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Abstract. This paper discusses variation representation in MSCs for their use
in the conception and development of system families. For the system family to
be, a feature model and a variation point modelling within use cases are assumed
given. The language of MSCs is extended with two macrooperators and one op-
erator that allow the representation of variabilities. The macrooperators are to be
resolved in terms of a given configuration. Both a grammar and a diagrammatic
representation of these operators are given, and their semantics is stated in infor-
mal terms.

1 Introduction

The complexity of modern undertakings in software intensive realms demands a disci-
pline on the right level of abstraction. Configuration management of products varying
only in more or less peripheral aspects deserves a chapter of its own. So, within software
engineering the concept of system families (or product lines) has attained a noticeable
status. They are a salient exponent of the praised principle of reuse—from reuse of
software requirements through reuse of software code. Software reuse and particularly
system families improve productivity and quality; see [5].

At the same time, the Unified Modelling Language (UML) has found broad accep-
tance both in industry and academia. The UML is more properly a set of languages
that allow the specification of software systems from different points of view. In the
last revision of UML (see [15]), a dialect of Message Sequence Charts (MSC, see [8])
replaced the quite inexpressive language of interactions of past versions. This was the
right choice since MSCs, independently, had gained many supporters particularly in
industry.

Surprisingly, however, neither UML interactions nor MSCs offer means for the con-
cise representation of variabilities of a system family. The management of variabilities
doubtless is of vital importance and, considering the acceptance of UML and MSCs
in industrial scale developments, the extension of the languages enabling configuration
management is imperious.
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The present work reports the syntax and informal semantics of a new extension to
the MSC language that enables the specification of variability, and that can be seamless
translated into UML interactions. This extension consists, roughly speaking, of facul-
tative portions of MSC diagrams that are parametric and can be instantiated or even
removed according to the configuration chosen. The proposed extensions have emerged
from the exhaustive case study reported in [16].

Outline. In Sect. 2, we introduce the concepts of feature, variation point and variant,
their relationship, and their purpose. Sect. 3 reports how to diagrammatically represent
variabilities in MSCs. Sect. 4 presents excerpts of a non-trivial example. Finally, in
Sect. 5, we discuss some ongoing investigations on how to formalise the general process
of analysing commonalities and variabilities within a system family, and conclude with
an outlook to future research.

2 From Features to Variation Points

A featureis an essential aspect or characteristic of a system in a domain. Features can
be described as distinctively identifiable abstractions that must be implemented, tested,
delivered, and maintained; see [12].

We follow [10] and regard a system family as a collection of software products that
are similar in some important respect and have varying features as e.g. versions with
different levels of security; see also [14]. Thus in this context the concept of feature
gains a new significance. A feature has a (unique) identifier and a number of associated
values, which can be features themselves. A feature can be mandatory, optional, or
alternative to other feature(s). So for instance a feature of a car is the car radio, that is, a
radio and optionally a media reproductor, either a cassette player or a CD player, whose
playing may be interrupted by RDS (radio data system) traffic broadcasts.

There exist methodical approaches such as FODA [11] and FORM [12] that help, on
the one hand, to identify the commonalities and variabilities within the system and, on
the other, to organise several features into an and/or tree. We assume given the feature
model, built by any of these or other means. The and/or tree associated with the car
radio example of above is depicted in Fig. 1.
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Fig. 1.And/or tree for the car radio

Features and variability are also present in use cases, but a separate feature model
constitutes a sine qua non. The need for a feature model has been pointed out in [7]:



Use cases are user oriented, with the objective of determining the requirements of the
system family, whereas features are reuser oriented with the objective of organising the
results of a commonality and variability analysis of the system family.

In the use cases of the system, variability is mirrored byvariation points. These are
locations within a use case where a variation occurs, and the variation is captured in one
or morevariantsdepending on the feature to be chosen; see [2,4,9]. For the purposes
of this article, we understand use cases as able to describe every one of the different
uses of the system, and in particular containing all layers of the system (e.g., low-level
redundancy).

Variation points and variants have a (unique) identifier. A non-mandatory feature
is mapped to a variant of zero or more variation points (of one or more variantion
points if the feature is a leaf of the and/or tree), and each variant is associated with
at least one non-mandatory feature. Variants and features that are biunivocal can be
homonymous.3 Mandatory features are insofar of no great interest, since they must
occur in the respective use cases as any other system characteristic. The structure of
variation points is described by the grammar in Tab. 1.

For the reuser of the system family, every one of these pieces of information is
relevant: the feature model, the use case model with its variation points and variants,
and the map relating these two models.

UseCase::= UseCaseName Actors Dependencies Description

. . .

Description ::= VariationPointList: Text

VariationPointList ::= VariationPoint VariationPointList
| ε

VariationPoint ::= VariationPointName(VariantList)

VariantList ::= VariantName, VariantList
| VariantName

Table 1.Abstract syntax of use cases: variation point fragment

3 From Variation Points to MSCs

A variant is reflected in some way or another in the MSCs specifying the interactions
of the system, and we speak ofvariant occurrences. The structure of variant occur-
rences is described by the attribute grammar in Tab. 2 (cf. [3]). Therein,Basicranges
over the basic interactions, and if anActualParameteris given then its value is within

3 We conjecture that a clean use case model allows a 1:1 relationship between variants and
features that are leaves of the and/or tree, and that features that are inner nodes of the and/or tree
must not be translated into a variant of the use case model.



the expected ones for the pairedFormalParameterin the context of the corresponding
VariantName.4

Interaction ::= Basic
| CombinedFragment

CombinedFragment::= . . .
| variant(VariantName ArgumentList, Interaction)
{allowedValues(VariantName.name,ArgumentList.list)}

ArgumentList ::= ( NonEmptyArgumentList)
{ArgumentList.list:= NonEmptyArgumentList.list)}
| ε
{ArgumentList.list:= nil)}

NonEmptyArgumentList::= Argument, NonEmptyArgumentList
{NonEmptyArgumentList.list:=

[ (Argument.name,Argument.value) |
NonEmptyArgumentList1.list ] }

| Argument
{NonEmptyArgumentList.list:=

[(Argument.name,Argument.value)] }
Argument ::= FormalParameter: ActualParameter

{Argument.name:= FormalParameter.name;
Argument.value:= ActuaParameter.value }

| FormalParameter
{Argument.name:= FormalParameter.name;

Argument.value:= null }

Table 2.Abstract syntax of interactions: variant occurrence fragment

The syntax of variant occurrences extends that of MSCs. These, as bidimensional
diagrams, may be modified in their horizontal or their vertical dimension. In the first
case, the modification is achieved by adding or removing instances (i.e., lifelines). In
the second case, by adding, removing or reordering interactions (i.e., messages and
signals) and by adding, removing or changing conditions. The result must of course be
a valid MSC.

We purposedly do not resort to MSC constructs for parallel or alternative executions
(i.e., the operatorspar resp.alt with its derivativeopt), since configuration management
is performed at a different level of abstraction. While these operators allow the on-the-
fly decision of e.g. which branch to follow, a configuration is the choice within several
alternative characteristics at the time the software is deployed, and with this respect
no dynamic change can take place. In this way, thus, we keep concerns separated. The

4 Alternatively, one may choose to derive parameters from the feature model using Boolean
functions or dependent types. We prefer the above introduced approach since it better fits into
the concept of MSCs.



operatorvariant(−−,−) is more precisely a metaoperator, or a macro, that must be
statically resolved in order to obtain a plain MSC.

A diagrammatic notation is proposed in Fig. 2. Therein, the regions enclosed by
dashed frames are the variant occurrences. They are labelled by the variant name and
its list of parameters as given by the grammar in Tab. 2; the third argument of a variant
occurrence, i.e. the interaction, is precisely the diagram below the label and within the
dashed frame. Notice that

– it is required by the diagram that the messagem1 be sent from objecto1:C1 to
objecto2:C2 ,

– the messagem2is only sent if the lifeline corresponding to the objecto3:C3 actu-
ally exists, i.e., if the chosen configuration includes that object,

– the messagem3 is only sent if the variation point instance modifying the vertical
dimension exists in the chosen configuration, and

– the messagem4 is only sent if both the lifeline foro3:C3 exists and the variation
for the vertical dimension is chosen.

So, in the car radio example, there might be an interruption signal sent by the radio
antenna to the media reproductor only in the case such reproductor as well as the RDS
traffic broadcast reception are present in the variation chosen.

ArgumentList)
( VariantName,
variant

ArgumentList)
( VariantName,
variant

m1

o1:C1 o2:C2

m3

o3:C3

m4

m2

Fig. 2.Variant occurrences within a MSC

When specifying optional lifelines, it might be the case that the number of (analo-
gous) lifelines is unknown beforehand. This motivated the introduction of a further op-
eratorrepeat(−,−,−), whose syntax is formalised in the grammar in Tab. 3 extending
Tab. 2; there,Nat ranges over the natural numbers (including zero). Given an interac-
tion repeat(m,n,S), once the natural numbersm andn are known, the interactionS is
copied an arbitrary number of times betweenm andn. If n is∞, thenS is copied at
leastm times; ifm > n or the choice is to repeat zero times, then the repeat construct



CombinedFragment::= . . .
| repeat(Nat, (Nat | ∞), Interaction)

Table 3.Abstract syntax of interactions (contd.): the operatorrepeat(−,−,−)

is equivalent toskip. W.r.t. lifelines the operatorrepeat(−,−,−), thus, behaves similar
to the operatorloop w.r.t. message dispatch/reception.

A simple example of diagrammatic use ofrepeat(m,n,S) can be found in Fig. 3(a),
whose resolution is depicted in Fig. 3(b). A dashed portion on a lifeline, as on the
lifeline of objectX in Fig. 3(b), expresses that the events occurring on that portion are
not ordered.
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Fig. 3.Use and resolution of the metaoperatorrepeat(−,−,−)



Notation.We let repeat(n,S) denoterepeat(n,n,S). If two variant occurrencesV1

andV2 have lists of argumentsL1 andL2 compatible w.r.t. an interactionS,5 then we
abbreviatevariant(V1 (L1), variant(V2 (L2),S)) to variant(V1(L1)/V2(L2),S).

High-Level MSCs (HMSCs) allow the abstraction of subgraphs in order to handle
complex constellations of interactions. It turns out that an accordingly abstract notation
for variabilities within HMSCs sheds light upon the strived abstraction. This considera-
tions gave rise to a notation tailored for HMSCs, in the style of “higher-level” decision
nodes, as schematically shown in Fig. 4. The nodes labelled with the keywordvp(Name)
are the occurrences of the variation points of the use case model; the labels of the out-
going edges are the variant occurrences (without their parameters).

)vp( A or BC

B or Cvp( )

MSC A MSC B MSC C

MSC BC

Init

Fin

BC

C

A

B

Fig. 4.Variation point occurrences within a HMSC

4 Example

We have carried out a case study that is reported in [16].6 The needs that emerged trying
to use MSCs for system family specification are covered by the constructs introduced
above. The case study consisted in the specification and the design of a production
system for engine parts or work pieces. These are deburred and washed by machine
tools. Autonomous transport vehicles carry the work pieces between machine tools,

5 L1 andL2 are compatible w.r.t.S if FV(S) ⊆ L1 ∩ L2, whereFV(S) denotes the set of free
variables ofS.

6 The purpose of the case study was twofold: On the one hand, to experiment with the connector
construction (see [6]) for the specification of structured interfaces in MSCs, and on the other,
to ponder the limitations of MSCs for their use as specification language for system families.
The experience with the connector construct is out of the scope of this paper.



from the input storage, and to the output storage. The machine tools may have a buffer
for (treated or untreated) work pieces in addition to their workplace.

The variations within this system family are the following. The number of transport
vehicles or of machine tools may vary. The sequence of the different treatments on the
work pieces may be fixed or dependent on the work piece itself. The transport of work
pieces is decided by a negotiation among the vehicles, or each vehicle transports pieces
between two machine tools fixed for it. In the first case, the negotiation of orders may
be centralised in a distributor, or not. And finally, there may be many different machine
tools of the same kind working at for instance different paces. The feature model, with
hopefully self explaining feature names, can be found in Fig. 5.
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Fig. 5.Case study: feature model

The overall operation of the system family, i.e. including occurrences of variation
points and of their variants, can be found in the HMSC depicted in Fig. 6. Variation
points are the decision nodes marked with the keywordvp(Name), the associated alter-
native variants label the edges leaving the variation point. If the parent feature of these
alternative variants has no further children, then the identifier of this parent feature is
chosen to be theNameof the variation point in the HMSC; otherwise a new name is
introduced as for instance the namesHLoadBal andMTrans in Fig. 6. Notice that not all
leaves of the feature model label an edge in the HMSC going out of a variation point,
and that also some of the inner nodes of the feature model label an edge of the HMSC
going out of a variation point. The reason for this is that every variability not necessar-
ily is visible in the most abstract view of a system family, but then can be found in the
detailed MSCs.

The expressive power and abbreviation capability of the extensions by means of
variant(−−,−) andrepeat(−,−,−) can be appreciated in the enriched MSCs for the
(slightly simplified) negotiation of orders that is reproduced in Fig. 7. In it, the message
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Fig. 6.Case study: high-level MSC

jOrder expresses the requirement of a machine tool or the input storage to be released of
a work piece, and is sent to all vehicles. Given that the number of vehicles is greater than
or equal to one but unknown beforehand, a parameter is the numberht of vehicles that
is used to duplicateht−1 times a lifeline; this is a variation in the horizontal dimension
of the diagram. After reception of ajOrder, a job is created within each vehicle. If the
route of the vehicles may vary, then the one in fact taking the work piece from its initial
position to its destination is the vehicle that offers the best bid for the job. In case the
route of the vehicles is fixed, an explicit negotiation for the best offer is not necessary,
and the sending of the messagesjBid andjEndOfNegotiation is then disabled. This is a
variation in the vertical dimension of the diagram.

5 Conclusions and Outlook

The contribution of this work can be summarised as follows. We have introduced three
metaoperators into the MSC language that act as macros and, once resolved, deliver
valid MSCs. In this context, macro resolution is configuration.
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Fig. 7.Case study: MSC for the negotiation of orders

The metaoperatorvariant(−−,−) manipulates MSCs in their horizontal and vertical
dimensions in that it adds, modifies, or removes interactions and instance axes. For
copying analogous instance axes, when their exact number is unknown beforehand, one
can take advantage of the operatorrepeat(−,−,−). The metaoperatorvp(−) is used
in HMSCs and defines high-level decision nodes which are resolved at the time of
configuration.

These (meta)operators have been proved to suffice for the purposes of the involved
case study reported in [16]. Moreover, due to the fact that a MSC is exactly the union
of the above mentioned three dimensions (i.e., vertical and horizontal dimensions plus
abstraction), we think that those (meta)operators are indeed enough for variability rep-
resentation in MSCs.

In the literature, one finds approaches with similar intention:

– The KobrA approach [1] is a development process specifically focused on system
development. It contains complete guidance from specification to realisation but
does not allow modeling in terms of sequence diagrams.



– In the approach in [13] the special symbol�V� is used to represent variability
in a UML class diagram that serves as domain model. Alternatives can only be
expressed in accompanying text.

– In [17] also UML class diagrams are used based on a feature model similar to
ours. However, the dependencies from the feature model are expressed as OCL
constraints on the class diagram. Also the sterotype�optional� is introduced to de-
note optional classes. This was extended in [18] to a UML profile that also includes
stereotypes such as�optionalLifeline� and�variant� for sequence diagrams but
lacks an explicit notion of variation points.

Our approach is an alternative to the last one. We emphasise the parametric nature of
variability and systematise the development of MSCs with variations.

The meaning of the extensions introduced in this paper was given in informal terms,
a formal semantics must be defined. One possibility is to consider a kind of precompiler,
which takes an extended (H)MSC and a configuration, and delivers a (H)MSC without
occurrences of the metaoperators. The configuration could be conceived as a subtree of
the feature model without alternatives and with optional features possibly removed.

Regarding the whole process, from the analysis of commonalities and variabilities
of a system family to be through feature and use case modelling to the specification of
MSCs, we feel it could conceptually be carried out as follows. Initially, one is more
or less precisely aware of the set of all desired system traces, in any of the members
of the system family. Those traces are associated to at least one feature, and the set of
all traces can be divided (not partitioned) into subsets associated to the features. This
reasoning also helps to produce a feature model.

Using the knowledge of which features are optional and which ones alternative to
other ones, the corresponding trace sets are declared variants. In doing so, alternative
features are organised around a single variation point, whereas optional features belong
each to a variation point of their own.

The (still ideal) traces are then used for two purposes: on the one hand for a use case
modelling including variation points, and on the other for a raw specification of MSCs
with occurrences of variation points and of variants.

In a next step we will formalise the semantics of the extensions introduced and
elaborate on the development process.
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9. Ivar Jacobson, Martin Griss, and Patrik Jonsson.Software Reuse: Architecture, Process and
Organization for Business Success. ACM Press. Addison-Wesley, 1997.

10. Stanley M. Sutton Jr and Leon J. Osterweil. Product families and process families. In10th In-
ternational Software Process Workshop (ISPW’96, Proceedings), pages 109–111, June 1996.

11. Kyo Chul Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and A. Spencer
Peterson. Feature-Oriented Domain Analysis (FODA) Feasibility Study. Technical Report
CMU/SEI-90-TR-021, Carnegie Mellon University, Software Engineering Institute, 1990.

12. Kyo Chul Kang, Sajoong Kim, Jaejoon Lee, Kijoo Kim, Euiseob Shin, and Moonhang Huh.
FORM: A Feature-Oriented Reuse Method with Domain-Specific Reference Architectures.
Annals of Software Engineering, 5(1):143–168, 1998.

13. David McComas, Stephen Leake, Michael Stark, Maurizio Morisio, Guilherme Travassos,
and Michael White. Addressing Variability in a Guidance, Navigation, and Control Flight
Software Product Line. InProduct Line Architecture Workshop at Software Product Line
Conference (SPLC1, Proceedings), 2000.

14. Elisabetta Di Nitto and Alfonso Fuggetta. Product families: what are the issues? In10th
International Software Process Workshop (ISPW’96, Proceedings), pages 51–53, June 1996.
http://www.elet.polimi.it/upload/dinitto/papers/ispw10.ps .

15. Object Management Group. Unified Modeling Language Specification, Version 2.0 (adopted
draft). Technical report, OMG, 2003.http://www.omg.org/cgi-bin/doc?ptc/
2003-08-02 .

16. Stefan Wagner, Marı́a Victoria Cengarle, and Peter Graubmann. Modelling System Families
with Message Sequence Charts: A Case Study. Technical Report TUM-I0416, Institut für
Informatik, Technische Universität München, 2004.http://wwwbib.informatik.
tu-muenchen.de/infberichte/2004/TUM-I0416.pdf .
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