

Towards an Integration of Process Modeling and Project Planning

Michael Gnatz, Martin Deubler, Michael Meisinger
Technische Universität München

Institut für Informatik
Boltzmannstr. 3, 85748 Garching

(gnatzm|deubler|meisinge)@in.tum.de

Andreas Rausch
 Technische Universität Kaiserslautern

Gottlieb-Damiler-Straße
D-67653 Kaiserslautern

rausch@informatik.uni-kl.de

Abstract

Most development projects have very complex depend-

encies regarding the tasks to accomplish. Process models
offer the chance to incorporate the knowledge of many
project managers into active projects. Bridging the gap
between process models and project plans by defining
such models precisely seems to be beneficial.

In this paper, we show the benefits and highlight some
of the interesting problems of integrating process model-
ing and project planning. We introduce metamodeling
techniques to constrain the instantiation of the process
model, so that structural aspects of the process plan can
be derived. A small, consistent example is used through-
out the paper to illustrate our approach.

1. Introduction

Despite great progress in the field of software engi-

neering, many IT projects are not regarded as successful.
Either they are canceled before completion or they over-
run budget, are late, or deliver fewer features than origi-
nally promised [10]. Reasons are manifold, but certainly
most of them are non-technical.

In particular, project management and project planning
are crucial to a project. Most development projects have
very complex dependencies regarding the tasks to accom-
plish, that less experienced project managers often under-
estimate. Well-defined and repeatable development proc-
esses are one building block of a successful project. Such
processes ease project planning by providing a model of
clear milestones, descriptions of activities to perform and
document templates for writing all kinds of specifications
needed in a development project. Defined and therefore
repeatable processes offer the chance to incorporate the
knowledge and the lessons learned of many seasoned
project managers into active projects [3].

Since defined processes have to be reusable in differ-
ent project contexts to be profitable, processes are defined
as process models, which are abstractions of concrete
processes. Despite this abstraction, we expect process

models to be easy to use, adaptable to the needs of the
specific project, and not demanding too much effort to
learn. In practice however, many standardized process
models have great weaknesses regarding usability [2]. An
example is the German V-Modell 97 ([12], [13]), which is
currently updated ([14]).

Adapting and using process models is often regarded
as overhead and tedious work. Process models like the V-
Model are regarded as a piece of inspiring literature,
which is read once by the project leader at the beginning
of the project and then is usually forgotten. Improving this
situation requires some kind of automation support. “Us-
ing” a process model can mean to derive an automated
workflow process from a process model description.
However, we believe that the benefit of enacting devel-
opment processes this way is limited. Development proc-
esses have not much in common with industrial manufac-
turing processes, but are unique and demand creativity.

In contrast, our focus is on an iteratively adapted pro-
ject plan as a process model’s outcome, which is carried
out “manually” by people. According to its nature, project
planning is an iterative task. Effective planning requires
that process models are present during the whole life
cycle of the project. Every adaptation of the project plans
should consider the process model. In order to increase
the benefits of current process models, people involved in
a project must immediately realize how a process model
influences the project. Consequently, a process model
must include descriptions or even formal definitions that
make the coherence of the process model with a project
plan obvious and straightforward.

Bridging the gap between process models and project
plans by defining such models precisely seems to be bene-
ficial. This paper is investigating the idea of deriving
project plans from process models, given a specific pro-
ject. Our approach focuses on describing how to derive a
so-called structural project plan from a process model. A
structural project plan contains instances of a process
model’s activities and products, and the logical dependen-
cies between them. Instantiation can mean multiple in-
stantiation as for example in the case of an activity “Im-
plement Component”. The project manager’s task is to

tailor the process model (by selection of process model
elements) as well as to plan multiple occurrences of the
process model’s activities and products (by instantiation
of the chosen elements), as shown in Figure 1. Time and
resource planning of activities or the determination of
critical path tasks for example, are not in our scope.

Development Process Model
(Activities & Products)

Project PlanStructural Project Plan
(Activities & Products)

Tailoring and
Instantiation

Time planning and
resource planning

Process
Engineer

Project
Manager

Figure 1. Deriving Project Plans from Process
Models

The type of process models considered here is intended
to facilitate planning in order to make projects more pre-
dictable, as for example the German V-Modell 200x [14]
is supposed to do. Such process models provide more like
a management view of the development process than a
developers view, as opposed to others like the Rational
Unified Process ([4]), for example.

In this paper, we show the benefits and highlight some
of the interesting problems of integrating process model-
ing and project planning. We introduce metamodeling
techniques to constrain the instantiation of a process
model. On this basis, we are able to introduce techniques
for deriving the structural aspects of a project plan from a
process model, which conforms to the process metamodel.
A small, consistent example is used throughout the paper
to illustrate our approach. The focus of the paper is to
show the idea and its potential in general, thus providing a
basis for further research.

The organization of the rest of the paper is as follows:
Section 2 illustrates the problem by presenting an exem-
plary process model and an exemplary structural project
plan. Section 3 shows our modeling approach intended to
solve the problem in general. Section 4 gives examples
for concrete models according to our modeling approach.
Section 5 provides an overview of related work. A con-
clusion and outlook on further work in section 6 ends the
paper.

2. Problem statement

Consider an insurance company that has started a de-

velopment project for a new insurance management sys-
tem – code-name “eInsurance System 200x”. Like almost
all companies our insurance company provides a stan-
dardized software development process which has to be
tailored for the specific needs of the project “eInsurance
System 200x”.

Figure 2 shows a small cutout of the already tailored
process model, where the project manager has already
chosen the products and activities that are of interest in
the context of his project. The process model consists of
three activities, namely Design, Implementation and Inte-
gration Test and the involved work products, respectively.

Component
Specification

Component
Implementation

implements

uses

Implementation

Design

for each
component

Legend

Activity

Work
Product

Activity Flow

Product Consistency
Dependency

Product Flow

Component
Test Case

derived
from

tests

Hint:
Incremental

Development
should be done

Hint:
Used Components

have to be tested first

Integration Test

...

...

Figure 2. Cutout of the Company’s Software De-
velopment Process Model 1

Whereas, as shown in Figure 2, the Design activity
should be performed once, Implementation and Integra-
tion Test are intended to be executed several times, that is
for each Component Specification provided by the De-
sign. The model additionally states that Implementation
should be done incrementally, meaning that the imple-

1 For this and the following figures, references to elements of the figure
in the explaining text are set in italics.

mentation (and the delivery as well) of chosen compo-
nents should be done one after the other regarding the
activity flow. A constraint provided in form of a hint is
that the Integration Tests of a particular component can-
not be done before the components used by this compo-
nent have been tested. Please note, that consistency de-
pendencies between work products, as for example the
uses relationship between Component Specifications or
the derived from dependency between Component Speci-
fication and Test Case are included in the process model
as well.

Business Layer
Component
Specification

Database Layer
Component
Specification

Error Management
Component
Specification

uses
uses

Figure 3. Exemplary Component Architecture

Figure 4 (b) shows an alternative instantiation of prod-
ucts in a structural project plan that is not a valid instan-
tiation of the process model in Figure 2. Please note, that
from a formal point of view it is not clear that Figure 4 (a)
is a valid instantiation while Figure 4 (b) is an invalid
instantiation.

Since the detailed deliverables evolve while the project
progresses, project planning is an iterative task. Having a
first rough idea of the system to develop in terms of com-
ponents and their dependencies the project manager can
start with the planning of implementation and test of these
components. An exemplary component architecture for
the “eInsurance System 200x” is shown in Figure 3. Next to determining the structure of the work products,

the exemplary component architecture has consequences
on the flow of activities according to the process model.
Of course, corresponding activities have to be included in
the structural project plan for each identified product, as
shown in Figure 5 (a).

According to the component architecture of the sys-
tem, the process model suggests a corresponding set of
deliverables (instances of the process model’s work prod-
ucts) as shown in the structural project plan in Figure 4
(a). The Business Layer Specification is directly associ-
ated to the corresponding Business Layer Implementation
and to several Business Layer Test Cases, whereas the
Business Layer Implementation and the Business Layer
Test Cases are further associated to each other.

Business Layer
Component
Specification

Database Layer
Component
Specification

Error Management
Component
Specification

uses
uses

Database Layer
Test Cases

Business Layer
Test Cases

Business Layer
Component

Implementation

Database Layer
Component

Implementation

Error Management
Component

Implementation

implements implements

derived
from

tests

Error
Management
Test Cases

derived
from

tests

tests

Database Layer
Component
Specification

Database Layer
Component

Implementation

implements

Databse Layer
Test Cases

Business Layer
Test Cases

testsderived
from

(a) (b)

derived
from

implements

Figure 4. Structural Project Plan Showing Work Products:
(a) Valid Instantiation, (b) Invalid Instantiation

eInsurance
System 200x

Design

Business Layer
Implementation

Error
Management

Implementation

Database Layer
Implementation

starts after end starts after end

starts after end

Business Layer
Integration Test

Error
Management

Integration Test

Database Layer
Integration Test

ends after end

ends after end
ends after end

ends after end
ends after end

Increment 1

Increment 2

Business Layer
Integration Test

Database Layer
Integration Test

ends after end

(a) (b)

ends after end

Figure 5. Structural Project Plan Showing Activities:
(a) Valid Instantiation, (b) Invalid Instantiation

According to the process model in Figure 2, in the

structural project plan in Figure 5 (a) the Business Layer
Implementation has to start after the end of the eInsurance
System 200x Design. However, the fact, that the Business
Layer Integration Test has to end after the Database
Layer Integration Test is just mentioned in form of a hint
in the process model in Figure 2. This ordering is never-
theless required, because the Business Layer Implementa-
tion has a uses dependency to the Database Layer Imple-
mentation, as defined by the component architecture in
Figure 3. In contrast, Figure 5 (b) does not provide a valid
instantiation of the process model from Figure 2.

Let us also assume that the project manager decides to
build the “eInsurance System 200x” in two increments.
The first increment contains business and database layer
while the second increment contains the error manage-
ment. As shown in Figure 5 (a), the Error Management
Implementation is starting after the first increment has
been finished (which in practice is not the best idea but
suits us here).

The problem is that the process model does not contain
all necessary information in terms of a formal description.
This means that a derivation of a structural project plan
cannot be done automatically. In our example, the re-

quired inputs seem to be the system’s component archi-
tecture and the assignment of the components to incre-
ments. For a clever project manager it is easy to keep an
overview of the “eInsurance System 200x” project exam-
ple. However, for projects more realistic in size, as well as
for process models more realistic in size, building a pro-
ject plan, which is consistent to the company’s standard-
ized development process model, will get very complex
and tedious.

3. A Layered Modeling Approach

Standardized software development process models are

quite different in practice and usually contain specific
solutions for certain types of projects and organizations.
Therefore, providing a single process model, which al-
lows for the consistent instantiation of a project plan,
would to be a little contribution. Furthermore, process
models such as the V-Modell 97 [12] for example, which
can be adapted to almost every project, are so generic that
their usefulness as a guideline for a concrete project might
be doubted.

Our modeling approach, depicted in Figure 6, is to
provide a Process Metamodel, which establishes a com-

mon language for describing Process Models. We use a
layered modeling approach according to the metamodel
structure provided in [8]. A process engineer can use the
language defined by the Process Metamodel to describe a
company’s specific software development process model
(see also [3]). The Process Metamodel offers clear defini-
tions for terms like activity or work product and their
possible relations.

Instantiation
Constraints Model

Process
Metamodel

Instantiation
Constraints Process Model

Structural Project
PlanProject Context

Metamodel
Layer

Model
Layer

Project
Layer

Instance

Instance

Instance

Instance

Figure 6. Overview of the Proposed Layered
Modeling Approach

A Process Model is an instance of a Process Meta-
model, providing for example an “implementation” activ-
ity and an “implementation” work product. The Process
Model serves as a model for the Structural Project Plan,
since according to our approach the Structural Project
Plan itself is an instance of the Process Model. Hence, the
Process Metamodel has to specify the elements and their
relationships in the Structural Project Plan as well, since
these are instances of instances of the Process Metamodel.
For example, the Structural Project Plan might contain an
activity “business layer implementation” as well as an
activity “database layer implementation”, which are both
instances of the “implementation activity” of the Process
Model (, which in turn are instances of the activity in the
Process Metamodel).

The instantiation of the Process Model involves multi-
ple instantiations of certain elements, according to the
Project Context, which contains for example the concrete
project’s component architecture. On the model layer, the
process engineer has to provide Instantiation Constraints
for the Process Model. The Project Context is an instance
of these Instantiation Constraints. On the metamodel
layer, there is an Instantiation Constraints Model to pro-
vide a model (or language constructs) for the process
engineer of how to constrain the instantiation of the Proc-
ess Model.

Integrating process modeling and project planning is
the basis for a tool-supported derivation of a structural
project plan from a process model. In our approach, the
coherence of process model and structural project plan is

made explicit by specifying the language as well as the
instantiation constraints for process models in form of a
metamodel layer. Process engineers using this metamodel
layer have a common language to take care of the appli-
cability of their process models for automatically deriving
a structural project plan.

In order to be able to refer to instances of instances ac-
cording to our modeling approach in the following text,
we use the term “instances” for entities in the model layer,
and the term “occurrences” for entities in the project layer
in the rest of the paper.

4. Process Models and Project Plans

This section provides examples according to our lay-

ered modeling approach. Section 4.1 shows our exem-
plary metamodel layer; section 4.2 shows a corresponding
process model layer and section 4.3 a possible project
layer. The examples provided here are the same in content
as the examples introduced in section 2.

4.1 Exemplary Process Metamodel Layer

Figure 7 shows according to our modeling approach an

instantiation constraints model and a process metamodel.
The upper part of Figure 7 contains an abstraction (de-
picted as classes with UML stereotype <<abstract>>)
from the concrete metamodel in the lower part of the
figure.

From an abstract point of view a process metamodel
consists of model classes that are related by binary, di-
rected model associations. Model associations can be of
certain types, establishing particular consistency con-
straints for valid occurrences of model associations in the
plan. For example, an association of type one-all states
that an occurrence of this model association in the project
plan relates one occurrence of a model class with all oc-
currences of associated model classes in the plan.

Planning units in the instantiation constraints model
are the inputs needed for deriving a structural project plan
from the process model automatically. They determine the
multiple instantiation of Model Concepts in the structural
project plan. Each planning unit has only one instance in
the process model (depicted as classes with stereotype
<<singleton>> in Figure 7), but several occurrences in
the structural project plan. Planning units are composed of
model classes and model associations. The intended se-
mantics is that for one occurrence of a planning unit in the
project plan there has to be at least one occurrence of all
model classes and associations the planning unit is com-
posed of.

Process Metamodel

<<abstract>>
Model Class

<<abstract>>
Model Association

from *1

1 *to

<<abstract>>
Model Concept

<<abstract>>
<<singleton>>
Planning Unit

1

*

*

<<abstract>>
<<singleton>>

Planning Dependency

from to

*
*

11

<<abstract>>
one-all

Product

Activity

Consistency Relation

Activity Dependency

Product Activity Interface

creates

creates all

starts after end

all start after end

ends after end

to

from

to

from

to

from

uses

*

*

from to

System Structuring
Element

Planned Increment

is next

from to

Instantiation Constraints Model

is composed of

is existing per

Figure 7. Exemplary Instantiation Constraints Model and Process Metamodel

Planning units are related by planning dependencies,

which in turn can influence the occurrence of certain
model associations in the plan, as expressed by the is
existing per association in Figure 7. A simple semantics is
that for every occurrence of a planning dependency there
is one occurrence of a model association in the structural
project plan. In general, the semantics has to be more
complex, since for example for a planning dependency,
there might be a model association in the reverse direction
as well.

A concrete process metamodel is shown in the lower
part of Figure 7 as a specialization of the abstract classes
in the upper part of the figure. In our exemplary meta-
model concrete model classes are products2 and activities.
Products have consistency relations among each other,
which are concrete model associations. Activities have
activity dependencies, like for example starts after end.
Activities can create a product, which is determined by

2 Product is an abbreviation for “work products”.

the product activity interface. Please note, that the Proc-
ess Metamodel shown here provides just a very simple
language.

Examples for concrete planning units in the instantia-
tion constraints model are the system structuring element
and the planned increment. System structuring elements
are architectural elements of the system like software
components. Occurrences of these have to be identified by
the system designer and communicated to the project
manager, since the (possibly multiple) occurrence of cer-
tain products and activities in the plan is determined by
the architecture of the system. Similarly, planned incre-
ments and their order are an input for the automatic deri-
vation of the plan from the process model. Other useful
planning units not shown in Figure 7 might be “subpro-
jects”, for example, since certain project management
activities occur per subproject. Another example are “re-
porting intervals”, since some products as status reports to
the customer, for example, occur on a regular temporal
basis.

Planning units provide a language construct for the
process engineer to specify the multiplicity of products,
activities and their relationships according to a fixed set of
multipliers. Please note that leaving the decision of multi-
ple instantiation of certain process model elements totally
open to the process engineer would just lead to providing

cardinality constraints for the associations contained in
the process model. In contrast, in our approach the con-
cept of planning units is intended to serve the process
engineer as a methodological guideline when building
process models.

:System Structuring Element

Component
Specification:

Product

Component
Implementation:

Product

Component Test
Case: Product

Integration Test:
Activity

Implementation:
ActivityDesign: Activity

derived from: Consistency Relation

implements:
Consistency

Relation

tests:
Consistency

Relation

: ends after
start

: ends
after end

: is existing per

: creates: creates: creates all

: all start
after end

:uses
: Planned Increment

: is next

: starts
after end

: is existing per

Instantiation Constraints

:Planning Unit

: Planning Unit

:Process Model Class

:Process Model Class

Process Model

:Process Model Class

:Process Model Class

: is composed of

: Process Model Association

: Process Model Association

: Planning Dependency

: Planning Dependency

is depicted as

(a)

(b)

Figure 8. (a) Integrated Representation of Instantiation Constraints and Process Model,
(b) Exemplary Instantiation Constraints and Process Model

4.2 Exemplary Process Model Layer

This section shows an exemplary process model and

exemplary instantiation constraints. Figure 8 (a) explains
the integrated representation for both models, which is
used to represent both models in Figure 8 (b). Planning
units being composed of process model classes and asso-
ciations are represented as surrounding boxes. This nota-
tion has the same meaning as an UML composition asso-
ciation while making the diagram in Figure 8 (b) more
legible.

Please note that the process model in this section is in-
tended to be the same in content as the process model in
Figure 2, but its notation is according to our modeling
approach more formal. The process model is an instance
of the process metamodel in Figure 7, the instantiation
constraints are an instance of the instantiation constraints
model.

The exemplary process model contains products and
corresponding activities for specification, implementation,
and testing. Products are related by consistency relations,
not different from those in Figure 2, as for example the
derived from relation between component test case and
component specification. In Figure 8 (b), all products are
included in the system structuring element, that is the
system structuring element is composed of them.

In contrast to that, occurrences of the ends after end
dependency exist between occurrences of integration test
activities associated to different occurrences of system
structuring elements in the plan. In Figure 8 (b), this is
expressed by an existing per association between the
planning dependency uses and the activity dependency
ends after end. The meaning is the following: For each
occurrence of uses between two system structuring ele-
ments, the integration test activities contained in the sys-
tem structuring elements are related by ends after end.

Similarly, planned increments, which are composed of
implementation activities together with their is next asso-
ciations determine the starts after end dependencies be-
tween the implementation activities contained in these
increments.

The design activity is the only activity not included in
a planning unit, because according to our exemplary
process model there can be just one occurrence of the
design activity in a plan. This occurrence of the design

activity creates all occurrences of component specifica-
tions. All occurrences of implementation activities start
after the design activity ends. This is expressed by the
creates all and all start after end associations, respec-
tively, which are both instances of one-all model associa-
tions in the process metamodel.

4.3 Exemplary Structural Project Plan Layer

Figure 9 shows an integrated representation of a struc-

tural project plan and a project context. Both are instances
of the process model and the instantiation constraints of
the process model layer in Figure 8 (b). Please note, that
occurrences of products and consistency relations are part
of a structural project plan as well, but not shown here.

The surrounding boxes in Figure 9 are part of the pro-
ject context, that is they represent occurrences of system
structuring elements (Business Layer, Database Layer and
Error Management) and planned increments (Stage 1 and
Stage 2), respectively. The structural project plan here is
the same in content as the one presented in section 2.

In our example, the occurrences of system structuring
elements and their uses relationship, as well as planned
increments and the implementation activities included in
them are the only input needed for the derivation of the
structural project plan from the process model.

Since in our modeling approach the process metamodel
layer does constrain the process model layer and the pro-
ject layer as well, the metamodel does not only have to
specify UML cardinalities for the model, but also for the
project layer. For example, consider the is composed of
association between planning unit and model concept in
the metamodel in Figure 7. In the metamodel, the speci-
fied cardinality is many-to-many, because a planning unit
is composed of many model concepts and vice versa. All
instances of the is composed of association in the process
model must be of cardinality one-to-at-least-one, that is
for every occurrence of a planning unit there has to be at
least one occurrence of a model class in the plan and for
every occurrence of a model class there is exactly one
occurrence of a planning unit. Similar consistency con-
straints have to be provided for the existing per associa-
tion and the all start after end association in the meta-
model, for example.

Stage 1: Planned Increment Stage 2: Planned Increment

Business Layer:
System Structuring Element

Business Layer
Integration Test:

Activity

Business Layer
Implementation:

Activity

System Design:
Activity

: starts after end : ends after end

Database Layer:
System Structuring Element

Error Management:
System Structuring Element

Database Layer
Integration Test:

Activity

Database Layer
Implementation:

Activity

Error Management
Implementation:

Activity

Error Management
Integration Test:

Activity

OR
: is next

: uses

: uses

Figure 9. Exemplary Project Context and Structural Project Plan showing Activities

5. Related Work

Meta-case tools approaches as for example Maestro [7]

tried to support the development process by providing a
kind of workflow support based on tracking document-
processing states. Similarly, the approach of process pro-
gramming in [9] or “process sensitive engineering envi-
ronments” as for example [1] based on Petri nets tried to
automate as much of the development process as possible.
More recent approaches like [6] or [15] for example are
aiming at flexible workflow support tools for develop-
ment processes as well.

In contrast, we believe that the benefit of enacting de-
velopment processes is very limited. Development proc-
esses have not much in common with industrial manufac-
turing processes, but are unique and demand creativity.
Our focus therefore is on an iteratively adapted project
plan as a process model’s outcome, which is carried out
“manually” by people. The granularity of planned activi-
ties is much more abstract and less constraining than
single steps to be carried out in a workflow engine.

Other approaches to process metamodeling like [3],
[11] or [10] do not provide precise semantics in terms of a
mapping of process model elements to a projects’ plan-

ning level. Furthermore, commercial tools like [5] for
deriving a project plan from a process model are based on
the implicit meta-model of the [12]. With [5] multiple
instantiation of process model elements has to be done
manually by the project manager.

6. Conclusion and Further Work

In this paper, we showed the usefulness and some of

the problems of integrating process modeling and project
planning. We presented our layered modeling approach
and provided an exemplary process metamodel together
with an instantiation constraints model, which seem to be
appropriate to solve the problems according to our exam-
ple. By illustrating the usefulness of deriving project plans
and the problems arising, we tried to lay the foundations
for some further research. The solutions presented in this
paper serve as a useful first step.

Interesting questions for the appropriateness of the ap-
proach are, whether a process model suited for deriving a
structural project plan might be too complicated to elabo-
rate. Of course, on the other hand, the question arises, if
planning according to the restrictions that a process model
provides might be too rigid. To provide an answer to the
first question, the details of a process metamodel suitable
for planning have to be elaborated. To give a positive

answer for the second question the concept of tailoring of
the process model to the current needs of a project has to
be integrated in the approach.

Next to the question of tailoring, several indispensable
features have not been considered yet. Additional plan-
ning units need to be elaborated, as for example for sub-
projects. Not only simple incremental development, but
also life cycle models like iterative development have to
be looked at in detail. Furthermore, process models usu-
ally contain “cross-sectional” themes as quality assurance
or configuration management, for example. Quality assur-
ance activities like “assess product” are usually not writ-
ten several times (for each product) in a process model,
but just once in order to avoid redundancy in the process
model. Nevertheless, these “generic” activities have to be
considered when doing project planning, since quality
assurance for example needs to be planned properly.

7. References

[1] S. Bandinelli, A. Fugetta, C. Ghezzi. Software Process

Model Evolution in the SPADE Environment. IEEE
Transactions on Software Engineering. 1993.

[2] M. Deubler, M. Gnatz, M. Meisinger, A. Rausch. Analyse-
Workshop Ergebnisse. Workshops mit V-Modell 97
Anwendern. http://www.v-modell-200x.de. 2003.

[3] M. Gnatz, F. Marschall, G. Popp, A. Rausch, W.
Schwerin. The Living Software Development Process.
Software Quality Professional, Volume 5, Issue 3, June
2003.

[4] Philippe Kruchten. The Rational Unified Process, An
Introduction, Second Edition. Addison Wesley Longman
Inc. 2000.

[5] microTool: in-Step - The Workflow Management System
for IT projects. http://www.microtool.de/instep/en/

[6] F. Maurer, B. Dellen, F. Bendeck, S. Goldmann, H. Holz,
B. Kötting, M. Schaaf. Merging Project Planning and
Web-Enabled Dynamic Workflow Technologies. IEEE
Internet Computing. Vol. 4, No. 3 2000.

[7] G. Merbeth. Maestro II – das integrierte CASE-System
von Softlab. In: CASE – Systeme und Werkzeuge (Hrsg.
H. Balzert). 1993.

[8] Object Management Group (OMG). 1999. Meta Object
Facility (MOF) Specification. http://www.omg.org,
document number: 99-06-05.pdf.

[9] L. Osterweil. Software processes are software too.
Proceedings of the 9th international conference on
Software Engineering. 1987.

[10] Josep M. Ribo, Xavier Franch. PROMENADE: A PML
Intended to Enhance Standardization, Expressiveness and
Modularity in Software Process Modelling. Research
Report. Departament de Llenguatges i Sistemes
Informàtics. 2000.

[10] Standish Group International, Inc. 2001. Collaborating on
Project Success. Software Magazine, February/March
2001. Wiesner Publishing. 2001.

[11] Software Process Engineering Meta-model (SPEM),
Version 1.0. Object Management Group (OMG).

http://www.omg.org/technology/documents/formal/-
spem.htm. 2002.

[12] AU 250, Entwicklungsstandard für IT-Systeme des
Bundes, Vorgehensmodell. Juni 1997.

[13] Entwicklungsstandard für IT-Systeme des Bundes,
Vorgehensmodell. Teil 3: Handbuchsammlung: Tailoring
und projektspezifisches V Modell. Juni 1997.

[14] Projekt WEIT - Weiterentwicklung des
Entwicklungsstandards für IT-Systeme des Bundes auf
Basis des V-Modell-97. http://www.v-modell-200x.de.
2003.

[15] B. Westfechtel. Ein graphbasiertes Managementsystem für
dynamische Entwicklungsprozesse. Informatik Forschung
und Entwicklung, Vol. 16. Springer-Verlag. 2001.

	Introduction
	Problem statement
	A Layered Modeling Approach
	Process Models and Project Plans
	Exemplary Process Metamodel Layer
	Exemplary Process Model Layer
	Exemplary Structural Project Plan Layer

	Related Work
	Conclusion and Further Work
	References

