
�
A FUNCTIONAL SEMANTICS

FOR DELTA�DELAY VHDL

BASED ON FOCUS

Max Fuchs�� Michael Mendler��

�Institut f�ur Informatik

Technische Universit�at M�unchen

��Department of Computer Science

Technical University of Denmark

�It�s long�� said the Knight�

�but very� VERY beautiful�

Everybody that hears me sing it �

either it brings the TEARS into their eyes� or else � �

� Lewis Carroll� Alice Through the Looking Glass

ABSTRACT

This tutorial paper gives a functional semantics for delta�delay VHDL� i�e� VHDL
restricted to zero�delay signal assignments� In combination with the sequential state�
ments zero�delay signal assignment is su�cient to generate the full algorithmic ex�
pressibility of VHDL� The restriction is useful for a formal semantics of VHDL aimed
at higher levels of abstraction where real� absolute� and precise timing often is painful
if not impossible to prescribe�

The approach employs the functional speci�cation methodology Focus which is based

on the concept of streams and stream�processing functions� It advocates a three�level

semantics re�ecting VHDL�s three syntactic levels of expressions� statements� and

processes�

�

�� Chapter �

� INTRODUCTION

There is a widespread consensus which interprets the reference semantics of
VHDL ���� to de�ne the behaviour of processes as proceeding in two dimensions
of time� corresponding to the two levels of delta and physical delay execution�
Although this informal two�dimensionality of time is well recognized� when
it comes to formal functional semantics the delta delay generally is ignored�
with few exceptions such as ���� 	

�� Many approaches focus on the physical
time dimension while excluding delta delay execution ��	� 	
�� 	
�� 	
�� 	�	��
The semantics of �		�� does model zero delay signal assignment but leaves out
sequential statements� Our objective is to complement these approaches by
taking the orthogonal route� namely to make the delta delay the object of our
formal investigation with physical time being of secondary importance� In fact�
delta delay and sequential statements already provide all the computational
power and thus make up VHDL as a programming language� On top of this
semantical platform various notions of time� can be encoded depending on the
particular level of abstraction chosen� The usual low�level notion of physical
time� for instance� may be obtained simply as a side e�ect on a global time�
signal� which is maintained and incremented every now and then by dedicated
processes �	

�� On higher levels of abstraction� such as system or architecture
level� one might want to abstract away from physical time completely� or use
more abstract models of time ����� Focusing on delta delay re�ects the fact
that the particular model of time can be left to the application level and need
not be built into a formal semantics for VHDL�

We give a functional semantics for delta�delay VHDL ��VHDL� which is essen�
tially VHDL restricted to zero�delay signal assignment� The formal setting in
which our semantics is developed is Focus ����� a general functional framework
for the formal speci�cation and development of distributed systems� It allows
us to give a precise� consistent� and unambiguous de�nition of the intended dy�
namic behavior of VHDL constructs directly in terms of ordinary mathematical
objects such as sets� relations� functions� lists� streams� and so on� This con�
trasts with other functional approaches that proceed indirectly via a translation
or encoding into another formal language� Read and Edwards ���� use a trans�
lation of VHDL into the lisp�like language of the Boyer�Moore theorem prover�
Breuer et al� ��	� translate into the lazy functional language Gofer� S�anchez et
al� �	
�� 	
�� propose a two�step translation of VHDL� �rst into a special dialect
VHDL� and from there into the stream language STREAM� Also� van Tassel
�		�� presents what is essentially a translation semantics� namely into the lan�
guage of HOL �Higher�Order�Logic�� Reetz and Kropf �	

� translate into �ow
graphs which in turn are encoded in HOL� Wilsey �	�	� puts forward a par�

Delta�Delay VHDL and FOCUS ��

ticular formalism of Interval Temporal Logic� In all these cases the problem
of providing a semantics for VHDL is solved� by reducing it to the semantics
of another language� which does not necessarily make it easier to get a clear
understanding� The advantage of our direct mathematical approach is that we
are not stuck with a particular and restricted formalism but are free to choose
the concepts most suited to explain a given semantical feature of VHDL� We
will exploit this by using di�erent semantical styles at the levels of expressions�
statements� and processes�

Our semantics aims at VHDL as a speci�cation and programming rather than
description language� to be used mainly at higher levels of abstraction� An
abstract system description gets assigned a Focus semantics in terms of streams
and stream�processing functions� which is amenable to formal analysis with a
variety of reasoning styles and proof techniques supported by Focus� Focus also
o�ers powerful re�nement calculi for distributed systems to be developed in a
step�wise manner �����

� A MOTIVATING EXAMPLE

It will be useful to have our formal development be accompanied by a working
example just complex enough to convey the basic ideas� Here the counter
proposed in the Introduction to this volume is chosen� It is well understood in
both its synchronous and asynchronous variants and thus is ideally suited to
illustrate our formal semantics of �VHDL�

One of the �rst steps to be taken in modelling a piece of hardware is to decide
for a suitable level of abstraction for both the data manipulated and the notion
of time� The counter� for instance� may be seen to count either over integers or
over �nite bitvectors� and in the case of a synchronous counter we may decide to
model its dynamic behaviour wrt� synchronous time given by the succession of
clock ticks� or wrt� to real physical time measured in nano seconds� Abstraction
is a very successful engineering principle not least because it helps us to master
the design of complex systems� The functional behaviour of a microprocessor�
for instance� could not possibly be described solely at the level of bit�vectors
and real physical time� On the other hand� abstraction by its very nature
always involves some loss of low�level information which may not be always
safe to ignore� For instance it may be necessary� as a subcomponent of a larger
system� to model a counter over �nite bit�vectors and physical time� in order
to keep track of arithmetical over�ow and timing violations�

�� Chapter �

In this paper we will focus on the timing aspect and show that the notion of a
��delay is powerful enough to encompass both synchronous and asynchronous
timing descriptions� The idea is that we are free to take a ��step to model the
tick of a global system clock� or as the passage of a �ctive physical unit of time�
Note that the potential for data abstraction will be clear from the fact that
�VHDL is parameterized in a collection of primitive data types which we are
free to choose in an arbitrary way�

The left�hand part of Figure 	 contains the description� in �VHDL� of an asyn�
chronous 	�bit counter stage with input signal i and output signal o� The
process cnt� has two internal variables� Variable z stores the output state of
the counter stage and x contains the last input read� Whenever the input
switches from 	 to
� the condition if i �
� and x � 	� becomes true and
the output state z is inverted� The new output is written to the output signal
with o �� z� Since this update of the output does not become e�ective in the
same but in the next � step� we get a 	� delay from the triggering input edge
to the resulting change of the output� This models the propagation delay of
an asynchronous counter stage� where 	� may corresponds to some arbitrary
but �xed physical delay unit� say ��	�	�ns� Notice� although the process of
Figure 	 has an empty sensitivity list there is no explicit wait statement in
the body� In �VHDL there is always an implicit wait for
 ns� at the end of
a process which� since it is built in automatically� need not be written into the
code�

cnt� �i� o� �

process

variable x� z � BIT ��
� �

begin

if i �
� and x � 	�

then z �� not z else null �

x �� i � o �� z �

end process �

cnt� �i� o�� o�� o�� �

design

begin

cnt� �i� o��

cnt� �o�� o��

cnt� �o�� o��

end design �

Figure � A Simple ��Bit Asynchronous Counter

Three such 	�bit counters can be composed to form a ��bit asynchronous
counter cnt� with input i and outputs o�� o�� o�� as shown on the right�hand
side of Figure 	� One expects that the resulting counter has a total propaga�

Delta�Delay VHDL and FOCUS ��

tion delay of ��� In fact� a VHDL simulation would produce a typical timing
diagram like the one shown in Figure ��

��

��

��

i

o�

o�

o�

Figure � Timing of the Asynchronous Counter

It suggests that whenever the input switches from 	 to
 the counter value is
increased and the new output becomes stable after �� steps� We will see later
how this behaviour can be derived formally from our semantics�

Exercise It is not di�cult to modify the example so as to obtain an asynchronous
counter stage with a delay of n � steps� Formulate both inertial behaviour� i�e� any
input change arriving while the stage is unstable is ignored� and transport behaviour�
i�e� every negative input change results in an output change after n � steps� Hint�
Use additional internal variables to count time and� if necessary� interfering input
changes� Observe that the local counting of time depends on an empty sensitivity list�
i�e� the fact that the process actively participates in every � step�

Another variant of the counter is the synchronous one where we take the �

steps to represent the synchronous computation determined by a global clock
signal� Here� the clock signal is implicit in the activation of the processes� every
time the implicit master clock ticks to increment synchronous time the next
computation step is set o� by activating all processes� A naive description of
a synchronous counter is given in Figure � and a timing diagram shown in
Figure ��

The process cntk �i�� i�� � � � � ik� o� describes the counter stage k with k�	 inputs
i�� i�� � � � � ik and output o� The inputs are connected to the outputs of the
previous stages to detect the count over�ow� if all earlier stages are at 	� the
output must switch� Again� there is an implicit wait for
 ns� at the end of
the processes�

�� Chapter �

cntk �i�� i�� � � � � ik� o� �

process

variable z � BIT ��
� �

begin

if i� � 	� and � � � and ik � 	�

then z �� not z else null �

o �� z �

end process �

cnt� �i� o�� o�� o�� �

design

begin

cnt� �i� o��

cnt� �i� o�� o��

cnt� �i� o�� o�� o��

end design �

Figure � A Simple Synchronous Counter

i

o�

o�

o�

��

Figure � Timing of the Synchronous Counter

� ASSUMPTIONS

The semantics of VHDL is speci�ed by the language reference manual ���� in
terms of an event�driven simulator� The principal aim is to provide a well�
de�ned reference semantics for consistent and e�cient simulator implementa�
tions� A natural approach towards formalizing the standard� therefore� would
attempt the formal description of a VHDL simulator� Several attempts have
been made in this direction� An elegant approach based on concurrent evolving
algebras is that of B�orger et al�� which can be found in Chapter � of this vol�
ume� Another example is the rather comprehensive formalization of the VHDL
simulation engine in terms of coloured Petri nets by Olcoz in Chapter ��

Delta�Delay VHDL and FOCUS ��

Clearly� the direct formalization of the standard supports the implementation
of VHDL simulators and development of the VHDL language itself� However�
from the users� point of view the semantics of a VHDL design appears as the
semantics of processes and their communication rather than that of the simula�
tor� Therefore� being interested in VHDL as a speci�cation language� we will be
a bit more abstract and formalize the result of a simulation not the simulation
itself�

We develop a formal VHDL semantics for VHDL users

VHDL processes will be modelled formally as streams and stream�processing
functions� which are the basic concepts in Focus� The starting point for our
semantics is a sea�of�processes plus connectivity information� which is obtained
during the elaboration phase ����� Each process� which stands for a concurrent
statement or a collection of sequential statements� is modelled by a stream�
processing function transforming an input stream into an output stream� The
connections between processes are re�ected by channels� Signals correspond
to streams of messages sent along the channels� Contrary to VHDL�s simula�
tor model� where only events are sent around� a message in our model is the
signal state observable at a particular delta time� Consequently� suspension
and resumption of processes becomes unnecessary � a process must be alive
all the time� Also� wait statements are assumed to be busy and built into the
process� Built in� means that the wait statement does not appear explicitly
in our semantic functions and busy� means that the process is responsible for
checking the input signals for being activation events� This allows us to ab�
stract from the event�driven simulation cycle� Eventually our system model for
VHDL semantics looks as follows�

System model�

process � stream�processing function

connections � channels

signals � streams of messages

signal data � abstract data type

The system model above has a decisive in�uence on the statements we give a
formal semantics for� Obviously we need formal semantics for processes� The

�� Chapter �

concurrent VHDL statements are transformed into processes during elaboration�
hence we can skip the explicit handling of these statements as they are already
covered by processes� However for the sequential statements� which are the
ingredients of processes we need semantic functions� To concentrate on the
principal idea behind our semantic functions and to keep the paper concise
we restrict ourselves to a subset of the sequential statements� We exclude
assertions� procedures and procedure calls� the case statement� as well as next�
exit and return� We also ignore arbitrary wait statements but introduce an
implicit wait for
 ns� at the end of each process�

Formal semantics is given to�

processes based on busy waiting

an adequate subset of sequential statements

One powerful feature of VHDL are the timing concepts� Nevertheless we claim
that delta�delay timing is su�cient to understand the VHDL statements� Of
course� inertial and transport delay have in�uence on the transmission of sig�
nals� but the semantics of the statements itself is independent from timing�
As a by�product of delta�delay handling we need not take into consideration
preemptiveness� and waveforms as well as after clauses in signal assignments�

Delta�delay is su�cient to give semantics to VHDL statements

Since a signal in VHDL is accessible to all the processes� it may be driven by
many di�erent sources� VHDL requires each such signal to be resolved by a
resolution function� In our modelling the resolution functions are just another
type of process in the sea�of�processes� On the input side they are connected
to the di�erent driving sources and on the output�side the resulting e�ective
values are accessible�

Resolution functions are modelled by processes

Our semantics evades a number of syntactic features of VHDL� Some omissions
have not been mentioned like signal attributes and null waveform elements� For
a concise de�nition of exactly what has been covered the reader is referred to
the appendix which contains the abstract syntax de�nition of �VHDL� We wish

Delta�Delay VHDL and FOCUS ��

to stress� however� that all restrictions � except for omitting wait statements
and the after clauses � are not essential to our approach in the sense that
they have been made only for convenience and simplicity rather than intrinsic
technical reasons�

��� The Speci�cation Methodology Focus

The formal setting in which our semantics is developed is Focus ����� a general
framework for the formal speci�cation and development of distributed systems�
The suitability of Focus in the area of system and software design has been
demonstrated by many case studies ����� Focus has already been used success�
fully to give formal semantics to existing languages like SDL ���� ��� and Esterel

����� Recently� some e�orts have been made in applying Focus in the area of
hardware design ���� ��� ����

A system in Focus is modelled by a network of components working concur�
rently� and communicatingvia FIFO channels� A number of reasoning styles and
techniques are available� Focus also provides mathematical formalisms which
support highly abstract� not necessarily executable� speci�cations with a clear
semantics and o�ers powerful re�nement calculi to develop distributed systems
in a stepwise manner� Focus is modular in the sense that design decisions can
be checked at the point where they are taken� component speci�cations can be
developed in isolation� and in the sense that already completed developments
can be re�used in new program developments� The mathematical foundation
of Focus is based on streams� stream�processing functions and functional spec�
i�cations by means of predicates�

Streams� A stream is a �nite or in�nite sequence of data modelling the history
of a communication channel in terms of the sequence of messages sent along
the channel� The application of streams as a general model for distributed
computing has been introduced in ���� and for digital circuits in ����� In this
paper streams are used in the speci�c context of VHDL� channels represent
VHDL signals and messages represent signal values in a given ��step� The �ow
of time inherent in this notion of a stream� then� represents the succession
of ��steps e�ected by the simulation cycle� In our model� which abstracts
from the �niteness of VHDL�s simulation time �TIME�High�� we assume that
simulation runs on forever� Thus� the streams we are actually interested in are
the in�nite streams� A �nite stream is an approximation corresponding to an
incomplete simulation which has determined the history of a system only up
to a certain number of � steps� Its continuation is unknown and may in fact

�� Chapter �

never be attained since the computation for the next ��state may be trapped
in an in�nite loop�

The formal setting is as follows� Given a set of actions D� D� denotes the
set of all �nite streams generated from D� D� denotes the set of all in�nite
streams generated from D� and D�� called the set of streams over D� is the
union D� � D�� The few fundamental operations on streams su�cient for
our purposes are shown in Figure �� Many more useful operations can be
de�ned to obtain a rich algebra of streams ���� ���� When we write down

h i empty stream
d y stream resulting from pre�xing stream y with

element d � D

zip�y�� � � � � yn� stream obtained by merging n streams yi into a single
stream of n�tuples

unzipnk �x� stream obtained by extracting the k�th component
from stream x of n�tuples �n � k�

!x length of stream x �� if x is in�nite�

Figure � Basic Operations on Streams�

streams we use angled brackets and let time �ow from left to right� e�g� the
stream h�� �� �� 	
� � � �i describes the behaviour of a counter starting with � at
the beginning of the simulation� The pre�xing operation d y adds an element
d � D at the start of stream y� e�g� � h
� 	i � h��
� 	i� The zip function
synchronizes n streams into a single stream of n tuples� e�g�

zip�h�� �� �� 	
� � � �i� h�ready�� �steady�� �go�i� �

h��� �ready��� ��� �steady��� ��� �go��i�

Observe that the output of zip stops as soon as one of its argument streams
does� This models the strong synchronization of VHDL�s simulation kernel� If
one process fails to terminate� i�e� a statement runs into an in�nite loop� the
whole simulation is blocked� With unzip we can break up a stream of tuples
into slices� e�g�

unzip�
�
�h��� �ready��� ��� �steady��� ��� �go��i� � h�� �� �i�

Observe that unzip is not the inverse of zip since the synchronization performed
by zip throws away information that cannot be recovered� Finally� the length of
a stream is the number of actions contained in it� for instance !h�� �� 	

��
i�
�� !h
� 	� �� � � �i � �� The notion of length of a stream will be generalized to

Delta�Delay VHDL and FOCUS �	

tuples of streams� If r is a tuple of streams� then !r denotes the length of the
shortest stream in r� For example� !�h�� �� �i� h i� h	i� �
�

On D� we de�ne a partial pre�x ordering s v r� which denotes that s is a
pre�x of t� Intuitively� s v t says that simulation history t is a continuation of
history s� Alternatively� v can also be understood as an information ordering so
that s v t means s is an approximation of history t which gives less information
about the whole simulation run than t� An extreme case is the empty stream h i
which carries no information at all� While not being of much practical relevance
the empty stream is an important theoretical concept� It plays a double r"ole
of modelling the beginning of a simulation� i�e� the empty history� as well as
a simulation stopped by a nonterminating statement� Whenever the result of
executing a statement is unde�ned� which we will denote as �� the simulation
stream is empty� Technically� this is achieved by taking to be strict in its
�rst argument and non�strict in its second� i�e� d y is empty i� d is unde�ned�

Remark The set of streams ordered by v is a complete partial order �cpo	 with the
empty stream h i as least element� This algebraic structure can be used for solving
recursive type equations
���� For instance� one can show that D� is a canonical
solution of the cpo�isomorphism

D
� �� �D�D

����

where X� denotes X extended with a fresh bottom ��least	 element � �� X� i�e�
X� � X � f�g� and D is a set with discrete ordering� Being a �canonical� solution
means that we can de�ne recursive functions over D� by induction on the structure
of its elements� For instance� we know that a recursive de�nition like

f��d�� d�� d�� � rest� � d� � f�rest�

determines a unique function f � �D�D�D�� � D�� namely the function unzip���
For the mathematical theory of cpos and their application as semantical data types
the reader is referred to
��� or the more recent textbooks
��� ����

StreamProcessing Functions� VHDL processes will be modelled by stream�
processing functions� A stream�processing function is a continuous mapping
from tuples of input streams to tuples of output streams ����� In concrete
terms this means that the function�s behaviour for in�nite inputs is completely
determined by its behavior for �nite inputs� This is a reasonable requirement�
every output a VHDL process produced in a full simulation run must have
occurred after a �nite number of inputs already� All our basic operations on
streams d � zip� unzip are continuous�

Remark Continuous functions f over complete partial orders �cpo	 with a least el�
ement have unique minimal �xpoints which can be completely characterized by the

�� Chapter �

iterations of f � This property is the basis for describing the behaviour of a system of
VHDL input�output processes with feedback functionally by �xpoint theory� in perfect
concordance with the iterative simulation model� For the mathematical theory of con�
tinuous functions and their r�ole in solving recursive equations the reader is referred to

���� ��� ���� The special case of streams and stream�processing functions� as well
as their application to system design is elaborated on in
��� ��� ���

A special feature which our stream model for VHDL is distinguished by is the
synchronous communication paradigm� The simulation of ��steps in VHDL is
a completely synchronous execution process in which the individual processes
and the kernel communicate synchronously� This can be captured formally� A
function f � D�

�
� � � � � D�

n � D� is called weakly synchronous if it has the
property

�i� j � D�
�
� � � � �D�

n � i v j 	!f�i� � !i
 f�i� � f�j��

Intuitively� the condition states that whenever f has taken more input elements
than it has produced output elements� then f has broken down and will never
produce any more output� This is a characteristics of synchronous systems �
viewed as functions on streams � as opposed to asynchronous ones� which may
�rst need to consume a certain number of input values before producing the
next output� More speci�cally� in a synchronous system the output is ahead of
the input by a constant amount of values re�ecting the constant delay through
the system�s registers� Since our condition above also permits that this internal
delay varies over time and even becomes in�nite we call it the weak synchrony
property�

Adopting weak synchrony has the advantage that communication channels be�
have as ordinary wires rather than unbounded FIFO bu�ers� Notice that all
our basic operations on streams d � zip� unzip are weakly synchronous� and
that this property is preserved under functional composition�

Speci�cation� In general a process may be modelled by a �non�empty� set of
weakly synchronous stream�processing functions� Each function from this set
corresponds to one particular �deterministic� behaviour� Let S be a component
with input streams D�

�
� � � ��D�

n and output stream D�� Then the behaviour
of S� or its semantical denotation� is a logical predicate

��S���f � D�
�
� � � � �D�

n � D��

describing a set of weakly synchronous stream�processing functions f that rep�
resent the behavior of the speci�ed component� If the set is empty� the spec�
i�cation is called inconsistent � If the set consists exactly of one function� the

Delta�Delay VHDL and FOCUS ��

speci�cation is called determined � If the set contains more than one function�
the speci�cation is an under�speci�cation since more than one implementation
is possible� In our description of VHDL all speci�cations will be determined�

To give an example of a speci�cation in Focus� let us specify a zero�delay level�
triggered d�latch DL� taking B � f
� 	g to denote the set of bits�

��DL���f � B� � B
� � B

� � �
�g � B� � B

� � B � B
� � �z � B � �
�

�i�� i� � B� � f�i�� i�� � g�i�� i�� z� 	 �	�
�ds� cls � B� � �d� z � B �

g�d ds� 	 cls� z� � d g�ds� cls� d� ���
g�d ds�
 cls� z� � z g�ds� cls� z� ���

The latch has a clock and a data input� and a data output� so the function f

to be speci�ed is of type B� � B
� � B

� � As seen in �	� we specify f in terms
of an auxiliary function g � B

� � B
� � B � B

� � which has a parameter list
extended by an extra state parameter� z of type B � The auxiliary function is
introduced in the speci�cation by the existential quanti�er �g in �
��

The basic behaviour of the latch is to transfer the input to the output as long as
the clock is high� If the clock goes low the last transferred input data is held at
the output� The initial data z � B for the output is chosen nondeterministically�
either low or high� by the �z�quanti�er in �
� � the corresponding data only
appears at the output if the �rst clock element is low� In ��� the �rst element
at the data input is transferred to the output because the �rst clock element
is high� In ��� the �rst clock element is low and therefore the old output data�
stored in the state variable z� is output again� In both cases the auxiliary
function invokes itself with reduced inputs and an accordingly manipulated
state variable�

In Focus we usually avoid notational ballast and simplify our speci�cations by
dropping the quanti�ers whenever these can be worked out systematically from
the structure of the equational speci�cation� the rule is that� by reading the
equations from top to bottom� all variables appearing on the left�hand side of an
equation are universally quanti�ed while those only occurring on the right�hand
side are introduced by existential quanti�cation� To structure the speci�cation
a where� statement is sometimes introduced to indicate a subspeci�cation�
Adopting this scheme the speci�cation of the latch simply becomes

�� Chapter �

��DL���f � B� � B
� � B

� � � f�i�� i�� � g�i�� i�� z�
where g�d ds� 	 cls� z� � d g�ds� cls� d�

g�d ds�
 cls� z� � z g�ds� cls� z��

For a more detailed introduction into Focus see �����

� FORMAL SEMANTICS FOR ��VHDL

The discussion of our formal semantics for �VHDL proceeds bottom up� Be�
ginning with the identi�ers we work our way up via expressions and sequential
statements to concurrent processes� These are the basic levels of computation
each one with its own characteristic notion of execution� time� and composition�

VHDL as almost any other programming language rests on the notion of iden�
ti�ers as the most primitive syntactic entity� One might� at �rst� expect that
there is not much to be said here� but in fact the structure pertaining to VHDL
identi�ers is fairly rich already and deserves separate mention�

First� VHDL is a typed language which means that identi�ers are distinguished
by their types� Formally� we have a set of identi�ers N � fx� y� z� � � �g� a set of
type names T � f�� �� �� � � �g together with a map that associates a �unique�
type name type�x� � T with every identi�er x � N � To indicate the typing
an identi�er x can be decorated with its associated type name � to produce
a type indication x � �� Second� identi�ers are structured further in VHDL by
distinguishing� among other things� between variables and signals� Signals in
turn have an associated mode to distinguish� for instance� between input and
output signals� There is much more structure to signals and identi�ers �the
names�� in VHDL which we shall not treat in this paper� For our purposes it is
su�cient to assume a �xed subdivision of N into variables V and signals S� i�e�
N � V �S� V S � �� and further distinguished subsets I � N and O � N of
input and output signals� We deliberately permit I and O to overlap providing
us with signals of mode inout� The fact that we �x these sets once and for all
is not a restriction since they can be chosen large enough �e�g� in�nite� for a
practically inexhaustible supply of fresh identi�ers�

Just as the syntax is generated by identi�ers the semantics will build up from
a semantics for the identi�ers� We assume that there is associated with every
type name � � T a concrete data type ����� containing all the values we will

Delta�Delay VHDL and FOCUS ��

want to denote by identi�ers of type �� For instance� among the type names
we would have INTEGER and BIT such that ��INTEGER�� and ��BIT�� are the
set of integers f� � � � ���	�
� 	� �� � � �g and bits B � f
� 	g� respectively� Let
Id � fx� � ��� � � � � xn � �ng be a set of identi�ers with type indications� Then�
the semantics of Id is the set of records r with labels x�� � � � � xn� such that
component r�xi� i � 	� � � � � n� is an element in the set ���i��� formally

��Id�� � fx� � ������� � � � � xn � ���n��g�

Given a record r � ��Id�� we write rfx � ag for the record obtained from r by
updating entry x with a new value a�

rfx� ag�z �

�
a if z � x

r�z otherwise�

For example� if Id � fi � BIT� o � INTEGERg� then r � fi �
� o � 	���g is
a record in ��Id�� with r�i �
� r�o � 	���� rfo � 	���g is the record fi �

� o � 	���g� The record interpretation is very convenient as it allows us to
use the identi�ers of �VHDL directly to reference semantical objects� When
the names of variables� and hence those of the record �elds� are understood we
may identify ��Id�� with the product set ������� � � � � ���n���

��� Expressions

The �rst semantic level to be treated corresponds to the syntactic class of
expressions� In formalizing this level we will be fairly generic in the sense that
we do not stick too much to the concrete syntax of VHDL but rather focus on
the essential concepts involved� We describe the abstract syntax of expressions
so that we can ignore syntactic mechanisms such as type overloading� type
conversion� and operator precedences� Also� to keep matters simple we shall
not treat type constructions such as subtypes� enumeration types� etc�

Expressions in VHDL as in many other programming languages are built from
a set of primitive operations which are thrown in and implemented directly by
the run�time system� Examples are the subtraction operation or the logical
operation xor� Since VHDL is a typed language operations can be applied only
to values of a certain data type and produce results only of a certain type� For
instance� subtraction is not allowed on booleans while xor is not admissible on
integers�

Formally� the syntax of expressions may be speci�ed by two bits of data� a
set of operator names O � ff� g� h� � � �g and a map associating with every

�� Chapter �

operator f a �nite nonempty sequence of type names ���� � � ��n�� called the
arity of f � For instance� there will be the operators subtraction and exclusive�
or with arities INTEGER INTEGER INTEGER and BIT BIT BIT� respectively�
Operators whose arity is a single type name are called constants� For example�

�� 	� are constants of arity BIT� The arity of an operator speci�es in which
contexts it can be applied� if f has arity ���� � � ��n�� then f can be applied
to n arguments g�� g�� � � � � gn of types ��� ��� � � � � �n to obtain a well�formed

term f�g�� g�� � � � � gn� of type �� By this inductive process the well�formed
expressions are built up from the operators� The primitive elements are the
identi�ers and constants� an identi�er x � � is a well�formed expression of type
�� A constant of arity � is a well�formed expression of type �� The identi�ers
occurring in an expression e are called the free identi�ers of e�

The semantics of expressions is de�ned by associating with every operator f �
O of arity ���� � � ��n� a concrete operation ��f �� � ��������������� � �����n��� ������
where ���i�� and ����� are the concrete data types associated with the type names
�i and �� i � 	� � � � � n� For instance� ��xor�� � B � B � B might be the concrete
exclusive�or operation on bits implemented in the run�time system of the VHDL
simulator� The semantics of a well�formed expression e of type � with free
identi�ers contained in I � fx� � ��� � � � � xn � �ng is the function

��e�� � ��I��� �����

inductively de�ned as follows�

��xi���fx� � a�� � � � � xn � ang� � ai �i � 	� � � � � n�

��f�g�� � � � � gm����r� � ��f �����g����r�� � � � � ��gm���r���

Note that both variables and signals are identi�ers and thus are covered by
the above de�nition� For the semantics of expressions no distinction between
variables and signals is made�

The formalization of the above concepts at the level of expressions is well known
from semantic algebras �		
�� Clearly� there is a trade�o� of just how much com�
putational power one bothers to put into this algebraic level� This is not just
a matter of what primitive data types and primitive operations there should
be available but also how much extra algebraic structure one decides to put
in� For instance� in VHDL there are derived data�types such as subtypes and
enumeration types� and general recursive functions� One might go even further
to allow inductive datatypes and function types as in high�level functional pro�
gramming languages� Though still maintaining the essential algebraic nature
�leaving aside the problem of nontermination�� this would get us well beyond
the scope of a traditional hardware description language�

Delta�Delay VHDL and FOCUS ��

��� Statements

The second semantical level is that of the sequential statements� which make
up the algorithmic kernel of VHDL� At this level VHDL appears much like
an ordinary imperative programming language such as Pascal or C� with state�
ments such as variable assignment� if�then�else� and loop� Therefore� in a �rst
approximation towards a formal semantics for VHDL� which is concerned with
the VHDL�speci�c aspects of signals and processes� this level can be ignored�
This approach is taken� for instance� in the formal semantics presented in Chap�
ters � and � of this volume� Yet� if one is to capture VHDL as an imperative
programming language the sequential part� which provides all the actual algo�
rithmic power� is essential� It is the meat in the soup�

As in ordinary procedural languages the execution of a statement amounts to a
sequence of changes of program state� i�e� in the values of variables declared in
the current local context� Accordingly� the semantics can be based on the no�
tion of state transitions obtained from the sequential execution of the program
statements� Among these are the loop statements� which sometimes may not
terminate resulting in an in�nite state sequence� Whenever it does terminate
a statement may be viewed as a transformation of the initial start state to the
�nal end state� Formally� the semantics of a statement with variables V in �rst
approximation would be a partial function f with domain ��V �� and range ��V ���

f � ��V ��� ��V ��
�
�

where � indicates that f may not terminate for some inputs�

The salient new concept in VHDL is the signal assignment� which links up with
a new semantical level unknown in procedural languages� namely the level of
signals and processes� We must re�ne the traditional semantics of statements
given above to capture this extra structure� First we need to �x our notion of
signal� Formally� if s � � is a signal identi�er for a signal of type �� we need
to de�ne a mathematical object Sig��s � ��� representing the semantics of signal
s� There are many sensible choices and the more information we decide to put
into Sig��s � ��� the more powerful our notion of signal and the more expressive
our semantics of statements will be� For instance� as in �	
�� we might take a
signal to be a list of values of type � modelling a history of values over physical
time �measured in femtoseconds� say� and put Sig��s � ��� � ������� This allows
us to capture VHDL signal attributes such as delayed or stable as operations
on lists �	
��� but not ��delays� If we wanted to model signal attributes also
in the presence of � delays this is not enough� In this case we might enrich
the structure to a list of time�stamped values� i�e� Sig��s � ��� � ������ � N���
using the natural numbers N to represent physical time� The list ordering now

�� Chapter �

represents � time while physical time is part of the signal value� Clearly� there is
no limitation as to how much information we can put into the notion of signal�
In this paper� where we do not consider signal attributes and physical time we
can get away with the simplest possible semantics� i�e� Sig��s � ��� � ������ or
more generally for a set S � fs� � ��� � � � � sn � �ng of signal identi�ers

Sig��S�� � ��S�� � fs� � ������� � � � � sn � ���n��g�

Thus� as far as the execution of sequential statements is concerned� the se�
mantics of a set of signals is given by a record of single values� representing
the signal state at the present � step� i�e� the one in which the statement is
executed�

Given the notion of signal we can proceed to the signal assignment� A signal
assignment unlike the variable assignment does not change the state of variables
but has a side�e�ect of scheduling a transaction on a particular signal� In the
course of executing a statement or a sequence of statements a number of such
transactions for a number of di�erent signals can be accumulated� These lists of
accumulated transactions may be called transaction traces or traces for short�
Let O � fs� � ��� � � � � sm � �mg be a set of output signal identi�ers� Then
we will need a semantical object Tr��O�� to represent the traces over O� Again�
there are many possibilities of such structures and each particular choice will
model the semantics of signal assignments at di�erent granularity and detail�
In a very detailed semantics with full physical time signal assignments of the
inertial and transport type a transaction for an output signal s � � would need
to record at least three bits of information� the value assigned� the value of
the delay time� and whether it is an inertial or transport delay� For the total
statement execution a list of such transactions would have to be recorded in
the order in which they occur� So� in the case of a single signal s � � the notion
of trace might become Tr��s � ��� � ������ � N� finertial� transportg��� On the
other end of the scale� in our simple case where we only consider ��delay signal
assignments� all we need to record as a transaction for a signal is the value
assigned� leading to the following de�nition�

Tr��O�� � f s� � ������
� � � � � � sm � ���m��

� g�

Thus� a transaction trace tr accumulates for each output signal si� i � 	� � � � �m�
a list tr�si of transaction values� each of which is a value in ���i��� When no as�
signment to si occurs� tr�si is the empty list� �lled in as a padding� element�
For the semantics of statements it is irrelevant how these traces are eventually
translated into projected waveforms and e�ective signal values� This is deter�
mined by drivers and resolution functions which are introduced at the next
semantical level of processes and systems of processes�

Delta�Delay VHDL and FOCUS ��

It is worth pointing out that other approaches to a formal semantics for VHDL�
such as� for instance� ���� 	
�� or Van Tassel�s semantics in Chapter �� do not
use an independent notion of transaction trace� The drivers are implicitly built
into the execution of signal assignments� Here we take the stand that drivers
are not intrinsic to the semantics of statements and should be kept as a separate
concept�

A bit of auxiliary notation regarding traces will prove helpful� The empty
transaction trace over O is denoted by #O� i�e� #O � fs� � ��� � � �� sm � ��g �
Tr��O��� If tr� and tr� are traces over O we de�ne their point�wise concatenation
tr�$ tr� as follows� For all i � 	� � � � �m�

�tr� $ tr���si � tr��si � tr��si�

where � on the right hand side is the Focus notation for the concatenation of
lists�

Suppose stmt is a well�formed statement in the context of variable identi�ers
V � input signal identi�ers I� and output signal identi�ers O� The semantics of
stmt � as seen so far� will be a partial function

f � ��V ��� ��I�� � ���V ���Tr��O�����

noting that in our case Sig��I�� � ��I��� Compare this with the original type
��V �� � ��V ���� our statement semantics now distinguishes between variables
and input signals in the function argument and between a variable state and
an output trace in the function result�

We can now list the semantic clauses for all sequential statements of �VHDL�
where as in the case of expressions the de�nition proceeds by recursion on the
syntactic structure� The de�nition can be given in many ways� Here we adopt
the style of Focus ���� in presenting� for each type of statement stmt� a predicate
��stmt�� �f � ��V ��� ��I�� � ���V ���Tr��O����� that speci�es the partial function f
representing the behaviour of stmt� The following general pattern is adopted�

��stmt�� �f � ��V ��� ��I�� � ���V ��� Tr��O����� � Q�f��

where Q is a logical predicate with a single free variable f � This semantical
style could be called property�oriented since we are constraining the intended
semantical functions by a logical predicate rather than constructing the func�
tions themselves� In our case the di�erence is inessential and one can verify
that the de�nitions presented below in fact de�ne a unique partial function for
every statement of �VHDL� The mathematical theory is well documented and
can be found in many textbooks� such as� for instance �	����

�� Chapter �

If�Statement� The result �var�� tr� of executing if cond then stmt� else stmt�
end if starting from the state �var� sig� is obtained by �rst evaluating the con�
dition cond in the context �var� sig�� if cond is true then stmt� is executed� if
cond is false then stmt� is executed�

��if cond then stmt� else stmt� end if�� �f� �

f�var� sig� � if ��cond���var� sig� then f��var� sig� else f��var� sig�

where ��stmt��� �f�� 	 ��stmt��� �f���

Recall our conventions for reading the equational speci�cation� variables var� sig
are to be universally quanti�ed while f�� f� are to be existentially quanti�ed�

Signal Assignment Statement� A signal assignment s �� expr started in
state �var� sig� �rst evaluates the expression expr and then the resulting value
��expr���var� sig� is recorded in the transaction trace for signal s� No other trans�
action is produced� so the resulting trace is #Ofs � � ��expr���var� sig� �g� The
variables are left unchanged� Recall that rfx� ag is our notation for updating
entry x of record r with value a�

��s �� expr���f� � f�var� sig� � �var � #Ofs� � ��expr���var� sig� �g��

Variable Assignment Statement�The variable assignment v �� expr assigns
the value ��expr���var� sig� to variable v and leaves all other variables unchanged�
No transaction is produced� whence the resulting trace is the empty trace #O�

��v �� expr���f� � f�var� sig� � �varfv � ��expr���var� sig�g � #O��

Null Statement� The null statement has trivial e�ect� It doesn�t change the
variable state and does not schedule any transaction�

��null���f� � f�var� sig� � �var � #O��

Sequential Composition� A sequential composition stmt�� stmt� is executed
by �rst executing stmt�� say in the start state �var� sig�� The result is a pair
�var�� tr�� with the new variable state var

� and a transaction trace tr�� Then�
stmt� is executed in state �var

�� sig� producing a variable state var�� and a
second trace tr�� The �nal variable state� then� of stmt�� stmt� is var

�� and the
total trace is the point�wise concatenation tr�$tr�� This process is nothing
but a special form of functional composition� If f� and f� are two functions

Delta�Delay VHDL and FOCUS �	

of type ��V �� � ��I�� � ��V �� � Tr��O�� we de�ne their %sequential& composition
f� � f� � ��V ��� ��I��� ��V ��� Tr��O�� as follows�

�f� � f���var� sig� � �var��� tr�

where �var�� tr�� � f��var� sig� 	 �var��� tr�� � f��var
�� sig� 	 tr � tr�$tr��

The semantics of stmt�� stmt� then simply becomes�

��stmt�� stmt����f� � f � f� � f� where ��stmt����f�� 	 ��stmt����f���

Notice� the only way sequential statements can exchange information is by the
variables� The signals sig are only input� they are never changed� and the traces
tr�� tr� are only output� they are never read during the execution of a sequential
statement�

Loop Statement� Finally� let loop stmt be the statement while cond loop

body end loop� We follow the usual pattern of explaining the behaviour of
loop stmt in terms of if� null� and sequential composition� namely by stipulating
that ��loop stmt�� is the least partial function satisfying the semantic equation

loop stmt �� if cond then body � loop stmt else null�

Formally�

��loop stmt���f� �

f�var� sig� � if ��cond���var� sig�

then �b � f��var� sig� else n�var� sig�

where ��null���n� 	 ��body���b��

where we understand that f be the least partial function satisfying the condi�
tion�

Remark The proviso to take the least partial function satisfying the de�ning property
of the loop statement is necessary to ensure that ��loop stmt���f� actually de�nes the
unique function that represents the operational execution of the statement� For in�
stance� if loop stmt is the trivial statement while TRUE loop null end loop the
speci�cation ��loop stmt���f� is equivalent to the condition f�var� sig� � f�var� sig�
which is satis�ed by all partial functions� But only the least such solution� viz� the
empty function� represents the actual execution of loop stmt� viz� the nonterminating
loop�

�� Chapter �

Let us stop here our treatment of sequential statements� Of course� a number
of VHDL features have not been covered� Standard imperative constructs such
as procedures� case� exit� next statements� and for�loops present no real di��
culty� The omission of transport and inertial delay assignments as well as the
after clause are a consequence of our restriction to zero�delay� A more serious
restriction is the omission of arbitrary wait statements which would require
a nontrivial extension of our semantics� The reason is that upon entering a
wait statement the program does not simply terminate but rather suspends
execution� This means that the result of executing a statement is not just a
�nal state of variables but also a continuation program� For standard oper�
ational semantics there are no problems �see e�g� �	���� but in our functional
approach this is not entirely straightforward� The interested reader is referred
to Chapter � of this volume where Breuer et al� present a functional treatment
of arbitrary wait statements based on streams�

Remark In order to treat arbitrary wait statements in a functional setting� basically
we must employ a solution of the recursive type equation

Stmt �� ��V ��� ��I�� � ���V ���Tr��O��� Stmt���

There are standard methods of solving such equations using domain theory but this is
beyond the scope of this work�

The absence of wait statements does not e�ect any loss of expressibility� It
is known that the wait statement can always be eliminated by adding extra
state variables and if�then�else checks� A syntactic translation was given in
�	
�� 	
��� In view of this other functional approaches� like ours� simply omit
the wait ���� 		���

In order to work through an example applying our semantical clauses let us
consider the sequential statement of the asynchronous counter stage shown in
Figure 	� The example involves all sequential statements of �VHDL except the
loop statement� The internal variables here are V � fx � BIT� z � BITg� the
input signals I � fi � BITg and output O � fo � BITg� We wish to evaluate
the predicate ��cnt����f � ��V ��� ��I��� ��V �� � Tr��O���� Unrolling the semantical
de�nitions systematically one by one we can derive that

��if i �
� and x � 	� then z �� not z else null � x �� i � o �� z � �� �f�

is equivalent to the following condition�

f�var� sig� � if sig�i �
 	 var�x � 	

then �varfz � not�var�z�gfx� sig�ig � #Ofo� �not�var�z��g�

else �varfx� sig�ig � #Ofo� �var�z�g��

Delta�Delay VHDL and FOCUS ��

If we identify ��I��� ��O�� with ��BIT�� � B � ��V �� with B � B � and Tr��O�� with B�

we can remove the explicit naming of signals and variables and simplify the
condition to become

f�x� z� i� � if i �
 	 x � 	 then �i� not�z�� �not�z��� else �i� z� �z���

which is precisely what we expected�

Exercise The fundamental di�erence between variables and signals is that in the
execution of a statement variables store information while signals do not� This dif�
ference� which also may be expressed by saying that signals are static while variables
are dynamic� can be turned into a precise mathematical statement� the order of signal
assignments is immaterial� Let e�� e� be arbitrary expressions and s� �� s� distinct
signals whose types are those of e� and e� respectively� Then�

��s���e� � s���e� � �� � ��s���e� � s���e� � ���

where ��A�� � ��B�� means �f� ��A���f� � ��B���f�� One can easily concoct a counter
example showing that this property does not hold for variables� in general�

Remark Notice that in all cases the semantics of a composite statement is given in
terms of the semantics of its immediate subprograms� Therefore� it is straightforward
to verify that our semantics is compositional� i�e� if stmt� and stmt� are statements
such that ��stmt��� � ��stmt���� then ��C�stmt���� � ��C�stmt���� where C�	� is any well�
formed context� The proof is by induction on the structure of C�	��

��� Processes

The semantics of processes as declared by the standard ���� involves a two�
phase simulation cycle� starting from some initial state of variables and signals�
In the �rst phase the active processes� sequential statements are executed until
all terminate yielding new states for all �local� variables and transaction traces
for the signals� In the second phase the transaction traces are translated into
a new global signal state through the use of drivers and resolution functions�
This cyclic process� which is e�ected by a global simulation kernel� de�nes a
linear succession of strictly synchronous steps� the so�called � steps� Thus�
each ��step corresponds to one pass through the simulation cycle� This admits
a simple functional model based on streams and stream�processing functions�
The general picture is as seen in Figure � and motivated in this section� The
statements are translated into stream�processing functions from a stream of
input signals to a stream of transaction traces on output signals� These output
traces are transformed into a stream of driving values by drivers� and �nally
into a stream of e�ective signal values through a resolution process� Thus�

�� Chapter �

drivers

drivers

resolution
process�

processn

�

output�

�

input

statement

statement

design

Figure � A Functional Model of VHDL

contrasting with the standard where drivers and resolution functions are parts
of the global simulation kernel we model both as separate stream�processing
functions� the drivers� special status owes to the fact that they are introduced
by the semantics automatically rather than being speci�ed by the programmer�
Drivers are introduced with the process construct and resolution processes
with the design construct� a new syntactic construct used in this work as a
simple distillate of VHDL�s bulky architecture and entity concept� Statement
and drivers make up a process �this is indicated by dashed lines in Figure ���
a �number of� process�es� together with the resolution make�s� up a design�
Loosely speaking� the overall system of Figure � embodies a synchronous system
executing the simulation cycle� Statement and resolution play the r"ole of the
combinational part and the drivers represent the state�holding registers which
separate one � step from the next�

Our �rst goal is to give semantic meaning to a process proc such as

proc � process

variable v� � �� �� e� �

� � �

variable vk � �k �� ek �

begin

stmt

end process �

which has stmt as its sequential statement and assigns the initial value ei to
the state variable vi� i � 	� � � � � k�

Delta�Delay VHDL and FOCUS ��

In order to obtain the process� semantics it is clear that its syntactic con�
stituents� the statement stmt and the variable declarations vi � �i �� ei�� can�
not be arbitrary� only certain well�formed combinations will be sensible� To
begin with all expressions� e�� � � � � ek� must be of the right types� ��� � � � � �k�
and moreover they must be closed� i�e� they must not depend on variables or
signals� This makes sure that we get well�de�ned initial values �initV � ��V ���
for the internal variables of the process� viz�

initV � fv� � ��e���� � � � � vk � ��ek��g�

Further� well�formedness requires that the sequential statement stmt by itself
is well�formed� and that it has only the free variables V � fv� � ��� � � � � vk � �kg�
All other identi�ers occurring in stmt� then� are signals which will form the
external interface of the process�

Statements� Let us suppose that I are all the input signals and O the output
signals occurring in stmt� Then� the semantics of stmt as de�ned in the previous
section speci�es a partial function

��stmt���f � ��V ��� ��I��� ���V ���Tr��O������

We can now lift ��stmt�� to a stream�processing function g � ��I��� � Tr��O���

using the initial state of variables initV �

��stmt�� �g � ��I��� � Tr��O����

� g�in� � h�initV ��in�

where h�v��i in� � tr h�v���in�

where �v�� tr� � f�v� i� 	 ��stmt���f��

There is a subtle point here regarding nonterminating statements� Suppose
stmt has a semantics f � ��stmt���f�� that does not terminate for some signal
input i� in initial state initV � Then f�initV � i� is not de�ned� and as a con�
sequence h�initV ��i in� is unde�ned too� �Remember that is strict in its
�rst argument�� But being a stream this means it is the empty stream� whence
�nally f��i in� � h i� Extending this argument one �nds that if an input
stream forces stmt into an in�nite loop at some point� then the output stream
stops forever� This is a rather natural way of treating nontermination which
falls out automatically from our de�nition�

Remark The predicate ��stmt���g� speci�es a unique function g � ��I��� � Tr��O����
One can show that this function is continuous and weakly synchronous� Moreover�
if stmt is always terminating then one has for all input streams in� �g�in� � �in�

�� Chapter �

This is the mathematical property re�ecting VHDL�s fundamental abstraction from
sequential computations� a statement taken as a process does not advance time� its
execution is completely performed within a single � step�

Let us take the counter stage cnt� �i� o� of Figure 	 as an example� Its body
c�stmt is the statement

if i �
� and x � 	� then z �� not z else null � x �� i � o �� z �

which speci�es a stream�processing function ��c�stmt���g � ��I��� � Tr��O�����
where I � O � fi � BITg� The initial state is initV � fx �
� z �
g� We
identify ��I�� and ��O�� with B � Tr��O�� with B� � ��V �� with B � B � and obtain the
set of equations

��c�stmt���g � ��I��� � Tr��O����

� g�in� � h�
�
��in�

h�x� z��i in� � tr h�x�� z���in�

�x�� z�� tr� � f�x� z� i�

f�x� z� i� � if i �
 	 x � 	

then �i� not�z�� �not�z��� else �i� z� �z���

in which the last equation is the expanded predicate ��c�stmt���f� as evaluated
in the previous section�

Drivers� In order to translate from the output transactions Tr��O�� of the
statement to driven values ��O�� for the output signals we need to formalize the
concept of drivers� In �VHDL a transaction trace is simply a list of projected
values for every output signal and of these values only the very �rst element �viz�
the last value scheduled� will become the driving value in the next ��step� Thus�
the driver for a process with output signalsO is nothing but a stream�processing
function dr from Tr��O��� to ��O��� which� in every computation step� updates the
output signals by the �rst element in the corresponding transaction list� and
takes the old output if the transaction list is empty� In the �rst computation
step the old value is just the default value speci�ed by an assignment initO � ��O��
of initial values to output signals� The formal de�nition of dr is as follows�

dr�in� � initO h�initO��in�

where h�o��tr in� � o� h�o���in�

where if tr�z � � � then o��z � o�z else o��z � hd �tr�z��

Note the genericity of our approach� If we had started with a more re�ned
notion of transaction traces� say for physical time signal assignments� we could

Delta�Delay VHDL and FOCUS ��

plug in here the corresponding notion of driver incorporating preemption� in�
ertial and transport delay� This genericity is due to the notion of transaction
trace� Tr��O��� which decouples the semantics of statements from that of pro�
cesses�

Remark The above equations specify a unique stream�processing function dr � Tr��O��� �
��O���� Furthermore� one can show that dr is continuous and weakly synchronous� In
fact� one shows that for all inputs tr the output is always exactly one step ahead� i�e�
�tr� 	 � �dr�tr�� which means that the drivers are state�holding components with a
delay of one � step� They play the r�ole of registers in the simulation cycle�

The driver for our counter stage cnt� �i� o� of Figure 	 is a stream�processing
function dr � Tr��O��� � ��O���� where O � fo � BITg� It is convenient again to
identify ��O�� with B and Tr��O�� with B� � If we assume the initial value initO �

for output o� then the speci�cation of the driver dr comes down to the following
set of equations�

dr�in� �
 h�
��in�

h�o��tr in� � o� h�o���in�

o� � if tr � � � then o else hd�tr��

Process� We can now assemble the semantics of our generic process proc

from the beginning of this section� Again� the Focus de�nition is presented in
terms of a logical predicate ��proc���f� that speci�es a stream�processing function
f � ��I��� � ��O����

��proc�� �f � ��I��� � ��O���� � f � g � dr where ��stmt���g��

Here� g� dr denotes the ordinary composition of function g followed by dr� With
this de�nition the full counter stage cnt� �i� o� of Figure 	 results in the following
equational speci�cation�

�� Chapter �

��cnt� �i� o����f � B
� � B

� � �

f�in� � dr�g�in��

dr�in� �
 h�
��in�

h�o��tr in� � o� h�o���in�

o� � if tr � � � then o else hd �tr�

g�in� � k�
�
��in�

k�x� z��i in� � tr k�x�� z���in�

�x�� z�� tr� � l�x� z� i�

l�x� z� i� � if i �
 	 x � 	 then �i� not�z�� �not�z��� else �i� z� �z���

The �rst equation comes from the speci�cation of a process� equations ���
specify the driver� ��� the statement as a stream�processing function� and the
last equation is the semantics of the statement itself� The system can be reduced
immediately by performing the obvious substitutions and by packing together
h and k into one function H�x� z��in� � h�z��k�x� z��in�� so that we obtain the
equivalent system

��cnt� �i� o����f� � f�in� �
 H�
�
��in�

H�x� z��i in� � o H�i� o��in�

o � if i �
 	 x � 	 then not�z� else z�

which is precisely what we expect� The function H�x� z� represents the overall
behaviour of the counter stage with local variables x� z� The �rst variable x
stores the last input read and the second z the last output written� A falling
edge of the input is detected by i �
 	 x � 	� If this condition fails� the next
output is the previous one o � z� otherwise it is inverted� o � not�z��

Design� In the last step towards a semantical model for ��VHDL we bring
together processes with resolution to obtain the semantics of the design con�
struct� To this end let proc

�
� � � � � procn be a list of well�formed process state�

ments so that� for i �
� � � � � n� proci has the input signals Ii and the output
signals Oi� By the de�nitions given above we have associated with each process
proci a predicate ��proci���f � ��Ii��

� � ��Oi��
�� describing a stream processing

function f from input stream ��Ii��� to output stream ��Oi���� Suppose� now�
we wished to execute all the processes concurrently and de�ne the dynamic
semantics of the composite design as follows�

design � design begin proc
�
proc

�
� � � procn end design �

Delta�Delay VHDL and FOCUS ��

Then� in general� two complications arise� Since we do not impose any restric�
tion on the sets of inputs and outputs the design may contain feedback loops
and signals may be written by more than one process� Both situations� which
of course are essential for the expressive power of VHDL� jeopardize a purely
functional approach to the description of the system�s behaviour�

In VHDL the second complication is dealt with by distinguishing between driv�

ing and e�ective signal value� so that a signal can have more than one driving
but only one e�ective value� The driving values are supplied by the drivers
associated with the processes writing the signal� The designer is required to
specify a resolution function to resolve the values supplied by multiple drivers
to a single e�ective value� The typical examples for resolution functions are
wired�AND and wired�OR but much more sophisticated applications are possible�
In our formalism a resolution function for a signal of type � comes down to a
function

res � ������ � � � � ������ �����

mapping a tuple �a�� � � � � ak� of values of type � to a single value res �a�� � � � � ak�
of type �� For the wired�OR� for instance� we might have � � BIT and

wired�or �a�� � � � � ak� � a� � � � � � ak�

where � is the OR function on bits� Returning to our design we will assume
that every output signal s � O �

S
iOi has an associated �family of� resolution

function ress� which can take an arbitrary number of inputs and� of course� �each
one� is user�de�ned� We assume that the resolution of a single signal amounts
to the identity function� i�e� ress�a� � a� These individual resolution functions
can be put together to form a global resolution process for all output streams
�this resolution process is indicated by the resolution box in Figure ���

res � ��O���
� � ��O���

� � � � � � ��On��
� � ��O���

in the following way�

res �o� os�� � � � � on osn� � o res �os�� � � � � osn�

where o�z � resz �oz� �z� � � � � ozk �z�

and foz� � � � � � ozkg � foi j i � n 	 z � Oig�

Note that all resz are de�ned individually and in the special case where there
is no write con�ict� namely where the sets of output signals are disjoint the
resolution function trivializes to the zip function� For example� suppose O� �
fo� � BITg� O� � fo� � BITg� and O� � fo� � BITg where oi �� oj � i �� j� Then�

�� Chapter �

we may identify ��Oi�� with B � ��O�� with B � B � B � and the resolution function
is nothing but the zip function

zip � B� � B
� � B

� � �B � B � B �� �

All it does is zipping together three streams of 	�element records into a single
stream of ��element records� A subtle point to remember is that this function
is strict in the sense that it requires all three input streams to deliver a well�
de�ned record in order to produce one output record� In other words� the
resolution function waits for all processes to terminate before it starts the next
� step� This is a property of the VHDL simulation model� though one might
also take a slightly more relaxed view� as done in �	
��� where subprocesses
may loop inde�nitely without stopping other processes not connected to them�

Remark The resolution process res is uniquely de�ned by the above equational spec�
i�cation� It is further continuous and weakly synchronous�

Multiply driven signals are �ne through resolution� but what about feedback
loops' An important advantage of Focus as our formal framework is that it
o�ers two essentially equivalent ways of accommodating feedback� functionally
via the �xpoint operator and logically via existential quanti�cation ����� Here
we choose the latter method since we are more interested in the speci�cation
rather than in the execution aspect stressed by other stream�based approaches
such as �	
�� or the semantics of Breuer et al� in Chapter ��

Now� let us give the semantics of the parallel composition design of the processes
proc

�
� � � � � procn� where each process proci denotes a stream�processing function

fi � ��Ii��
� � ��Oi��

� such that ��proci���fi�� i �
� � � � � n� Let Ip be the set
of primary inputs� i�e� those inputs which are not output of any subprocess�
formally� Ip � fs j s � I 	 s �� Og� where I �

S
i Ii and O �

S
iOi are the set

of input and output signals� respectively� The functional semantics of design�
then� is a stream�processing function g � ��Ip��� � ��O��� from the primary
inputs to all outputs� This function g is speci�ed by a predicate ��design�� �g� as
follows�

��design�� �g� � g�is� � os 	 is � sig jIp 	 os � sig jO 	 �	�
f��sig jI�� � os� 	 � � � 	 fn�sig jIn� � osn 	 ���
os � res �os�� � � � � osn�� ���

The de�nition is a system of mutually recursive equations linked together by
the variable sig � ��I�O��� representing the observable stream of e�ective values
on all signals in the parallel execution of all processes� We write sig jX� ��X���

Delta�Delay VHDL and FOCUS �	

to denote the restriction of the global signal stream sig to a subset of signals
X � I�O� it can be obtained by appropriate zip and unzip operations� Variable
is � ��Ip��� refers to the stream of e�ective values on the primary inputs and
os � ��O��� to the stream of e�ective values on all outputs� The variable osi
refers to the stream of driving output values of process i�

With this interpretation of the variables in mind the equational speci�cation
can now be understood as follows� The �rst line �	� says that the global signal
stream sig can be partitioned into the primary inputs is and the outputs os� and
further that os is obtained by applying g to is� Line ��� is the main part of the
speci�cation� It superimposes the input�output behaviour of all processes as
local constraints fi�sig jIi� � osi on their respective input and output signals�
The processes� output signals osi carry driving values� from which in line ���
the e�ective output stream os is computed via the resolution function�

Note� the connection between the processes� inputs and outputs is achieved
implicitly by the identity of signal names� Also note the implicit existential
quanti�cation over the internal output streams os�� � � � � osn which essentially
achieves the hiding of internal computations via feedback�

Remark It can be shown that the above system of equations speci�es a unique stream
processing function g � ��Ip��

� � ��O���� From the �xpoint theory for complete partial
orders it follows that it has a unique minimal solution� In our particular case this
minimal solution is in fact the only one� This results from the drivers in the feed�
back loops inserting a unique initial value into the computation and the fact that all
functions are weakly synchronous�

Remark It is obvious that the de�nition of a design�s semantics is compositional�
i�e� whenever we replace one of the subprocesses proci by an equivalent one proc�i�
��proci�� � ��proc�i��� then the semantics of the modi�ed design� is equivalent to the
original one� ��design�� � ��design����

Remark For a compositional semantics of process systems it is crucial that we use
the �design� construct rather than a binary parallel operator as e�g� in
���� If we
replaced design begin proc�� proc�� proc� end design by proc� k proc� k proc� then
not only would the proci be proper subprograms for which a semantics is declared but
also proc� k proc�� But then we must be entitled to replace this subprogram by a
semantically equivalent one� say proc�� k proc� without changing the overall behaviour�
Unfortunately� this is not the case� in general� due to the resolution functions� Of
course� when resolution is not considered as in
���� ��� ���� �� this problem is
evaded�

�� Chapter �

In order to make our semantics of designs concrete� �nally� let us evaluate the
��bit asynchronous counter cnt� of Figure 	� Assume that f�� f�� f� � B� � B

�

are the stream�processing functions assigned to the three counter stages� i�e�
��cnt����fi�� i �
� 	� �� Then the above speci�cation yields

��cnt����g � B
� � �B � B � B�� � �

g�i� � zip�o�� o�� o�� 	 f��i� � os� 	 f��o�� � os� 	 f��o�� � os� 	

zip�o�� o�� o�� � zip�os�� os�� os���

This is an equational speci�cation of the counter�s behaviour over the signals
i� o�� o�� o�� The extra signals os�� os�� os� are internal signals of the simulation
cycle representing the driving output signals of the counter stages in each �

step� We know that for every input i the equation system de�nes a unique
solution g�i�� which thus can be analyzed by equational reasoning� Knowing
that this solution is minimal opens up proof strategies based on mathematical
induction� A natural property one can verify for the counter is that if the input
signal switches from 	 to
 and is kept stable for at least �� steps the output
vector �o�� o�� o�� counts up by one modulo �� The formal veri�cation of this
statement is beyond the scope of this paper� The interested reader is referred
to ���� ��� for veri�cation examples and a detailed discussion of some of the
available proof techniques�

Exercise Work out the semantics for the synchronous counter of Figure � in Sec�
tion ��

	 CONCLUSION

In this tutorial a functional semantics for �VHDL� which is essentially VHDL

restricted to zero�delay signal assignment� has been presented�

We start from a sea of VHDL processes� each containing sequential statements�
and de�ne their semantics directly in terms of ordinary mathematical objects
such as functions and streams� This allows us to choose the semantical concepts
most suited for each of the di�erent syntactical levels of VHDL� namely expres�
sions� statements� and processes� The possibility to choose the most adequate
mathematical objects to present the semantics as well as the compositionality
of our semantics can be seen as the main features of this work�

Focus is the formal framework on which our semantics is based� It provides
for the necessary mathematical setting� a variety of well suited speci�cation

Delta�Delay VHDL and FOCUS ��

techniques and a number of reasoning styles� A detailed explanation of Focus
including the veri�cation techniques available to formally reason about VHDL
descriptions is beyond the scope of this tutorial� The interested reader is re�
ferred to the published material on Focus cited in the text�

Though we have only covered the delta�delay aspect of VHDL the semantics
presented here can also be extended to handle physical timing as it is needed
for transport and inertial delay signal assignments� This extension to timed
signals a�ects the transaction traces and the drivers and proceeds along similar
lines as outlined by Reetz and Kropf in Chapter � of this volume�

In some sense this work complements the approach of Breuer et al� presented in
Chapter �� which is also a functional semantics based on streams� They consider
physical time execution and arbitrary wait statements� which we ignore� but
omit delta delay� variable assignment and resolution� which are treated here�

APPENDIX A

SYNTAX OF ��VHDL

The syntax of �VHDL is parametric in the syntax for identi�ers� type names�
and expressions� These syntactic classes can be instantiated along the lines set
out in Section �� A particular choice is given by the VHDL language standard
�����

sequential statement ��� signal assignment statement

j variable assignment statement

j if statement

j loop statement

j null statement

j sequential statement sequential statement

signal assignment statement ��� identi�er � expression�

�� Chapter �

variable assignment statement ��� identi�er 	
 expression�

if statement ��� if expression

then sequential statement

else sequential statement

end if�

loop statement ��� while expression

loop sequential statement

end loop�

null statement ��� null�

process statement ��� process

f variable declaration g
begin

sequential statement

end process�

variable declaration ��� variable identi�er list 	 type name 	
 expression�

design statement ��� design

begin

f process statement g
end design�

identi�er list ��� identi�er f � identi�er g

