
Development and Configuration of Service-based Product Lines∗

Alexander Gruler, Alexander Harhurin, Judith Hartmann
Technische Universität München

Department of Informatics
Chair of Software and Systems Engineering
Boltzmannstr. 3, 85748 Garching, Germany

{gruler,harhurin,hartmanj}@in.tum.de

Abstract

Increasing complexity due to the multitude of differ-
ent functions and their interactions as well as a rising
number of different product variants are just some of the
challenges that must be faced during the development of
multi-functional system families. Addressing this trend we
present an approach combining model-based development
with product line techniques aiming at a consistent descrip-
tion of a software product family as well as supporting the
configuration of its variants. We integrate the concept of
variability in our framework [7] which only supported the
representation of single software systems on subsequent ab-
straction levels so far. For the configuration of a concrete
product we extend this framework by a feature-based model
which allows to configure and derive single systems from
a system family model. Furthermore, we explain how the
complexity due to the possibly huge amount of configura-
tion decisions can be handled by means of a staged config-
uration process.

1 Introduction

Today, innovative functions – mainly realized by soft-
ware – are one of the key potentials for competitive advan-
tage in various application domains, e.g. the automotive do-
main. Increasing complexity due to a multitude of different
functions and their extensive interaction as well as a rising
number of different product variants are just some of the
challenges that must be faced during the development of
multi-functional system families.

Addressing this trend we present an approach combining
model-based development along different abstraction layers

∗This work was partially funded by the German Federal Ministry of Ed-
ucation and Research (BMBF) in the framework of the VEIA project under
grant 01ISF15A. The responsibility for this article lies with the authors.

with product line techniques aiming at a consistent descrip-
tion of a software product family as well as supporting the
configuration of concrete variants.

The complexity stems from various sources, e.g. func-
tional and architectural complexities or distribution. Thus, a
promising approach for the development of multi-functional
software systems is the use of different abstraction levels.
In [7] we introduced a Layer Framework which supports the
representation of software-intensive systems on subsequent
abstraction levels. In this approach, a multi-functional sys-
tem is modeled during the early phases of a model-based
development process by means of a service model, the so-
called Service Diagram. In the Service Diagram we use the
concept of a service to independently model single func-
tionalities of the system which are related and combined to
form the overall system behavior. Thus, the Service Dia-
gram captures the pure functionality of the system in a for-
mal way and is the basis for further, more detailed architec-
tural models, such as e.g. a logical component architecture.
In particular, it establishes a formal relation between func-
tional requirements and architecture models.

In this paper, we integrate the concept of variability in
our Layer Framework and, thus, enlarge it to be applica-
ble for the development of whole system families instead
of single systems only. Thereby, we focus on the most ab-
stract layer, the Service Diagram, and show how variabil-
ity can be smoothly integrated in the existing service the-
ory. Moreover, we extend our Layer Framework by an ad-
ditional model, the Configuration Model. The Configura-
tion Model is an integrated model combining the variability
derived from functional as well as non-functional require-
ments. It comprises all variation points from all abstraction
layers, which must be resolved to obtain a valid instance
of the product line. Furthermore, we explain how the com-
plexity due to the possibly huge amount of configuration
decisions can be handled by means of a staged configura-
tion process based on different views unto the Configuration
Model.



Together with these enhancements our Layer Framework
represents a promising approach combining model-based
development of multi-functional systems on high abstrac-
tion layers with product line engineering techniques.

1.1 Contributions

In general, the software engineering process and re-
spective methods for the development of complex, multi-
functional systems have not reached a stage yet which sat-
isfies the current needs of the industry. With the models and
concepts described in this paper we address the following
issues.

During the early phases of a model-based development
process, i.e. during the transition from requirements to ar-
chitecture models, an open issue is at what level to start
best with a formal description. In practice today, functional
requirements are not precisely formulated. The prevalent
approaches to modeling requirements or the functionality
offered by a system are use case diagrams [11] or – in the
context of product line engineering – feature models [12]
which both lack a precise semantics in general.

In contrast to a pure informal approach, we introduce
with the Service Diagram a formal model with a well-
defined semantics for describing the functionality (includ-
ing variability) already in the requirements engineering
phase. One of the advantages of such a formal model is
that it allows an automatic analysis of the system. By this,
discrepancies between conflicting functionalities can be de-
tected and resolved already in an early phase of the devel-
opment process.

In our approach, a system will be modeled at different
levels of abstraction in a way that each level gives a more
or less abstract view of the system. The fact that the mod-
els are based on the same notion of a service facilitates the
transition from the Service Diagram to the subsequent layer
(Logical Architecture). Thus, both models integrate seam-
lessly at top of such a model chain closing the formal gap
in a model-based development process. In particular, they
provide the basis for a formal transition from functional
requirements to architecture design which currently is not
well supported by formalisms.

Classical approaches to model-based development focus
on the construction of a single product but do not explicitly
address the relations between different configurable prod-
ucts nor support the description of variability. Thus, to be
able to model a whole software product line, we enlarge
our approach by concepts to represent variability and com-
bine model-based development with product-line engineer-
ing which are generally considered in isolation.

While the majority of existing approaches only deal with
modeling variability using informal techniques and mainly
concentrate on structural aspects, we allow the modeling of

behavioral variability in a formal way already in the early
phase of the development process (Requirements Engineer-
ing). Thereby, we use the same notion of a service to model
services of a single product as well as to model alternative
services and variation points. Furthermore, as we formally
integrate variability, automatic reasoning about product in-
stances can be performed, e.g. proofing the existence of a
valid instance, deriving all valid instances, etc..

Because of the possibly large amount of variability and
the complex dependencies between different design arti-
facts, the correct derivation of single products is in general
not a trivial task. Thus, we extend our Layer Framework by
a new model, the Configuration Model, in order to support
the challenging configuration process. On the one hand, all
possible selection points, which must be resolved in order
to obtain a valid instance of the software product line, as
well as the dependencies between them, are explicitly rep-
resented in the Configuration Model. On the other hand,
also the non-functional requirements, which heavily affect
the configuration of a valid product, but which could not
have been modeled in the Layer Framework before, are now
incorporated in the Configuration Model.

Furthermore, we introduce the concept of a view parti-
tioning the pool of all configuration decisions into suitable
parts allowing each stakeholder to access only their relevant
parts of the Configuration Model. Different views provide
the basis for a staged configuration process which allows to
eliminate variation points consecutively. This greatly helps
to overcome the huge amount of configuration decisions and
allows for leaving the end-user at the end of the “configura-
tion chain”, still having the maximum of freedom for cus-
tomizing their product, while all choices, which are irrele-
vant from their point of view, have already been configured.

1.2 Running Example

The introduced techniques and models will be illustrated
by the example of a door control unit (DCU) [10]. Since
in a modern premium class car the whole functionality of-
fered by the DCU is exclusively software based, it gives a
realistic example of a multi-functional system with clearly
distinguishable sub-functionalities.

The DCU provides a physical user interface consisting of
several buttons in order to control several comfort features
of a car. The functionalities are as expected, e.g. adjusting
the seat in its horizontal and vertical axis, changing the an-
gle of the seat back, saving the positions of the seat, turning
on/off the seat heating and changing its degree of intensity,
and more.

The various dependencies between different functions
will be described at the appropriate places.



1.3 Outline

The rest of this paper is organized as follows: In Sec-
tion 2 we recapitulate the existing Layer Framework. For
the Service Diagram we introduce concepts to specify vari-
ability and dependencies. In Section 3 we describe the Con-
figuration Model and different views unto this model. The
resulting model-based development process for software
product lines (Domain Engineering) based on the Layer
Framework as well as the staged configuration process (Ap-
plication Engineering) are presented in Section 4. Finally,
we compare our models to related approaches in Section 5
before we conclude the paper in Section 6.

2 Model-based Development

This section gives a short introduction to our Layer
Framework which consists of different abstraction layers.
A more detailed description of this framework and its ab-
straction layers can be found in [7].

The basic idea of our approach is to specify a system on
consecutive abstraction layers, each one giving a more de-
tailed model of the system, where the highest layer reflects
a very abstract, informal description of a system, while the
lowest one represents a concrete deployable implementa-
tion. During the transition from a higher level to a more
concrete one the system specification is enriched; i.e. the
completeness and the precision-level of the design models
are increased. Thereby, the transition from a higher layer to
a lower one has to be proven correct: all specification con-
straints of the more abstract model have to hold in the more
concrete one.

The Layer Framework (cf. Figure 1) starts from a very
abstract description of the system as a set of informal re-
quirements, e.g. use-cases without a well-defined seman-
tics. The formalization of the informal functional require-
ments by independent services, their structuring, and their
dependencies yield the next layer, called Service Diagram.
Here, the system behavior is specified exclusively as being
observable from the environment (black-box view). Refin-
ing the Service Diagram by adding communication behav-
ior results in the consecutive model, the so-called Logical
Architecture, which is a network of communicating services
connected by channels. The next steps are to build Soft-
ware/Hardware architectures and a deployable implementa-
tion. However, this is beyond the scope of this paper.

In the following, the basic concept of a service (the
key component of our framework), and the Service Dia-
gram which models the pure functionality of the system, are
briefly recapitulated. Subsequently, the specification of hi-
erarchical relations between modularly developed services
of the Service Diagram is explained in detail. Lastly, we
describe how the concept of variability is integrated into the

Formalization

Refinement

ConfigurationInfluence

Figure 1. Layer Framework with Configura-
tion Model

existing service theory and show how variability dependen-
cies are represented in the Service Diagram.

2.1 Service Theory

The central concept in our Layer Framework are ser-
vices, which are used to modularly capture, structure, and
relate the functionality offered by a system. The definition
of a service is based on the idea of timed data streams as
introduced in a Service Theory [2] by Broy.

Every service provides a syntactic interface and a behav-
ioral semantics. The syntactic interface I I O of a service
is given by the set of all its typed input ports I and output
ports O. Given a service S with syntactic interface I I O
for each port p ∈ I∪O and all time intervals t ∈ N, the term
S[p](t) denotes the message communicated via the port p
within the time interval t. The behavioral semantics of a
service S is precisely characterized by a partially defined
stream-processing function mapping streams of messages
received on input ports q ∈ I to streams of corresponding
messages on output ports p ∈ O. Services can be connected
through channels yielding whole systems.

The above sketch of the main principles of the Service
Theory is rather short, but sufficient for our purposes. For
more detailed information on services see [2].

2.2 Service Specification

In Section 2.1 services are formally defined by stream-
processing functions. There are several ways of how to



specify the behavior of a single service. One of them is
an assumption/guarantee-specification as introduced in [3],
which consists of two formulas, namely, an assumption and
a guarantee. The assumption (a temporal logical predicate
over inputs) specifies the domain of a service and the guar-
antee (a temporal logical predicate over inputs and outputs)
characterizes the reaction of a service to its inputs, if and
only if the inputs are in accordance with the assumption.

However, if a service is a set of reaction patterns which
give a precise relation between inputs and outputs without
any temporal properties, we propose to use modified I/O-
automata [15] to specify a single service. An I/O-automaton
constructively defines (infinite) input and output message
streams as well as the relation between them.

All in all, a service is a suitable concept to modularly de-
scribe functionalities offered by a multi-functional, reactive
system during early stages of the development where the fo-
cus of the developer is to model all functional information
that is already known about the system.

2.3 Service Diagram

The last section showed how to specify an individual
functionality of a system modularly and independently from
other functionalities. Now we concentrate on the structur-
ing of the functionalities of multi-functional systems and
their dependencies. This results in a hierarchical structure
of the system functionality where the overall functionality
is decomposed in services and sub-services, with defined
relations between them.

The Service Diagram gives a specification of the behav-
ior of a system as observable from the environment when
viewing the system as a black-box. Both, the individual
services offered by a system and the dependencies between
them are specified, but we do not consider the architecture
of the system (i.e. communication links between services).
Thus, we formally specify functional requirements without
any prognosis about the implementation. In particular this
implies that we consider the whole system as a single (but
complex) service itself composed of several sub-services.

The Service Diagram consists of a set of services and
four kinds of relationships between them, namely refine-
ment, aggregation, variability, and dependency (cp. Fig-
ure 2). The relationships refinement, aggregation and de-
pendency are already introduced in detail in [7] and will be
only sketched here. The focus of this section lies on depen-
dencies arising from variability since these are essential for
the specification of families of related products.

Refinement Since a typical multi-functional system of-
fers a plethora of functions with complex interactions be-
tween them, representing all this information without ab-
straction would have a negative effect on the usability of the

Seat

RefinementAggregation

Heating Manual
Adjustment

ChildSeat
Detection

Memory

AdjustmentLength Height

Dependency

Pr.Ser.

Optional Alternative

Figure 2. Service Diagram

specification. To master the complexity of a specification,
we introduce abstract services.

An abstract service is an abstract specification of one or
several functionalities. It can be considered as a contract be-
tween the services refining it and the environment – when
a service refines an abstract service, it promises to provide
at least the behavior already specified by the abstract ser-
vice. An abstract service cannot be implemented directly,
but rather must be refined by other services – it only helps
to structure services and dependencies between them.

Aggregation The aggregation relations allow to arrange
individual services which have been specified indepen-
dently into a service hierarchy. Thus, it greatly helps to
reduce the complexity of the system functionality.

Aggregation is defined as a relation between a service
and its sub-services. It directly reflects the idea that the
functionality offered by a service can be subdivided into
different sub-functionalities. A sub-service specifies a sub-
functionality of its super-service, in contrast to a refining
service which refines the functionality of a whole service.

A super-service composed of several sub-services is
called a compound service. According to the aggregation
relation we define the semantics of a compound service as
a container of all concurrently operating sub-services. The
behavior of a compound service can be reproduced from its
sub-services using the well-defined semantics of the aggre-
gation relation. Some of the sub-services of a compound
service may influence each other. Then, additionally to the
aggregation, their mutual dependencies must be defined, be-
cause a sub-service may be restricted by other sub-services
when being combined within a parent compound service.

Variability The Service Diagram as introduced so far can
only specify a single software system.i.e. where all specified



services will actually be present in the final system. With
the new concept of variability, we enlarge our approach by
product line techniques aiming at the explicit modeling of
commonalities and variabilities of different, though similar,
services. To explain our approach in the scope of this pa-
per we use only the two types of variability (optional and
alternative) introduced by Kang et al. in [12]. However, it
is possible to enlarge it by other variability relations like [6]
introduced by Czarnecki et al..

The definition of the alternative relation is similar to
those of the aggregation. It is defined as a relation between
a service (variation point) and a set of mutually alternative
sub-services (variants). Such a variation point is defined
for all inputs for which one of its alternative sub-services
yielded a defined output as well. In contrast to a com-
pound service whose semantics is defined as a container
of all concurrently operating sub-services, the functionality
of an alternative variation point is specified by exactly one
of its sub-services – its behavior can be reproduced from
one of its alternative sub-services. This means that there is
an implicit excludes-dependency between all sub-services
that belong to the same variation point (see the following
paragraph for further details about dependencies). In our
example, Heating is an alternative variation point which is
specified either by its sub-service Ser. (serial heating) or its
sub-service Pr. (premium heating).

Optional is the second variability relation in our frame-
work. It is a relation between a service (a variation point
that might consist of some mandatory sub-services) and an
optionally selectable sub-service. Since the optional rela-
tion is merely an abbreviation of the alternative one, the
optional variation point is considered as an alternative one
which consists of two variants: the optional variation point
with and without the selectable sub-service. In our example,
Seat is an optional variation point which comprises two op-
tional sub-services (Heating, Child Seat Detection) as well
as two mandatory ones (Memory, Manual Adjustment).

Dependency By dependencies, we mean relations be-
tween services in a way that the operation of one service
depends on those of other services. Thus, a dependency
does not give structural information but describes how ser-
vices might effect each other. Although there are a lot of
methodological significant dependencies like disables or in-
fluences, the aim of this paper is to present techniques to
specify dependencies rather than to completely enumerate
all of them. The following two dependencies – which are
essential for the modeling of a product line – should be
noted. Two services might exclude each other, i.e. there is
no system in the product line which offers both functional-
ities specified by the two services respectively. A service
might require another one, i.e. there is no system in the
product line which offers the functionality specified by the

former service without offering the functionality specified
by the latter one.

Dependencies between services are specified as being
observable from the overall system boundaries without
changing their interfaces (no additional ports are added) and
without characterizing the communication between them
(no additional channels are added). To specify these depen-
dencies we introduce additional constraints. A constraint
restricts the behavior of the influenced service by defining
dependencies between its I/O message streams and those of
the influencing service. These constraints are defined by
first order logic expressions over names of services, ports
as well as access operations and specify dependencies be-
tween port values of different services in time intervals. In
our example, there is an implicit excludes-dependency be-
tween two alternative services Ser. (S) and Pr. (P ). Since
these services are alternative, a system can offer either a se-
rial or a premium heating functionality. This dependency
for example is specified by the following constraint:

(∃t ∈ N : ∃p ∈ IS ∪OS : S[p](t) 6= ε) ⇒
(∀t′ ∈ N : ∀p′ ∈ IP ∪OP : P [p′](t′) = ε)

This means, if there is a point in time in which the service
Ser. receives or sends a message on its input IS or its out-
put ports OS respectively (i.e. the service is present in the
system) then in all points in time the service Pr. receives or
sends no message on its input IP or output ports OP respec-
tively (i.e. the service is absent in the system).

Note, that the modular specifications of individual
services are not modified when defining constraints.
Constrains only specify the interplay between services
which must be satisfied by the components of the Logical
Architecture. In other words, constraints provide criteria
to verify the models of the consecutive layer. Only those
models which do not violate these constraints are valid.

Altogether, the Service Diagram allows to model system
functionalities independently by simple services, arrange
these services into a service hierarchy, explicitly model
commonalities and variabilities, and specify dependencies
between these individual services. Thus, it establishes the
foundation for the behavior specification of an entire prod-
uct family.

3 Configuration Model

In the previous section we have extended the Layer
Framework by the ability to model whole families of related
software systems rather than only a single software system.

Because of the possibly large amount of variability and
the complex dependencies between different design arti-
facts, the correct derivation (configuration) of single prod-
uct instances is not a trivial task. Thus, in order to support



ConfigModel Tree VP

Variant

Optional Alternative

Dependency

View

Feature

FunctionalRENonFunctionalRE

Requires Excludes

NotPresent

1

*

1

*

1 1..* 1 1..* 1 1

11..*

*

1..*
* 1

1 1 2..*

1

1..*
1..*

1..*

1..*

Figure 3. Configuration Meta-Model

the configuration process, we introduce a separate Configu-
ration Model (cp. Figure 1). This model represents all pos-
sible selection points, which must be resolved in order to
obtain a valid instance of the software product line.

The Configuration Model comprises a set of variation
points and their variants respectively, which can be selected
by different stakeholders, e.g. customers, component sup-
pliers or designers during different stages of the develop-
ment process. Furthermore, dependencies between selected
variants are made explicit here. The variability and the de-
pendencies reflect the information already incorporated in
the design models. With design models we mean the mod-
els developed according to the Layer Framework, e.g. the
Service Diagram or the Logical Architecture. In addition,
non-functional requirements – not yet regarded in the de-
sign models – are also incorporated within the Configura-
tion Model.

Depending on the stakeholder as well as the phase of the
development process, we offer different views on the Con-
figuration Model presenting each stakeholder only those se-
lection points which are relevant for them. In particular, this
facilitates a staged configuration process.

In the following, we introduce structure and technical as-
pects of the Configuration Model, relate it to informal re-
quirements and the artifacts of the design models, and ex-
plain usage and realization of different views on the Con-
figuration Model. The Configuration meta-model is shown
in Figure 3 using a class diagram formalization.

3.1 Structure of the Configuration Model

We assume that a product line is fully described by a
set of features. A feature is “a prominent or distinctive
user-visible aspect, quality, or characteristic of a software
system or systems” [12]. In the Configuration Model, we
only consider features which have different variants and call
them variation points. The other (so-called mandatory) fea-
tures can not be configured by the user and therefore are not

shown in this model.

requires

requires
Heating

Present Not present

Serial Premium

Child Seat Detection

Present Not present

ECU

ECU_1 ECU_2

OEM

A CB

. . .

. . .

Figure 4. Configuration Model

The Configuration Model consists of a set of variation
points F = {Fi | i = 1..n}, each point Fi has a set of
variants Fi = {Vi,j | j = 1..k}. Each variant of a feature
can be a variation point itself, thus, we allow to build-up
hierarchical feature trees.

In general, each variation point of a design model results
in a corresponding feature within the Configuration Model.
For the Service Diagram, each optional service leads to a
feature with two variants (present or not), and each varia-
tion point together with its alternative sub-services directly
results in an equivalent feature and its variants within the
Configuration Model. The same applies analogously to the
design models of the consecutive abstraction layers (Logi-
cal Architecture, Implementation etc.). There is a 1:1 map-
ping between these features and variation points of the de-



sign models in order to support the configuration of end-
products solely based on the Configuration Model. Further
features are derived from the non-functional requirements
which are not considered in the design models. This non-
functional information is only used to select artifacts from
alternative ones with the same functional features. There-
fore, these non-functional features have no mapping to the
design models.

In our example, the variability of the Service Diagram
(cp. Figure 2) is expressed in two features: Heating and
Child Seat Detection (cp. Figure 4). While the optional
service Child Seat Detection accounts for the feature Child
Seat Detection with only two variants (present or not), the
service Heating results in a hierarchical feature Heating.
During a configuration process one has to decide on the
existence (present or not) and on the type of the seat heat-
ing (serial or premium). The variation point ECU origi-
nates from the hardware layer, whereas the different choices
for the OEM are derived solely from the non-functional re-
quirements.

Moreover, the Configuration Model comprises a set of
dependencies D = R ∪ E between feature variants (in
this paper we only consider requires and excludes depen-
dencies, R and E respectively). Formally, D is a relation
over the set of all possible permutations of feature variants:
D ⊆ ×i=1...nFi. The dependencies restrict the set of valid
products that can be configured and guide the configuration
process (see Section 4). They originate from the following
causes: Firstly, they reflect dependencies specified within
the design models. Such dependencies in the Service Di-
agram are introduced in Section 2.3. Analogously, the de-
pendencies specified on the other abstraction layers must be
taken into account. Secondly, as the Configuration Model is
an integrated model combining the variability of the design
models of all abstraction layers, it allows for explicitly spec-
ifying dependencies between the design artifacts of consec-
utive layers. Thirdly, the dependencies are used to reflect
non-functional requirements, e.g. marketing decisions.

In our example, the requires dependency between vari-
ants of Child Seat Detection and ECU describes the (hy-
pothetical) fact that the existence of a child seat detection
necessarily causes the complex ECU-solution ECU_2 con-
sisting of two separate ECUs for the driver and the co-driver
seat. Thus, it describes the relation of the Service Diagram
to the Hardware Architecture. The second relation (between
variants of OEM and Child Seat Detection) reflects the (hy-
pothetical) informal requirement that a car of OEM C must
never have a child seat detection.

Thus, the Configuration Model is formally specified by
the pair C = (F,D), which semantics is defined as JCK ⊆
×i=1...nFi \ NV , where NV = {p ∈ ×i=1...nFi | p ∈
E ∨ p /∈ R} is a set of non-valid products, i.e. that violate a
dependency of D.

3.2 Relation between Features and Infor-
mal Requirements

In Section 3.1 we introduced features as basic entities of
our Configuration Model. However, the set of features is
not equivalent to the set of informal requirements, as not
all requirements are expressable as features. The informal
requirements can be divided into three different categories:

• high-level requirements: business requirements deal-
ing with the question of how the company might profit
from the system to be developed or other high-level re-
quirements referring to legal restrictions and more (e.g.
“The product must be adapted for the Asian market” ).

• process requirements: requirements which restrict
only the development process but not directly the prod-
uct (e.g. “The development process shall be conform-
ing to the rational unified process”).

• product requirements: all functional requirements
defining the functionality the system should offer its
users, and non-functional requirements constraining
the software and hardware architectures of the system.

Features, as used in our approach, cover exactly the
product requirements, while business and process require-
ments are disregarded. Even though, we only consider
software-based systems, we do not force a feature to be di-
rectly software-based itself, e.g. in the automotive domain
the property of having leather upholstery is also considered
to be a regular feature of a system. But we only allow fea-
tures which influence (directly or indirectly) the resulting
software of the system.

3.3 Different Views unto a Configuration
Model

The main purpose of the Configuration Model was to
capture all features that require a selection of one of its
variants in the following configuration process. This means,
that the Configuration Model does not differentiate between
features that are configured by different stakeholders or at
different points of time during the staged configuration pro-
cess. From this point of view it is simply a general reposi-
tory of all pending feature configuration choices.

Certainly, for a development process which involves
many parties (e.g. OEM, supplier, end-user) and which is
split up into various development stages (functional de-
sign, architecture development, system integration), such a
model becomes quickly too complex and not directly usable
anymore. Therefore, we allow to define different views unto
the Configuration Model.

Formally, a view W is defined as a pair (FW , DW ),
where FW ⊆ F and DW ⊆ D. This means, a view consists



of a subset of features and a subset of inter-feature depen-
dencies that are already defined in the Configuration Model.
Additionally, not all variants of a feature must necessarily
be present in a view, i.e. FiW

⊆ Fi for i = 1..n.
Views offer several advantages. Firstly, with the concept

of views we allow to reduce the complexity of the entire
Configuration Model by showing only a relevant extract.
Secondly, by analyzing the existing dependency chains be-
tween features, a view allows to define a causal order on
how the selection process has to be performed within a sin-
gle view. Thus, the concept of views facilitates a staged
configuration process by defining a way to proceed through
the feature configuration choices of every single view.

In our example, a view individually defined for the OEM
C (i.e. the variation point OEM is resolved by its variant C)
consists only of two features Heating and ECU, since due
to the dependency between C and Not Present of Child Seat
Detection the latter is automatically resolved by Not Present
(cp. Figure 4).

4 Process

Having introduced our Layer Framework, we briefly
sketch the resulting model-based development process for
software product lines in this section. Basically, the process
can be divided into two parts: the Domain Engineering pro-
cess, which deals with the construction of the design models
and the identification of all selection points, and the Appli-
cation Engineering process, which prepares the configura-
tion model so that the product instances can be configured
only by high-level selection points visible for the end-user.

Domain Engineering The development of a product line
is guided by the abstraction layers (cp. Figure 1). Start-
ing point of the software development process typically is
a (more or less) complete collection of functional and non-
functional requirements being documented in an arbitrary
way. The requirements are not or only loosely related to
each other, i.e. it is difficult to identify unwanted interac-
tions or contradictory requirements. In the Service Dia-
gram, the system behavior is being specified from the point
of view of the the environment – the functional require-
ments are modularly described by services which are di-
rectly observable by the environment. Subsequently, ob-
servable inter-service dependencies are specified in order
to detect contradictions and interactions. Refining the Ser-
vice Diagram by connecting the identified services by chan-
nels and adding service intercommunication behavior yields
the Logical Architecture. Thereby, the refinement must be
proven correct, i.e. in spite of the integration of additional
information the Logical Architecture must comply with the
information incorporated in the Service Diagram. On the
subsequent layers, the model information is further enriched

step by step resulting in a complete specification of the over-
all system. However, the process is not intended to be per-
formed strictly top-down but rather in a iterative way.

Mutually influencing each other, the features of the Con-
figuration Model are developed concurrently to the artifacts
of the abstraction layers. On the one hand, the variation
points of the design models are directly reflected in the Con-
figuration Model (see Section 3.1). On the other hand, it is
also possible and sometimes very helpful to start with the
identification and informal description of (part of) the vari-
ability within the Configuration Model first and design the
corresponding solutions within the respective design model
afterwards. In any case, with each step the set of possible
choices (the variation points of the Configuration Model)
increases, since a concrete design artifact of an abstract
layer can possibly be implemented by several different so-
lutions in a less abstract layer. In the end, the Configuration
Model represents the pool of all pending configuration de-
cisions.

Application Engineering To obtain a valid system, a
suitable variant of each of the numerous variation points
of the Configuration Model must be selected. To over-
come the huge amount of configuration decisions, we pro-
pose a staged configuration process consecutively eliminat-
ing variation points. Bottom-up, starting with the most con-
crete layer, the corresponding variation points are being re-
solved by generally selecting one of the variants or by re-
lating the variants (by excludes/requires dependencies) to
more abstract features. Thereby, the non-functional require-
ments are being taken into account. Consequently, these
variation points must not be considered anymore on the
more abstract layers. The same applies for the remaining
layers until a completely configured product can be derived
out of the product family specification.

This corresponds to a staged configuration process,
where each stakeholder can only make their selections in-
dependently from the previous or remaining selections. For
this purpose, consecutive views (see Section 3.3) are an ad-
equate means to reflect a causal order of the configuration
process, i.e. the configuration according to one view should
precede the configuration of another view. The idea is that a
single view reflects all configuration choices (configurable
features) that a certain stakeholder (for whom the view is
intended) can perform in a certain development stage. Af-
ter that, the product is configured as far as possible, i.e. as
many variation points as possible are resolved. Only those
configuration decisions will be passed to the next stake-
holder involved in the configuration process, which could
(or should) not have been resolved in the current view. Fi-
nally, all choices that are not directly visible for the end-user
are eliminated or appropriately related to the variants to be
selected by the end-user.



This leaves the end-users at the end of the “configura-
tion chain”, ensuring that they still have the maximum of
freedom for customizing their product, while all (irrelevant
implementation) choices, e.g. which are not relevant from
their point of view, have already been configured.

5 Related Work

The approach presented in this paper introduces vari-
ability into the Layer Framework [7] consisting of hierar-
chically structured system specifications. Thus, related ap-
proaches can be mainly found in two different areas: model-
based and product line development.

Model-Based Development In model-based develop-
ment, every important aspect of a software system is de-
scribed by models. An important work in this area is the
generative software development [4] introduced by Czar-
necki. This approach focuses on automating the creation
of systems: a system can be automatically generated from
a textual or graphical specification. However, this approach
as well as approaches like [18, 20] focus on the construction
of a specific solution on a more detailed level of abstraction
(e.g. software architecture) without supporting the formal
requirement specification.

In contrast, we concentrate on the formalization of func-
tional requirements and close the formal gap between re-
quirements and architecture design in the early phase of the
model-based development process. This idea is not new
– the structuring of requirements and the relationship be-
tween requirements and architectures have received atten-
tion in recent years. The goal-based approach introduced by
Lamsweerde [21] performs a transition from functional and
non-functional requirements to architecture. The software
architecture is built based on functional requirements de-
rived from system goals, and subsequently refined by means
of non-functional requirements. Medvidovic et al. [17] pro-
posed an approach intended to provide a systematic way
of reconciling requirements and architectures using inter-
mediate models. However, these approaches as well as ap-
proaches like [9, 22] specify requirements and architectures
by means of different models, and the model transforma-
tion process has several formal gaps. In contrast, by using
services to structure requirements we are able to identify
components for a prospective architecture already during
the requirements engineering phase. The formal relation-
ships between features, services and components allow a
dynamic adjustment of the architectural structure depend-
ing on chosen requirements, which is a prerequisite for the
product line development.

The closest approach to our work is a theoretical frame-
work introduced by Broy [2] where the notion of a service

behavior is formally defined. This framework provides sev-
eral techniques to specify and to combine functionalities
based on their behaviors. However, this quite theoretical ap-
proach does not cover several relevant issues what our work
focuses on (e.g. formalization of variability or techniques
for the specification of inter-service relations).

Product Lines Development A large number of contri-
butions have been made over the past decade in order to
specify software product lines. Our work was significantly
inspired by the FORM process [13], and particularly by its
practice of layering of design models. However, classical
approaches to feature-oriented development like [12, 8, 14]
only focus on the modeling of relationships between fea-
tures, using uninterpreted features as the corresponding ba-
sic concept. The second deficit of these methods is that
the absence of a formal semantics of the graphical nota-
tions prevents an automatic analysis of them. In contrast,
in our approach the behavior of single features as well as
the semantics of their relationships are specified.

The approach of formalizing feature models is not new.
Several authors [1, 16, 6] define a formal semantics for the
feature modeling language by means of different kinds of
logics or grammars. As mentioned above, the main deficit
of these approaches is disregard for the behavior of single
features. “As a consequence, these approaches focus on the
analysis of dependencies, however abstracting away from
the causes for these dependencies” [20].

The value of behavioral information associated with in-
dividual features has also been recognized by others. In [5],
Czarnecki and Antkiewicz propose an approach to mapping
feature models to other models, such as behavior or data
specifications, in order to give them semantics. However,
this approach only focuses on assets like software compo-
nents and architectures and not on the formalization of user
requirements and their analysis in the early phases of the
development process.

An approach to defining an orthogonal variability model
was introduced by Pohl et al. in [19]. This model relates
the variability to other software development models such
as use case or component models. However, this approach
does not integrate the variability into the development mod-
els. In contrast, we concentrate on the formalization of be-
havior variability within the design models and use the Con-
figuration Model only to support the configuration process.

Our Configuration Process was inspired by the Staged
Configuration introduced by Czarnecki et al. [6] – a trans-
formation process that takes a feature diagram and yields
another one where each stage eliminates some configura-
tion choices. The drawback of the use of feature diagrams
without behavior is already explained above.



6 Conclusion

The presented concepts can be roughly summarized as
follows: Based on an existing framework for a layered
model-based development process, we have introduced con-
cepts to handle the development of whole software system
families instead of single systems only. On the one hand
we have extended the existing design models by concepts
to model variability, on the other hand we have introduced
an additional model – the Configuration Model – together
with the concept of different views unto it, in order to sup-
port the challenging configuration process. Finally, we have
sketched the development and configuration processes for a
family of software systems based on the enhanced Layer
Framework. We illustrated our concepts with an example
from the automotive domain.

With the Service Diagram we provide a formal model
with a well-defined semantics for describing the function-
ality already at an early stage of the development process.
Due to the integration of variability, the Service Diagram
now allows to formally capture the (functional) require-
ments of an entire product family. Thus, discrepancies
between conflicting functionalities can be detected and al-
ready resolved in the requirements engineering phase of the
development process. Besides, this permits automatic anal-
ysis of product lines. Moreover, since the Service Diagram
seamlessly integrates at top of the layer framework, it helps
to bridge the gap between usually informally specified re-
quirements and formal design models.

The Configuration Model together with the concept of
views allows us to capture another group of requirements:
Non-functional requirements (NFRs) which are related with
the configuration process, and which could not have been
modeled in the Layer Framework before. Such kinds of
NFRs can now directly be reflected in the set of variants and
dependencies that are presented in the Configuration Model
as well as in the structure of different views.

Altogether, by incorporating variability concepts in our
Layer Framework we have achieved to widen our model-
based development approach in the application area of
product-line engineering. Concerning the Application En-
gineering, the Configuration Model and the concept of dif-
ferent views on it result in a staged configuration process
which is suitable to deal with the derivation of single sys-
tems from highly complex product-line models.

References

[1] D. Batory and S. O’Malley. The design and implementation
of hierarchical software systems with reusable components.
ACM Trans. Softw. Eng. Methodol., 1(4):355–398, 1992.

[2] M. Broy. Service-oriented systems engineering: Modeling
services and layered architectures. In FORTE, pages 48–61,
2003.

[3] M. Broy and K. Stoelen. Specification and Development
of Interactive Systems: Focus on Streams, Interfaces, and
Refinement. Springer, 2001. ISBN 0-387-95073-7.

[4] K. Czarnecki. Generative software development. In SPLC,
page 321, 2004.

[5] K. Czarnecki and M. Antkiewicz. Mapping features to mod-
els: A template approach based on superimposed variants. In
GPCE, pages 422–437, 2005.

[6] K. Czarnecki, S. Helsen, and U. W. Eisenecker. Formal-
izing cardinality-based feature models and their specializa-
tion. Software Process: Improvement and Practice, 10(1):7–
29, 2005.

[7] A. Gruler, A. Harhurin, and J. Hartmann. Modeling the
functionality of multi-functional software systems. In Pro-
ceedings of 14th Annual IEEE International Conference on
the Engineering of Computer Based Systems (ECBS), March
2007.

[8] J. V. Gurp, J. Bosch, and M. Svahnberg. On the notion of
variability in software product lines. wicsa, 00:45, 2001.

[9] J. G. Hall, M. Jackson, R. C. Laney, B. Nuseibeh, and L. Ra-
panotti. Relating software requirements and architectures
using problem frames. In RE ’02: Proceedings of the 10th
Anniversary IEEE Joint International Conference on Re-
quirements Engineering, pages 137–144, 2002.

[10] F. Houdek and B. Paech. Das Türsteuer-
gerät – eine Beispielspezifikation.
http://www4.in.tum.de/lehre/vorlesungen/ase/ss05/iese-
002_02.pdf (in German), accessed 14.02.2007.

[11] I. Jacobson. Use cases and aspects - working seam-
lessly together. Journal for Object Technology, 2(4):7–28,
July/August 2003.

[12] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson.
Feature-oriented domain analysis (foda) feasibility study.
Technical report, SEI, CMU, Pittsburgh, PA, 1990.

[13] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and
M. Huh. Form: A feature-oriented reuse method with
domain-specific reference architectures. Ann. Softw. Eng.,
5:143–168, 1998.

[14] K. C. Kang, J. Lee, and P. Donohoe. Feature-oriented project
line engineering. IEEE Softw., 19(4):58–65, 2002.

[15] N. A. Lynch and M. R. Tuttle. An introduction to in-
put/output automata. CWI-Quarterly, 2(3):219–246, 1989.

[16] M. Mannion. Using first-order logic for product line model
validation. In SPLC, pages 176–187, 2002.

[17] N. Medvidovic, P. Gruenbacher, A. Egyed, and B. W.
Boehm. Bridging models across the software lifecycle. J.
Syst. Softw., 68(3):199–215, 2003.

[18] D. E. Perry and A. L. Wolf. Foundations for the study
of software architecture. SIGSOFT Softw. Eng. Notes,
17(4):40–52, 1992.

[19] K. Pohl, G. Böckle, and F. van der Linden. Software Product
Line Engineering. Springer, 2005.

[20] B. Schätz. Combining product lines and model-based devel-
opment. In Proceedings of Formal Aspects of Component
Systems (FACS 2006), 2006.

[21] A. van Lamsweerde. From system goals to software archi-
tecture. In SFM, pages 25–43, 2003.

[22] W. Zhang, H. Mei, H. Zhao, and J. Yang. Transformation
from cim to pim: A feature-oriented component-based ap-
proach. In MoDELS, pages 248–263, 2005.


