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Abstract� An approach is described for the generation of certain math�
ematical objects �like sets� correspondences� mappings� in terms of re�
lations using relation�algebraic descriptions of higher�order objects� From
non�constructive characterizations executable relational speci�cations are
obtained� We also show how to develop more e�cient algorithms from
the frequently ine�cient speci�cations within the calculus of binary re�
lations�

� Introduction

During the last two decades� the axiomatic relational calculus of Tarski ����
has widely been used by computer scientists who view it as a convenient for�
malism for describing fundamental concepts of programming� The development
starts with the work of deBakker and de Roever in the early ��	s
 see ���� ���
for example� In the following decade� e�g�� Hoare and He ���� related the work
of Birkho on residuals with Dijkstra	s weakest precondition approach to pro�
gramming� a group in Munich �see ���� �� ��� ���� constructed semantic domains
by relation�algebraic means and� thus� was able to treat also languages with
higher�order functions� and a group in Eindhoven �see ���� developed a theory
of data types based on the calculus of relations� At this point also the approach
of a group in Rio should be mentioned which was motivated mainly by the
development of a relational programming calculus not bounded by lack of ex�
pressiveness
 compare ����� In program development� the relational framework
has already been used� E�g�� in a series of articles a group around Desharnais
and Mili proposed a relational approach to the formal derivation of imperative
programs from its speci�cations� See ���� ��� ��� for example� Recently� M�oller
���� used n�ary relations between nested tuples as elements of an applicative
program development language� and also the Rio group developed various case
studies on formal program construction using relations �cf� ������

In order that investigations with relation algebra involved do not stay com�
pletely on the theoretical side� several aspects need special consideration� Firstly�
relational methods are not so commonly known that competent discussion with



researchers from other approaches is easy� So� there should be a tool at hand
to facilitate and visualize work with relations� Secondly� some tool for rapid
prototyping of program speci�cations expressed in a relational style should be
developed� And� �nally� since relational speci�cations have a high degree of pre�
cision and formal structure� program development methods starting from such
relational speci�cations should be considered�

In this paper� we describe an approach to the generation of certain math�
ematical objects �like sets� correspondences� mappings� in terms of relations
using higher�order objects� We aim at the development of executable relational
speci�cations out of non�constructive problem descriptions� where some special
functionals on relations in conjunction with a relational description of domains
�including relation and function spaces� i�e�� higher�order objects� play an impor�
tant r�ole� We present only a carefully selected couple of representative examples

for an extensive treatment of our approach� we refer to the report ��� of the same
title�

� Relation Algebraic Preliminaries

In this section� we brie�y introduce the basic concepts of the algebra of relations�
some special relations� and some relation�algebraic constructions �i�e�� function�
als on relations�� For more details concerning the algebraic theory of relations�
see e�g�� ���� ��� ����

��� Basic Operations and Relation Algebraic Laws

For two sets X and Y � a subset R of the Cartesian product X � Y is a relation
between the domain X and the range Y � We call it homogeneous if X � Y �
otherwise we call it heterogeneous� Considering the corresponding characteristic
predicates instead of the set representations� a relation R between X and Y
becomes a function R � X � Y � IB� where IB denotes the set f�� �g of truth�
values� Therefore� if X and Y are �nite and of cardinality m and n� respectively�
then we may consider R as a Boolean matrix with m rows and n columns� This
matrix interpretation of relations is well�suited for a graphical representation
and� e�g�� used within the RELVIEW system ��� ��� Following the notation of the
speci�cation language Z ����� we write R � X � Y if R is a relation between the
sets X and Y � Furthermore� we use matrix notation and write Rxy instead of
�x� y� � R�

We assume the reader to be familiarwith the basic operations� viz� RT �trans�
position�� R �negation�� R � S �join�� R � S �meet�� RS �composition�� R � S
�inclusion�� and the special relations O �empty relation�� L �universal relation��
and I �identity relation�� In this paper� we only consider relations with non�
empty domain and range� and therefore O � X � Y and L � X � Y are distinct�
The set�theoretic operations � �� �� the ordering �� and the constants O� L are



related as usual� Some further well�known rules concerning relations are

�RT�T � R R � S �� RT� ST

RTST � �SR�T R
T
� RT

R � S �� QR � QS R � S �� RQ � SQ
Q�R � S� � QR �QS Q�R � S� � QR �QS
�R � S�T � RT� ST �R � S�T � RT� ST �

where the last two lines also hold if binary meet and join are replaced by arbitrary
meet and join� respectively� The theoretical framework for all these rules to hold
is that of an abstract relation algebra� The axioms of this algebraic structure
are the axioms of a complete atomic Boolean algebra for � �� �� �� O� L� the
axioms of a monoid for composition and I� the Dedekind rule

�QR � S� � �Q � SRT��R �QTS� �

and the Tarski rule
R �� O �� LRL � L �

An alternative form of the Dedekind rule are the Schr�oder equivalences� viz�

QR � S 	� QTS � R 	� SRT� Q �

��� Special Relations

The basic operations and constants of the last subsection are very helpful for
de�ning simple properties on relations in a component�free manner� In the re�
mainder of the paper we need the following special relations�

Functions� Let R � X � Y be a relation� R is said to be a partial function
or� brie�y� to be functional if RTR � I� and R is said to be total if RL � L� which
is� in turn� equivalent to I � RRT� As usual� a functional and total relation is
said to be a �total� function� A relation R is called injective if RT is functional�
and R is called surjective if RT is total� An injective and surjective relation is
said to be bijective�

Partial orderings� Let Q � X � X be homogeneous�Q is re�exive if I � Q�
transitive if QQ � Q� and antisymmetric if Q � QT� I� A partial ordering is a
re�exive� antisymmetric� and transitive relation� If Q is a partial ordering� then
Q � I denotes its irre�exive part �

Vectors� A relation v � X � Y with v � vL is called a �row�constant�
vector or a predicate� This condition means that an element x from X is either
in relation v to none of the elements of Y or to all elements of Y � Vectors may
be considered as subsets of X� This becomes obvious if we use the common set�
theoretic notation for relations� since then v equals a Cartesian product X��Y �
where X� is a subset of X� As for a vector the range is without relevance� we
consider in the following only vectors v � X � �l with a singleton set �l � fug as
their range and write vx instead of vxu� Then v can be considered as a Boolean
matrix with exactly one column� i�e�� as a Boolean column vector� and describes
the subset fx � X � vxg of X�



��� Quotients and Bounds

In this subsection� we consider some special mappings from relations to relations�
To distinguish such �meta�level functions� from the relation�algebraic �or� object
level� notion of functions as presented in Subsection ���� they are also called
functionals� In most cases� they happen to be partial functionals� since the basic
operations on relations besides the unary ones are only partially de�ned�

Residuals�Residuals are the greatest solutions of certain inclusions� The
left residual of S over R �in symbols S �R� is the greatest relation Q such that
QR � S
 the right residual of S over R �in symbols RnS� is the greatest relation
Q such that RQ � S� Both residuals may also be represented using the basic
operations� Let R � X � Z� S � Y � Z� R� � Z � X� and S� � Z � Y be given�
then� from the Schr�oder equivalences we obtain

S �R � SRT R� n S� � R�TS� �

Note also that the two residuals are linked together by the relationships

R n S � �ST�RT�T R n S � RT� ST �

Translating the relation�algebraic expressions into component�wise formulations�
for left residual S �R � Y � X and right residual R� n S� � X � Y we have the
equivalences

�S �R�yx 	�
�
z

Rxz � Syz �R� n S��xy 	�
�
z

R�zx � S�zy �

In particular� we have the two following correspondences for single universal
quanti�cation�

�S � L�y 	�
�
z

Syz �R� nO�x 	�
�
z

R�zx �

Note that for the quanti�cations the domain for z may also consist of higher�
order objects� The usage of this option is characteristic to our approach�

Symmetric Quotients� In the following� we will frequently need relations
which are left and right residuals simultaneously� viz� symmetric quotients� The
symmetric quotient syq�R�S� of two relations R and S is de�ned as the greatest
relation Q such that RQ � S and QST � RT� If R � Z � X and S � Z � Y �
then we have syq�R�S� � X � Y as

syq�R�S� � RT S �RTS � �R n S� � �RT � ST� �

In component�wise notation� the symmetric quotient syq�R�S� satis�es the equiv�
alence

syq�R�S�xy 	�
�
z

Rzx � Szy �

Bounds and extremal elements� Let Q � X � X be a partial order�
ing� Due to later applications� we ask for some order�theoretic concepts such



as the set of lower �resp� upper� bounds of a subset wrt� Q or the set of min�
imal �resp� maximal� elements of a subset wrt� Q� We de�ne four functionals
dependent on Q and a further relation R � X � Y as follows�

Lower bounds� mi�Q�R� � QR � Q�RT

Upper bounds� ma�Q�R� � QTR � QT �RT

Minimal elements� min�Q�R� � R � �Q � I�TR

Maximal elements� max�Q�R� � R � �Q � I�R �

Looking at the corresponding component�wise descriptions and assuming R to
be a vector� it is easy to see that mi�Q�R� �resp� ma�Q�R�� yields the subset
of lower �resp� upper� bounds of R wrt� the partial ordering Q� while min�Q�R�
�resp� max�Q�R�� computes to the subset of minimal �resp� maximal� elements of
R wrt� the partial ordering Q� If R is not a vector� then the functionals compute
bounds and extremal elements column�wise�

� Relational Domain Construction

To deal with composed and higher�order objects like tuples� sets� or functions� we
have to explain how the corresponding domain constructions can be performed
with relational algebra� Note that the constructions described in the following�
after the de�nitions of homomorphisms �resp� isomorphisms�� may or may not
exist in an arbitrary model of relational algebra
 however� this problem does not
occur at the concrete matrix model underlying this paper�

��� Homomorphisms� Direct Products� and Direct Sums

As �rst domain constructions we consider products and sums� Furthermore� we
introduce homomorphisms to show that the characterizations are monomorphic�

Homomorphisms� Let R � X � Y and S � X� � Y � be two relations and
consider a pair H � ��� � � of functions � � X � X� and � � Y � Y �� H is called
a homomorphism from R to S if R � �S�T or� equivalently� R� � �S holds�
If� in addition� the pair HT � ��T� �T� is a homomorphism from S to R� then
H is said to be an isomorphism between R and S� Therefore� an isomorphism
I � ��� � � between R and S is a pair of bijective functions � � X � X� and
� � Y � Y �� which satis�es the conditionR� � �S� IfR and S are homogeneous�
then � is brie�y called a homomorphism �isomorphism� if the pair ����� is a
homomorphism �isomorphism��

Direct products�Within the framework of abstract relation algebra it is
natural to characterize direct products by means of the natural projections� see
���� ���� Then one obtains the following speci�cation� Let

P � ��k � PX � Xk���k�n



be an n�tuple of n � � relations� We call P an �n�ary� direct product if

�P�� �Tk �k � I �P�� j �� k �� �Tj �k � L �P��
n�

k��

�k�
T
k � I �

It is easy to verify that the natural projections from a Cartesian product �n
i��Xi

to the components Xk are a model of �P�� through �P�� if the placeholder PX is
replaced by �n

i��Xi� By purely relation�algebraic reasoning� furthermore� it can
be shown that the direct product is uniquely characterized up to isomorphism�
If Q � ��k � PY � Yk���k�n is another model of �P�� through �P�� and
��k � Xk � Yk���k�n is a family of bijective functions� then we can establish an
isomorphism between �k and �k by the pair Ik � ��� �k�� where the bijective
function � � PX � PY is de�ned as � �

Tn

i�� �i�i�
T
i �

Based on the binary direct products P � ��� �� and Q � �	� 
 � we de�ne
the following two functionals� where the generalization to n�ary direct products
�n � �� is straightforward� but not needed in the remainder of the paper�

Tupling� �R�S�P � R�T � S�T

Parallel composition� R PkQ S � �R	T � �S
T �

Direct sums� The direct sum can be de�ned in largely the same fashion as
the direct product� Dually to the natural projections the natural injections are
used� see ����� Then one obtains the following speci�cation� Let

S � ��k � Xk � SX ���k�n

be an n�tuple of n � � relations� We call S an n�ary direct sum if

�S�� �k �
T
k � I �S�� j �� k �� �j �

T
k � O �S��

n�
k��

�Tk �k � I �

Given sets Xk� �
 k
n� it is easy to verify that the injections from these sets
to the direct sum �n

k��Xk are a model of �S�� through �S��� Again by purely
relation�algebraic reasoning it can be shown that by these laws the direct sum
is uniquely characterized up to isomorphism and the relations �k� �
 k
n� are
injective functions�

��� Powersets� Relation Spaces� and Function Spaces

Now� we present monomorphic characterizations of higher�order objects using
relation algebra� The �rst construction formalizing the membership relation and
uses only a small set of set�theoretic axioms� The selection of this set of ax�
ioms such that it su�ces for a monomorphic characterization has been earlier
considered in category theory in connection with the notion of topos ���� which
denotes a category such that each object has a power�object� The axiomatization
presented here has been developed from the Munich group in the last decade�
aiming at a relation�algebraic characterization of the kinds of function spaces



used in denotational semantics� See ���� �� ���� Independently of it� an equiv�
alent development� which is rather based on the mentioned notion of topos� is
provided in the book ���� by the notion of a power�allegory�

Powersets� A relation�algebraic characterization of the powerset �X of a
set X can conveniently be done using the �is�element�of� relation� see ���� ���
Formally� we call  � X � SX a powerset relation if

�PS �� syq�� � � I �PS��
�
R

L syq��R� � L �

Since every relation�algebraic equation using  is translated into a formula with
higher�order quanti�cation �over sets�� in �PS �� the higher�order quanti�cation
�over relations� does not surprise� Again it can be shown by purely relation�
algebraic reasoning that the powerset relation is uniquely characterized up to
isomorphism� Indeed� if � � Y � SY is another powerset relation� � � X � Y
is a bijective function� and one de�nes the bijective function � � SX � SY by
� � syq�� ���� then I � ��� � � is an isomorphism between  and ��

Now� assume the concrete case of the �is�element�of� relation  � X � �X �
Then �PS �� corresponds to the extensionality axiom� whereas �PS �� says that
every vector �set� v � X � �l has a corresponding point �i�e�� a bijective vector�
vp�v� �� syq�� v� � �X � �l in the powerset� This shows that the usual �is�ele�
ment�of� relation is a powerset relation� The functional vp is injective and its
left�inverse on points is vp���p� � p � X � �l� Hence� vp establishes some kind
of isomorphism �resp� Galois connection� between subsets of X and elements of
�X � For details� compare ����

Based on the relation  � X � �X � the relational speci�cation of sets merely
by equations can be established� Namely� we have�

Empty set� E � �X � �l E � syq��O� �  nO
Universal set� U � �X � �l U � syq�� L� �  nO
Singleton embedding� S � X � �X S � syq�I� �
Complementation� C � �X � �X C � syq�� �
Meet of sets� M � �X � �X � �X M � syq��� �P� �
Join of sets� J � �X � �X � �X J � �C PkP C�MC

Inclusion of sets� v � �X � �X v �  n 

In the description of the binary operations meet and join we use a direct product
P � ��� ��� consisting of the two projections from �X � �X to the �rst and the
second component� respectively�

Relation spaces and function spaces�We are also interested in describing
the set of all relations between two sets and some certain subsets by relation�
algebraic means� The set of all relations between X and Y is easy to handle�
since it is a powerset relation R � X � Y � �X�Y � Hence� R � ��� �� R� is
called a relation space if

�R�� ��� �� is a direct product
�R�� �TR and �TR exist
�R�� R is a powerset relation�



The transformation of a relation R � X � Y into a point of the relation space
is described by vp�rv�R��� where rv�R� �� ��R � ��L � X � Y � �l is the vector
corresponding to R
 the opposite direction uses vp�� and the left�inverse of rv
which is rv���v� � �T�� � vL� � X � Y �

The set Y X of all functions fromX to Y may be characterized in two dierent
ways� On one hand� it can be described by a vector f � �X�Y � �l such that

fr 	�
�
x

�
y

�
y�

���x� y� � r � �x� y�� � r�� y � y�� �
�
x

�
y

�x� y� � r

	� ��
�
t

t � r �
�
t�

�t� � r � ��t�� � ��t� � ��t�� �� ��t���

�
�
x

�
t

�t � r � ��t� � x�

giving the intricate expression

f � �TR � 
T
R���

T � ��T��L � �TR� � L� �

On the other hand� we can de�ne an �is�element�of� relation F � X � Y � Y X

as follows� The triple F � ��� �� F � is called a function space if �R�� and �R��
�numbered by �F�� and �F��� respectively� hold with R replaced by F and�
furthermore�

�F�� syq�F � F � � I

�F��
�
R

L syq�F � R� � L� �RRT� ��T � ��T �RT� � L� �

Now� for R being a vector v � X � Y � �l the second condition �F�� means that
the point vp�v� � syq�F � v� � �

X�Y � �l is in the function domain Y X if and
only if v represents a function� i�e�� the relation rv���v� � X � Y is a function�
For details� see ����

Injections� In addition to vectors� we have injective functions as a second
concept for representing subsets� Given an injective function � � X� � X� we
call X � a subset of X given by �� Clearly� if X� is a subset of X given by �� then
the vector �TL � X � �l describes X� in the sense of Subsection ���� Since we
deal only with concrete relations� the transition in the other direction� i�e�� the
construction of an injective function � � X� � X from a given vector v � X � �l�
is also possible� Generally� we have� Let the vector v � X � �l describe the subset
X� of the set X� Then� ��v� � X� � X is called an injection of v or an injection
of X� into X if

�I�� ��v� is an injective function �I�� v � ��v�TL �

Clearly� it follows that X� is a subset of X given by ��v�� Again� it can be shown
that injections are determined uniquely up to isomorphism by �I�� and �I���
Namely� if � � X � Y is a bijective function and v� � Y � �l is a vector such
that it describes a subset Y � of Y and v � �v� is satis�ed �i�e�� v� � �Tv��
then I � ��� � � is an isomorphism between ��v� and ��v��� where the bijective
function � � X� � Y � is given by � � ��v����v��T�



In most cases� injections are used within our applications in the context of
higher�order objects like sets of sets� Namely� if the vector v � �X � �l describes a
subset S of sets� then it is straightforward to compute an injection ��v� of S into
�X � From ��v� we obtain the elements of S �represented as vectors� as the columns
of the relation ��v�T � X � S� which leads to an economic representation of the
set S of sets by a Boolean matrix�

� Relational Problem Speci�cation and Prototyping

In this section� we show how the computation of certain mathematical objects
�like sets� correspondences� mappings� can be described in terms of relations�
The general method is as follows� First� we specify the problem with the help
of a formula � which characterizes the objects to be computed� Using the cor�
respondences between certain kinds of formulae and certain relation�algebraic
constructions �resp� operations�� we then transform � into a component�free re�
lational expression R such that � is valid if and only if its free variables are
related by R� Hence� this expression R can be seen as a relational problem
speci�cation �cf� ���� which is executable as it stands� i�e�� as an algorithm for
computing the set of speci�ed objects� At this place it should be mentioned that
in easy cases or for people well�trained in the relational calculus the speci�cation
R can be written down immediately�

Of course� algorithms produced in the way just described frequently may
be fairly ine�cient compared to hand�made ones and� thus� in many cases only
applicable to small or medium�sized examples� However� they are built up very
quickly� which is an important factor of economy� Furthermore� they ensure cor�
rectness and their proofs of correctness are very simple� Moreover� an executable
relational speci�cation can be the starting point for the derivation of an e�cient
algorithm using some development method as we will show in Section �� Hence�
we have the typical situation of the rapid prototyping approach �see ����� for a
validation and analysis of speci�cations�

Most of the following examples of rapid prototyping using a relation�algebraic
description of the given problem are borrowed from graph theory� They deal with
the computation �strictly speaking� the enumeration� of higher�order objects like
sets of sets �represented as vectors v � �X � �l� or sets of functions �represented
as vectors v � Y X � �l�� Here our approach leads to an extensive use of the rela�
tional characterization of sets and functions as presented in Section �� Therefore�
in the following� we have to distinguish between the two meta�level symbols �
and  and the �is�element�of� relation and the set inclusion relation on the
object�level� As in Section �� we use in the sequel the two relations  � X � �X

and v � �X � �X on the object level� Especially� we have x � s �resp� s  t� if
and only if the relation xs �resp� vst� holds�

Here� only a carefully selected couple of representative examples is presented�
Further examples may be found in the report ���� so the computation of further
point sets of a directed graph �like strongly connected components� point bases�
or hammocks�� point�edge coverings of graphs of various kinds� and so on�



��� Kernels

Let G � �V�B� be a directed graph� i�e�� V a non�empty set of points �also�
vertices� nodes� and B � V � V a relation between points� Furthermore� assume
 � V � �V to be the �is�element�of� relation between V and its powerset �V

and v � �V � �V to be the inclusion relation between point sets�
A set a � �V of points is said to be absorbant in G if from every point outside

of a there is at least one arc leading into a� i�e�� if the �rst�order formula

�
x

x � a �
�
y

�Bxy � y � a�

holds� Furthermore� a set s � �V of points is called stable in G if no two points of
s are related via the relation B� This situation is characterized by the �rst�order
formula �

x

x � s�
�
y

�y � s� Bxy� �

Finally� a kernel k � �V of G is a set which is at the same time absorbant and
stable� The concept of a kernel plays an import r�ole in combinatorial games
 for
an overview see e�g�� ���� and ����� Sections ��� and ����

Expressing the above two formulae in terms of the operations on relations
introduced in Section �� we get that the �rst one is equivalent to �L n ��B��Ta
and the second one is equivalent to ���B�nO�s� In the second case� for instance�
we express

V
y�y � s� Bxy� as �B�xs and obtain� thus� the original formula in

the form
V
x
� �B�xs� Now� the universal quanti�cation can be removed using

a right residual construction� cf� Section �� Summing up� in a component�free
notation� we have

absorb�B� � �L n � �B��T

as the vector absorb�B� � �V � �l describing the absorbant sets of G �where
L � V � �l� and

stable�B� � � �B� nO

as the vector stable�B� � �V ��l describing the stable sets of G �where O � V ��l��
Finally� the vector kernel�B� � �V � �l describing the elements of �V which are
kernels of G is given by

kernel�B� � absorb�B� � stable�B� �

��� Dedekind Cuts

Now� we deal with an order�theoretic problem
 for a more visualized treatment
of this example� compare ���� Let O � �M�Q� be a partially ordered set� i�e��
M be a non�empty set of points and Q � M � M be an ordering relation
on points� Furthermore� assume again  � M � �M to be the �is�element�of�
relation between M and its powerset �M and v � �M � �M to be the inclusion
relation on point sets�



For an element s � �M � let Ma�s� denote its upper bounds wrt� Q and Mi�s�
denote its lower bounds wrt� Q� Then� c � �M is called a Dedekind cut of O if
the equation c � Mi�Ma�c�� is valid� i�e� if the �rst�order formula�

x

x � c� x �Mi�Ma�c��

holds which in turn is equivalent to�
s

�
x

�x � c� x �Mi�Ma�s��� � c � s �

Obviously� for each element x � M the set �x� � fy �M � Qyxg is a cut� called
the principal cut generated by x� The fact that a set p � �M is a principal cut�
hence� is described by the �rst�order formula�

x

x � p �
�
y

�y � p� Qyx� �

Now� let C  �M denote the set of cuts of O and P  �M denote the set
of principal cuts of O� Furthermore� let vC � C � C and vP � P � P denote
the restrictions of set inclusion to the cuts and principal cuts� respectively� Then
O� � �C�vC� is a complete lattice� called the cut completion of O� and the
function emb�Q� � M � C mapping x to the principal cut �x� is an injective
order homomorphism�

Using abstract relation algebra and the above formulae �for the characteri�
zation of cuts the second version is more suited since it immediately leads to a
symmetric quotient construction syq�� � � ��cs� in combination with the function�
als mi� ma� and syq of Section ���� by

cut�Q� � �syq��mi�Q�ma�Q� ��� � I�L

�where L � �M � �l and I � �M � �M � we obtain the vector cut�Q� � �M � �l
describing the elements of �M which are Dedekind cuts� and by

pricut�Q� � �T � syq��Q��L

�where L �M � �l� we get the vector pricut�Q� � �M � �l describing the elements
of �M which are principal cuts� Since the cuts are ordered by set inclusion� we
consider the relation v � �M � �M and the injection ��cut�Q�� � C � �M in the
sense of Subsection ��� and receive for vC the representation

vC � ��cut�Q��v ��cut�Q��T �

Also the function emb�Q� �M � C �in the relational sense� can be computed
with the help of ��cut �Q��� From the component�wise de�nition of emb�Q�xc by
the second�order formula�

y

Qyx �
�
s

�y � s � ��cut�Q��cs�

we obtain
V
y Qyx � ���cut �Q��T�yc and� thus� an application of the functional

syq yields the component�free relation�algebraic representation

emb�Q� � syq�Q� ��cut�Q��T� �



��� Sets of Places of a Petri Net

A Petri net is a bipartite directed graph N � �X�Y�R� S�� The point set of N
is decomposed into the sets X of places and Y of transitions and the associated
relations are R � X � Y and S � Y � X� Petri nets have been widely used to
design and model concurrent systems� see ���� for example� Many of the static
properties of a Petri net �e�g�� to be free�choice� to be con�ict�free� or to contain
speci�c sets of places�transitions� can be tested using our relational approach�
In the following we show� how to compute speci�c sets of places� In doing so�
X � X � �X denotes the �is�element�of� relation between the places and the
sets of places�

A set d � �X of places is called a deadlock if each of its predecessors is also a
successor� A somewhat dual notion is that of a trap� t � �X is said to be a trap if
its successor set is a subset of its predecessor set� Both� deadlocks and traps are
of interest if one is concerned with liveness properties� E�g�� a transition never
can be enabled if its predecessor set contains an unmarked place of a deadlock�

Expressed by �rst�order formulae� we have that a set d of places is a deadlock
if and only if �

y

�
�
x

x � d� Syx�� �
�
x

x � d �Rxy�

is valid and that a set t of places is a trap if and only if

�
y

�
�
x

x � t �Rxy�� �
�
x

x � t � Syx�

holds� Using the operations on relations� the �rst formula becomes

�
y

�TXS
T�dy � �TXR�dy � i�e�

�
y

�TXS
T � TXR�dy �

Hence� using a left residual construction and the universal relation L � Y � �l
we get in a component�free notation

deadlock �R�S� � �TXS
T � TXR��L

T � �SX �RTX � nO

as the vector deadlock �R�S� � X � �l enumerating all deadlocks of the net N �
In the same way one obtains the vector trap�R�S� � X � �l describing all traps
of N by exchanging the r�ole of R and ST� i�e�� by

trap�R�S� � �TXR � 
T
XS

T��LT � �RTX � SX � nO �

It may also be of interest to compute minimal non�empty deadlocks or
traps� To this end� we assume v � �X � �X to be the inclusion relation�
By the min functional and the E vector� we obtain the minimized version of
op � fdeadlock � trapg from the expression min�v� op�R�S� �E��



��� Dicliques

In the preceding examples we have dealt with sets of points and edges� i�e��
elements of the powerset of a given �base set�� The example of this subsection
shows how to describe the computation of pairs of elements of the powerset of a
given �base set� with relation�algebraic means� i�e�� the computation of a relation
�correspondence� on a powerset� We consider again a directed graph G � �V�B�
and suppose the �is�element�of� relation  � V � �V and the inclusion relation
v � �V � �V on point sets�

A pair �d� c� � �V � �V is called a block of G with domain d and co�domain c
if the product d� c is contained in B� The �non�trivial� dicliques of G �this term
is introduced in ����� are the inclusion�maximal blocks with non�empty domains
and co�domains� In other words� �d� c� is a diclique if and only if it generates
an inclusion�maximal complete bipartite subgraph of G� A decomposition of a
graph into its dicliques can be very useful e�g�� for storing it in a computer or for
determining the essential subsystems of the system it describes� See again �����

The description of a block �d� c� �� ��� �� by a �rst�order formula is

�
�
x

x � d� � �
�
x

x � c� � �
�
x

x � d�
�
y

�y � c� Bxy�� �

Obviously�
V
y y � c � Bxy is equivalent to �B�xc� i�e�� to �B�T�xc� which

implies the equivalence of
V
x x � d �

V
y�y � c � Bxy� and � n �B�T��dc�

This immediately leads to

block�B� � TL � LT � � n �B�T�� � E �E
T
� TB

�where L � V � �V � as the relation block �B� � �V � �V of the blocks with non�
empty domain and co�domain� I�e�� block �B�dc holds if and only if �d� c� �� ��� ��
is a block� To describe dicliques� we use that for a relation R � �V � �V and a
pair �s� t� � �V � �V we have max�v� R�st if and only if s is inclusion�maximal
in the set fs� � �V � Rs�tg� Hence� a two�fold maximalization via the functional
max yields

diclique�B� � max�v�max�v� block �B��T�T

as the relation diclique�B� � �V � �V of the dicliques of the directed graph G�
Now� let D  �V �resp� C  �V � be the set of domains �resp� co�domains� of

the dicliques of G� Then we have the two injections

��diclique�B�L� � D � �V ��diclique�B�TL� � C � �V

for embedding D and C� respectively� into �V � Based on these injections� �nally�
we are able to de�ne a relation Diclique�B� � D � C describing the correspon�
dence between the domain and the co�domain of a diclique by

Diclique�B� � ��diclique�B�L�diclique �B���diclique�B�TL�T �

This means� A pair �d� c� � D�C is a diclique of G if and only if Diclique�B�cd
holds�



��� Homomorphisms

This example will show how to describe the computation of sets of functions
from a set V to a set W with relation�algebraic means� As already mentioned�
we consider the set WV of functions from V to W as the set of the functional
and total relations between V and W � i�e�� as a subset of the powerset �V�W �
Therefore� suppose F � V �W �WV to be the �is�element�of� relation between
V �W and the set WV �

Let G � �V�B� and H � �W�C� be directed graphs and � � �V�W be a
function in the relational sense �see Subsection ����� Furthermore� assume ��� ��
to be the projections of the direct product V �W to the �rst and the second
component� respectively� If we use the common function notation for � and ��
the fact that � is a homomorphism means exactly that the �rst�order formula�

u

u � ��
�
v

�v � �� �B��u���v� � C��u���v���

is valid
 see Subsection ���� Now� we use the relational notation also for the two
projections � and �� i�e�� write ��B�T�uv �resp� ��C�T�uv� instead of B��u���v�

�resp� C��u���v��� This leads to the equivalent version

�
u

u � ��
�
v

�v � �� ��B�T � �C�T�uv� �

Hence� we have again the pattern of the formula de�ning a set to be stable and�
therefore� we get the vector hom�B�C� � WV � �l describing the homomor�
phisms from B to C as

hom�B�C� � �F � �B�T � �C�TF � nO � �F � ��B�T � �C�T�F � nO �

where the typing of the empty relation is O � V �W � �l�

� Development of E�cient Algorithms

The execution of a speci�cation produced in the way described in Section �� fre�
quently may be fairly ine�cient� In this subsection we demonstrate by means of
an example how to develop more e�cient algorithms from the original ine�cient
speci�cations using the relational calculus�

We consider again the problem of computing the kernels of a directed graph
G � �V�B�� In contrast with Subsection ���� however� in the following we do not
consider sets as points p � �V � �l but as vectors v � V � �l� In doing so� x � p
will be replaced by vx� So� the �rst�order formulae of Subsection ��� de�ning
absorbant and stable sets become�

x

ax �
�
y

�ay �Bxy�
�
x

sx �
�
y

�sy � Bxy� �

Translating these formulae into a notation without components� we get the in�
clusions a � Ba and s � Bs� As a consequence� a vector k � V � �l is a kernel



of G if and only if k � Bk� i�e�� if and only if it is a �xpoint of the functional

 �v� � Bv�

This example shows also that the change of set�representation does not el�
eminate the use of higher�order structures� Instead of the relation � in the new
speci�cation now a functional 
 is used� However� for speci�c classes of graphs
the �xedpoint speci�cation enables the development of e�cient algorithms as
will be shown now�

��� Progressively Finite Graphs

The just de�ned functional 
 is antitone� so the �xpoint theorem for monotone
functions on complete lattices cannot be applied� We therefore study the �x�

points of 
��v� �� 
 �
 �v�� � BBv which is monotone� Suppose m�� and M��

to denote the least resp� greatest �xpoint of 
�� Then we have for each kernel k
that

O � 
��O� � 
��O� � � � � � m�� � k �M�� � � � � 
��L� � 
��L� � L �

Also the two equations

�i� 
 �m�� � � M�� �ii� 
 �M�� � � m��

easily can be shown� Hence� if the gap between the lower bound m�� and the
upper bound M�� of the set of all kernel closes� then the uniquely determined
�xpoint is a kernel of G�

Theorem� If the functional 
� has exactly one �xpoint �which is equivalent to
M�� � 
 �M�� � or to 
 �m�� � � m���� then G has precisely one kernel� ut

Using this theorem� for instance� it can be shown that a progressively �nite
graph G � �V�B� �i�e�� a graph in which all paths have �nite lengths� has exactly
one kernel� When specifying progressive �niteness relationally� we obtain

���
�
v

�v � vL � v � Bv � v � O� �

Now� if we use the Schr�oder equivalences� we obtain BTM�� � BM�� from
M�� � 
��M�� �� Next� the Dedekind rule yields

BM�� �M�� � �B �M��M
T
��
��M�� �B

TM�� �
� B�M�� �B

TM�� �
� B�M�� �BM�� �

and� �nally� in combination with ��� we obtain BM�� �M�� � O� which implies
M�� � 
 �M�� �� Hence� the functional 
 has precisely one �xpoint�

For the point set being �nite we have that a directed graph is progressively
�nite if and only if it is circuit�free� Therefore� we can compute the only kernel of
a �nite circuit�free graph G � �V�B� by the iteration O � 
��O� � 
��O� � � � �
which takes at most jV j steps�



At this place it should be mentioned that in the case of a transitive relation
B the iteration stops after one step� This is due to the fact that in the case
B � B� and B � B�BL �this latter condition follows from ��� and means that
from each point there is a path to a terminal one� the only kernel of G is the
least absorbant set which equals the set BL � V � �l of all terminal points�


��O� � BBO � BL � BBL � 
��L�

follows from BBL � BL and L � B�BL � BL � B�BL � BL � BBL which in
turn is equivalent to BL � BBL�

��� Bipartite Graphs

Now� assume G � �X�Y�R� S� to be a bipartite graph in the sense of Subsection
���� i�e�� we have R � X � Y and S � Y � X� Furthermore let � � X � X � Y
and � � Y � X � Y be the natural injections into the binary direct sum X �Y �
Then

H � �V�B�� where V �� X � Y and B �� �TR� � �TS� �

is the �ordinary� directed graph corresponding to G� Generalizing the above
technique of the composition of the antitone functional 
 with itself to pairs of
antitone functionals and using the laws of the direct sum� in the following we will
show that H has at least two kernels� To this end� we consider the functionals
��v� � Rv and ��w� � Sw and obtain for the least and greatest �xpoints of the
compositions

�i� ��M���� � m��� �ii� ��m���� �M���

�iii� ��M���� � m��� �iv� ��m���� �M��� �

If we use �only for explanatory purposes� � � ��matrices and ��vectors with
relations and vectors� respectively� as coe�cients� then we have B as matrix

B �

�
O R
S O

�

and obtain two kernels of H by the vectors

k� �

�
M���

m���

�
k� �

�
m���

M���

�
�

A component�free proof of this fact based on �i� through �iv� and the relational
characterization of the direct sum is given in the following� De�ne two vectors

k� �� �TM��� � �Tm��� � X � Y � �l
k� �� �Tm��� � �TM��� � X � Y � �l �

Then� we obtain the equations Bk� � k� and Bk� � k�� E�g�� a proof of Bk� � k�
proceeds as follows� We use an immediate consequence of �S�� through �S��� viz�

�TL � �TL� and obtain

�TL � �TL � �TM��� �TL � �TL � �Tm��� �



From the axioms of the direct sum we get also that both �T and �T are partial
functions and� due to Proposition ������v of ���� �saying that QR � QR�QL for
Q being a partial function�� we have

�TM��� � �TM��� � �
TL �Tm��� � �Tm��� � �

TL �

Now� we combine these properties and arrive at

�TM��� � �Tm��� � ��TM��� � �TL� � ��Tm��� � �TL�

� ��TM��� � �Tm���� � ��TM��� � �TL�

� ��TL � �Tm���� � ��TL � �TL�

� ��TM��� � �Tm���� � �TM��� � �Tm���

� �TM��� � �Tm��� �

which in turn implies the desired result as follows�

Bk� � ��TR� � �TS����TM��� � �Tm����
� �TRm��� � �

TSM��� axioms of the direct sum

� �T��m���� � �T��M����
� �TM��� � �

Tm��� due to �ii� and �iii�

� �TM��� � �Tm���

� �TM��� � �Tm���

� k� �

Altogether� we have shown the following generalization of Richardson	s the�
orem an early version of which goes back to �����

Theorem� If G is a bipartite graph� then the corresponding directed graph H
has �not necessarily distinct� kernels k� and k�� ut

Namely� these two kernels can be computed with the help of the iterations

O � ����O� � ��������O�� � � � � O � ����O� � ��������O�� � � � �

to obtain m��� and m���� since by applying �iv� and �ii�� respectively� from
above we can obtain the missing M��� and M����

Continuing the preceding treatment� the report ��� also deals with the eval�
uation of graph games� where moves are one�step walks along the edges� due to
loss� draw �by in�nite repetition�� and win� loss is obtained as the greatest stable
set and win is described as the complement of the smallest absorbant set�

� Concluding Remarks

In this paper we have described a rapid prototyping approach for the enumera�
tion of certain mathematical objects in terms of relations� This has lead to an
extensive use of a relational characterization of higher�order objects like sets�
sets of sets� or functions� We have also shown how to develop more e�cient algo�
rithms from ine�cient speci�cations within the abstract relational framework�



Let us close with a few remarks about the execution of relational speci�ca�
tions� All examples given in this paper have been performed using RELVIEW� a
totally interactive and completely video�oriented computer system for the man�
ipulation of concrete relations which are considered as Boolean matrices �see
��� ���� The system does not only provide commands implementing the basic
operations on relations� but also commands for residuals� quotients� and clo�
sures� commands for certain tests on relations� and commands which implement
the operations important in relation�algebraic domain description �direct prod�
uct� direct sum� injections from vectors� power sets� and function spaces�� And�
�nally� RELVIEW allows the user to de�ne and apply its own functionals on re�
lations� where in the case of a unary functional with identical domain and range
also repeated application is possible by an iteration command� A useful fact in
applications is that the latter command can be used to compute �xpoints of
monotone functionals� as for the e�cient computations of Section �� Of course�
computation with RELVIEW is limited in space and time� The limit� however�
depends heavily on the type of problem handled� In general� it is di�cult to
treat the powerset of a set or function spaces since this means the computation
of vectors v � �V � �l or v � WV � �l and consumes a lot of space and time�
However� the handling of relations R � V � V � vectors v � V � V � �� or vec�
tors v � V � �l is of such a complexity that admits a wide range of RELVIEW
applications� E�g�� on our installation �SUN SPARCstation ��� we have treated
relations with domain�range up to ���� elements� As the computation of ker�
nels shows� it seems promising to apply the relational calculus to obtain e�cient
algorithms from ine�cient speci�cations�
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