not suited to the commonality analysis for PLs. They only
aim at comparing components, but not at identifying and

extracting common parts of them. Furthermore, the com-
ponent architecture is usually a very poor expression of the
user-visible functionality. It includes a lot of components
which functionalities are not observable at the overall sys-
tem boundaries. In our approach, the commonality analysis
takes place at the functional level where a system is seen
only according to its user-visible functionality without con-
sideration of implementation details.

In [17], Weiss presents a systematic process for defin-
ing families as part of the FAST process. In contrast to
our approach, it presents no formally founded concepts to
compare functionalities and to extract the commonalities.
The identification of commonalities is performed primarily
based on terminology. Furthermore, this approach is de-
signed more for the proactive PL development. Existent
systems are not adequately taken into consideration.

In summary, to the best of our knowledge, there is no ap-
proach to analyze functional commonalities across systems
based on the formal definition of the system behavior.

6 Conclusion and Future Work

In this paper, we have introduced an extractive approach
to building-up a PL based on existing systems. Thereby, we
have focused on one of the most important tasks of PL de-
velopment, namely the analysis of common functionalities
across different systems.

Our commonality analysis is performed on the functional
level which offers the highest reuse potential. Moreover,
this facilitates the integration of additional requirements for
new variants, which are obviously not given in form of im-
plemented code. Although being on the requirements engi-
neering level, our specification technique, the service dia-
gram, is formally founded. Thus, our commonality analy-
sis is based on a formal definition of the system behavior.
This functional analysis results in a common service dia-
gram which explicitly specifies common and different func-
tionalities of existing systems.

Moreover, since legacy systems rarely have an accu-
rate functional specification, we have further presented a
methodology for extracting single services out of a com-
ponent architecture and their hierarchically structuring into
a service diagram.

We are currently integrating Data Mining approaches to
automatically analyzing traces of the interaction between
a running legacy system and its environment to allow the
service mining from the implemented code. Beyond this,
our future work includes traceability improvements aiming
at chronologically interrelating services and components to
support the reuse of already implemented components.

References

[1] M. Broy. Service-oriented systems engineering: Modeling
services and layered architectures. In FORTE, 2003.

[2] P. Clements and L. Northrop. Software Product Lines: Prac-
tices and Patterns. Addison Wesley Longman, 2002.

[3] M. El-Ramly, E. Stroulia, and P. Sorenson. Mining system-
user interaction traces for use case models. In Proceedings
of IWPC ’02. IEEE Computer Society, 2002.

[4] A. Gruler, A. Harhurin, and J. Hartmann. Development and
configuration of service-based product lines. In Proceedings
of Software Product Line Conference, 2007.

[5] J. V. Gurp, J. Bosch, and M. Svahnberg. On the notion of
variability in software product lines. WICSA, 2001.

[6] A. Harhurin and J. Hartmann. Towards consistent specifica-
tions of product families. In FM: 15th International Sympo-
sium on Formal Methods. Springer Verlag, 2008.

[7] D. Hemer. Specification matching of state-based modular
components. In Proceedings of the APSEC’03. IEEE Com-
puter Society, 2003.

[8] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson.
Feature-oriented domain analysis (FODA) feasibility study.
Technical report, SEI, CMU, Pittsburgh, PA, 1990.

[9] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh.
FORM: A feature-oriented reuse method with domain-
specific reference architectures. Ann. Softw. Eng., 5, 1998.

[10] K. C. Kang, J. Lee, and P. Donohoe. Feature-oriented project
line engineering. IEEE Softw., 19(4):58–65, 2002.

[11] R. Koschke and J. Quante. On dynamic feature location. In
Proceedings of the 20th international Conference on Auto-
mated software engineering. ACM, 2005.

[12] C. W. Krueger. Easing the transition to software mass cus-
tomization. In Proceedings of the 4th International Work-
shop on Software Product-Family Engineering, 2002.

[13] N. A. Lynch and M. R. Tuttle. An introduction to in-
put/output automata. CWI-Quarterly, 2(3):219–246, 1989.

[14] G. J. Myers. Art of Software Testing. John Wiley & Sons,
Inc., New York, NY, USA, 1979.

[15] K. Pohl, G. Böckle, and F. van der Linden. Software Product
Line Engineering. Springer, 2005.

[16] H. Thevenot and T. Simpson. Commonality indices for prod-
uct family design: a detailed comparison. Journal of Engi-
neering Design, 17(2), 2006.

[17] D. M. Weiss. Commonality analysis: A systematic process
for defining families. LNCS, 1429, 1998.

[18] D. M. Weiss and C. T. R. Lai. Software product-line en-
gineering: a family-based software development process.
Addison-Wesley, 1999.

[19] N. Wilde, M. Buckellew, H. Page, V. Rajlich, and L. Pounds.
A comparison of methods for locating features in legacy
software. J. Syst. Softw., 65(2), 2003.

[20] N. Wilde and M. C. Scully. Software reconnaissance: map-
ping program features to code. Journal of Software Mainte-
nance, 7(1), 1995.

[21] A. M. Zaremski and J. M. Wing. Specification matching of
software components. ACM Trans. Softw. Eng. Methodol.,
6(4), 1997.

