Development of a Distributed Min/Max Component

Max Fuchs, Ketil Stglen
Fakultat fir Informatik
Technische Universitat Miinchen
D-80290 Miinchen, Arcisstr. 21
e-mail: fuchs,stoelen@informatik.tu-muenchen.de

Abstract

We introduce a specification technique and a refinement calculus for networks of
components communicating asynchronously via unbounded FIFO channels. Spec-
ifications are formulated in a relational style. The given refinement rules allow
modular system development in a step-wise, top-down manner. We employ the pro-
posed formalism to specify and develop a so-called Min/Max Component. First an
overview of the whole design process is given. Then certain steps of the development
are described in detail.

1 Introduction

Focus [BDD"93] is a general framework, in the tradition of [Kah74], [Kel78], for the
formal specification and development of distributed systems. A system is modeled by
a network of components working concurrently, and communicating asynchronously via
unbounded FIFO channels. A number of reasoning styles and techniques are supported.
Focus provides mathematical formalisms which support the formulation of highly abstract,
not necessarily executable specifications with a clear semantics. Moreover, Focus offers
powerful refinement calculi which allow distributed systems to be developed in the same
style as the methods presented in [Jon90], [Bac88|, [Mor90] allow for the development
of sequential programs. Finally, Focus is modular in the meaning that design decisions
can be checked at the point where they are taken, that component specifications can be
developed in isolation, and that already completed developments can be reused in new
program developments.

This paper presents a new style of reasoning inside the Focus framework [BS94], [BS95].
The objective of this paper is to explain how the proposed formalism can be employed
in practical system design. It is shown how an abstract requirement specification can be
refined into a concrete implementation using compositional refinement techniques.

Section 2 introduces the underlying formalism. In Section 3 it is explained what we mean
by a specification. Moreover, a number of composition operators are defined and some
simple refinement rules are formulated. The development of the Min/Max Component is
the subject of Section 4. Section 5 gives a brief conclusion.

2 Underlying Formalism

N denotes the set of natural numbers, N* denotes N\ {0}. For any set S, o(S) denotes the
set of all nonempty subsets of S. We assume the availability of the usual logical operators
and the standard set operators including min and max for sets of natural numbers. As

usual, = binds weaker than A, V,— which again bind weaker than all other operators and
function symbols.

A stream is a finite or infinite sequence of actions. It models the history of a communica-
tion channel, i.e. it represents the sequence of messages sent along the channel. Given a
set of actions D, D* denotes the set of all finite streams generated from D; D> denotes
the set of all infinite streams generated from D, and D* denotes D* U D>,

Ifde D, r,s € DY and j € N, then:

e ¢ denotes the empty stream,;

e #r denotes the length of r, i.e. 0o if r is infinite, and the number of elements in r
otherwise;

e dom.r denotes NT if #r = oo, and {1,2,...,#r} otherwise;

e r[j| denotes the j'th element of r if j € dom.r;

e rng.r denotes {r[j]|j € dom.r};

e 7|; denotes the prefix of r of length j if j < #r, and r otherwise;
e d& s denotes the result of appending d to s;

e r C s denotes that r is a prefix of s.

A formula P is a safety formula iff it is prefix-closed and admissible, i.e. whenever it holds
for a stream tuple s, then it also holds for any prefix of s, and whenever it holds for each
element of a chain, then it also holds for the least upper bound of the chain. sft(P) holds
iff P is a safety formula.

For formulas we need a substitution operator. Given a variable ¢ and term ¢, then P[]
denotes the result of substituting ¢ for every free occurrence of ¢ in P. The operator is
generalized in an obvious way in the case that a and ¢ are lists.

3 Specification and Refinement

A specification of a component with n input channels and m output channels is an ex-
pression of the form

specSt:I>o:O=R

S is the specification’s name; i is a list of n input identifiers (with corresponding types I);
0 is a list of m output identifiers (with corresponding types O); R is a formula with the
elements of ¢ and o as its only free variables.

It is assumed that ¢ and o are disjoint and without repetitions. ¢ and o name the n
input and m output channels, respectively. In R each such identifier represents a stream
modelling the complete communication history of the channel named by the identifier.
Thus R characterizes the relationship between the complete communication histories of

the input channels and the complete communication histories of the output channels. For
any specification with name S we refer to its corresponding formula as Rs.

The operator @ can be used to compose two specifications by connecting any output chan-
nel of the former to an identically named input channel of the latter, and by connecting
any output channel of the latter to an identically named input channel of the former. For
example, if @ is used to compose the specifications S; and Sy with respectively (i, 2)/(0,y)
and (y,r)/(x,s) as input/output identifiers, then the output channels denoted by y of S}
are connected to the identically named input channels of Sy, and the output channels de-
noted by x of Sy are connected to the identically named input channels of S;, as indicated
in Figure 1. The composite specification has (i,7)/(0, s) as input/output identifiers. Thus
the identifiers of the lists x and y are now hidden in the sense that they represent local
channels.

Figure 1: S; @ Sj.

When using @ to build networks of specifications one will often experience that the op-
erator needed is not @, but a slight modification of @, where for example there are no
input channels corresponding to 7, no output channels corresponding to o, or the channels
represented by x are not hidden. Instead of introducing a new operator (and a new re-
finement rule) for each possible variation, we overload and use @ for all of them, with two
exceptions. To increase the readability, we use || instead of @ when there are no feedback
channels, i.e. no channels corresponding to x and y in Figure 1, and ; instead of ©@ in
the case of sequential composition, i.e. when there are no channels corresponding to o, r
and x. Whenever ©@ is used it will always be clear from the context which version is the
intended one. We will refer to ;, | and @ as sequential composition, parallel composition
and mutual feedback, respectively.

A specification Sy refines another specification Sy, written
51 ~ 52

iff any behavior allowed by S, is also an allowed behavior of S;. Given a requirement
specification Spec, the goal of a system development is to construct a network of compo-
nents A such that Spec ~» A holds. The refinement relation ~~ is reflexive, transitive and
a congruence w.r.t. the composition operators. Hence, ~~ allows compositional system
development: once a specification is decomposed into a network of subspecifications, each
of these subspecifications can be further refined in isolation. For a more formal treatment
of specification, composition and refinement, see [BS94], [BS95].

The next step is to explain how refinements can be proved correct. Here we will present
4 rules altogether. For more rules see [FS93]. All rules should be understood as follows:
whenever each premise is valid, then the conclusion is valid. Thus, there is no binding
between the input/output observables of two different premises.

The first three rules are easy to understand:

Rule 1:

S~ Sy Rule 2 : Rule 3 :

Sy ~ Sy Sy~ S, Rs, = Rg,
51“’95’3 SWS(SQ/Sl) 51“’952

Rule 1 and 2 state that ~- is transitive and a congruence. S(S3/S7) denotes the result
of substituting S, for one occurrence of Sy in the network of specifications S. Rule 3 is
a traditional consequence rule. It is assumed that the two specifications have the same
input/output identifiers.

If S; and Sy have lists of input/output identifiers as in Figure 1, then the rule for mutual
feedback looks as follows:

Rule 4 :

sft(11) A sft(1y)

LA L[]

I A R5'1 =1

I A R52 =1

Il/\Rsl /\IQ/\RS2 = Rg
S~ 51 ® 85,

Recall that sft(P) holds if P is a safety formula. I; and I, are formulas with the elements of
i,r,x and i, r, y as their only free variables (see Figure 1), respectively. This rule is closely
related to the while-rule of Hoare-logic. Iy and I, can be thought of as invariants. The
first, third and fourth premise imply that when the invariants hold after n computation
steps then the invariants also hold after n 4+ 1 computation steps. (Note that since our
specifications only constrain the behavior for infinite inputs, this does not follow without
the first premise, i.e. without the fact that I; and I, are safety formulas.) By induction
on n, the second premise then implies that the invariants hold after any finite number of
computation steps, in which case the first premise can be used to infer that the invariants
hold for any computable fixpoint. The conclusion can now be deduced from premise five.
See [BS94|, [SDW95| for a more detailed discussion.

4 Design of a Min/Max Component

We want to specify and formally develop a component with two input channels ia and b,
and two output channels mn and ma, as shown in Figure 2.
For each natural number the component reads from one of its input channels, it is required

to output the minimum and the maximum received so-far along mn and max, respectively.
There are no constraints on the order in which the component switches from processing

ia —» > mn
NMM

b —» - mx

Figure 2: Min/Max Component.

inputs received on za to processing inputs received on b, and back again. However, it is
required that all input messages eventually are read and processed. We will refer to this
component as NMM (for Nondeterministic Min/Max).

To allow for an implementation where each channel is refined by a tuple of channels all of
type Bit, we restrict the natural numbers received on the input channels to be less than
2BV where BW is a constant representing the bit width.

The development is conducted in a step-wise fashion:

e First the component NMM is formally specificed in Focus.

e This specification is then decomposed into the network of four component specifi-
cations pictured in Figure 4.

e Then the FILTER components of Figure 4 are decomposed into networks of two
components in accordance with Figure 5. At the end of this step we have a network
consisting of six component specifications and eleven channels.

e Rules for interface refinement are then used to replace each of these eleven channels
carrying naturals with BW channels of type Bit.

e We then take advantage of the interface refinement of the previous step and conduct
six structural decompositions. The resulting network is pictured in Figure 3. The
dashed box containing the BFM specifications refines the FM specification of Figure
4, the dashed box containing the BCY specifications refines the COPY specification
of Figure 4, and so on.

e BEach of these Bit-level specifications are then transformed into a certain state-
machine oriented form.

e The resulting specification is translated into the specification language SDL.

Because of the space-constraints only the steps under the three first “bullets” are shown
below. For more details we refer to [FS93]'.
4.1 Requirement Specification

The requirement specification characterizes the black-box behavior of the Min/Max Com-
ponent — in other words: the components external behavior. Given that

LCan be copied from: http://www4.informatik.tu-muenchen.de/BERICHT

: l
[BEM}—[BEM}> - -- [BFM}—{ TATLJ!
L |

[BCY|[BCY]--- [BOY]!
[HEAD | | [mEAD)!
P e s | | - :
G v L Borp—{ oo
N e e s | i |
(R BorE Lo Bia)
| |] | | S | :
[BRG 1= BCP | Lgory ~[BRG
[Rp——) X X X X (B —— J
mo)
Y
min max

Figure 3: The Bitwise Min/Max Network.

Q¥ {0,...,28V —1}

read : Q¥ x {l,r}* x {l,r} = Q¥

read(o& op,y & hp,x) = if y = x then o & read(op, hp, x) else read(op, hp, x)
the Min/Max Component is required to satisfy:
spec NMM :: ia, b : Q¥ > mn,mx : Q¥ =

dh e {l,r}¥:Jo0€ Q¥ :
ia = read(o,h,l) Aib = read(o, h,r) A
#mx = #mn = #ia + #ib A
Vj € dom.mn : mn[j] = min(rng.o|;) A mz[j] = max(rng.o|;)

The existentially quantified h is used to model the order in which the input messages
are read. The existentially quantified o can be thought of as representing an internal
channel in which ia and ib are fairly merged together in accordance with A (this fact is
exploited when NMM is decomposed in the next section). The first two conjuncts make
sure that the input channels are read fairly. The third conjunct constrains the component

to process all its inputs, and the fourth conjunct requires the minimum and the maximum
to be output along mn and mz, as described above.

This specification is clearly nondeterministic since the order in which the inputs are read
is not determined, i.e. h is not fixed. One might think that the third conjunct is a
consequence of the fourth. However, this is not the case. Without the third conjunct, the
specification is for example also satisfied by a component, which as soon as it inputs a 0,
outputs infinitely many 0’s along mn.

4.2 Structural Refinement of NMM

A structural refinement replaces a component specification by a network of component
specifications without changing the external interface. NMM is decomposed into four
component specifications, as shown in Figure 4:

e F'M, which fairly merges the two input streams represented by za and b into an
output stream represented by o;

e COPY, which, as its name indicates, sends copies of the input received on o along
ri and le (for right and left);

e two specifications FILTER (min ub) and FILTER (max), where ub = 2% —1 and Ib = 0,
characterizing respectively a Min and a Max component.

ta —» FILTER (min,ub) — mn
FM COPY|
ib —»] n FILTER (max.) L - ma

Figure 4: First Decomposition of NMM.

The first one, FM, can be specified as follows:

spec FM ::da,ib: Q¥ > 0 : Q¥ = 3h € {l,r}¥ : ia = read(o, h,l) N ib = read(o, h,)
The second component specification, COPY, is completely trivial:

spec COPY z0:Q“ > leyri: QY =le=7r1=0

The other two can be seen as instances of a parameterized specification, which we call
FILTER:

spec FILTER :: ((m : p(N) — N) x init : Q) X nw : Q¥ > out : Q¥ =

#Hout = #nw AVj € dom.out : out[j| = m(rng.nw|; U {init})

FILTER has, in addition to the input observable nw and the output observable out, two
parameters, namely a function m and a natural number init. The parameters m and init
are instantiated with min and ub in the specification characterizing the Min component,
and with max and Ib in the specification characterizing the Max component. The first
conjunct in the specification of FILTER restricts the number of output messages to be
equal to the number of input messages. The second conjunct makes sure that the j’th
output message is correctly chosen (modulo m) between the j first input messages and
init.

The correctness of this decomposition, i.e. that
NMM ~+ FM; COPY ; (FILTER (min,ub) || FILTER (maxib)) (1)
follows from Rule 4 and straightforward predicate calculus.

4.3 Structural Refinement of FILTER

The FILTER specification can be decomposed into two component specifications, REG
and CP, as shown in Figure 5.

bk od nw

REG(init) CP(M)

Y out

Figure 5: Decomposition of FILTER.

REG can be interpreted as specifying a register storing the last number received on bk.
Its initial value is init. Thus, REG outputs what it receives on bk prefixed with init, i.e.
the initial value of the register:

spec REG ::init : Q X bk : Q¥ > od : Q¥ = od = init & bk
CP, on the other hand, compares a number received on nw with the corresponding number
received on od. Depending on m, one of these numbers is chosen and output on both bk
and out.

spec CP :: (m : p(N) — N) x od, nw : Q“ > bk, out : Q¥ =

bk = out A #out = min({#od, #nw}) AVj € dom.out : out[j] = m({od[j], nw[j]})

The first conjunct requires a message to be output along bk iff it is output along out. The
second conjunct restricts any implementation to output exactly one message along out
for each pair of messages it receives on its two input channels. The third conjunct makes

sure that the correct number modulo m is chosen.

To prove that this decomposition is correct, it must be shown that
FILTER (m,init) ~ REGinity @ CP) (2)
Let

I, ¥V € dom.bk : bk[j] = m(mg.nwl|; U {init}),

L ¥V € dom.od : od[j] = m(rng.nw|;_y U {init}).

It is easy to prove that I; and I, are safety formulas. Thus Rule 4 implies that it is enough
to show that

Iy (m, init)[P¥] A I(m, init)[*7),

I (m, init) A Rric(niy = L2(m, init),

I,(m,init) A Repamy = Ii(m, init),

I (m, init) A Rrgc(iniy A To(m, init) A Repim) = Reirerm,init)

which follows by straightforward predicate calculus.

From (1), instantiations of (2), Rules 1 and 2 we can deduce

NMM ~» FM; COPY ; (REG(ub) @ CPmin)) || (REG(1b) @ CP(max))) (3)

5 Conclusions

A relational style for the specification and refinement of nondeterministic Kahn-networks
has been introduced. As a running example we have chosen a simple Min/Max component.

We have emphasized reasoning about communication — the type of reasoning that nor-
mally leads to complicated proofs in design/proof methods for distributed systems. In
particular it has been shown that proofs about networks involving feedback can be carried
out by formulating invariants in the style of a while-rule of Hoare-logic.

A central question at this point is of course: what happens when we try to apply the same
strategy to specifications of a non-trivial complexity? We believe that our technique scales
up quite well for the simple reason that we conduct our reasoning at a very abstract level.
For example, shared-state concurrency is hard to handle formally because of the very
complicated way the different processes are allowed to interfere with each other. In our
approach, we still have interference, because the different processes may communicate,
but the interference is much more controlled.

The style of reasoning employed in this paper has also been successfully used to develop a
non-trivial specification of a production cell [FP95]. For an overview of other case-studies

carried out in Focus, see [BFGT94].

Since [FS93] was completed, which is the report on which this paper builds, our approach
has been improved in a number of ways. In particular a more elegant semantics can be
found in [BS95], and a technique for the translation of Focus specifications into SDL is
described in [HS94].

6 Acknowledgements

We would first of all like to thank Manfred Broy who has influenced this work in a number
of ways. Detailed comments which led to many improvements have been received from
Pierre Collette. Jiirgen Kazmeyer and Bernard Schatz have read earlier drafts and pro-
vided valuable feedback. Financial support has been received from the Sonderforshungs-
bereich 342 “Werkzeuge und Methoden fiir die Nutzung paralleler Rechnerarchitekturen”.

References

[Bac88] R. J. R. Back. A calculus of refinments for program derivations. Acta Informatica, 25:593-624,
1988.

[BDD*93] M. Broy, F. Dederichs, C. Dendorfer, M. Fuchs, T. F. Gritzner, and R. Weber. The design
of distributed systems — an introduction to Focus (revised version). Technical Report SFB
342/2/92 A, Technische Universitdt Miinchen, 1993.

[BFGT94] M. Broy, M. Fuchs, T. F. Gritzner, B. Schitz, K. Spies, and K. Stglen. Summary of case
studies in Focus - a design method for distributed systems. Technical Report SEB 342/13/94
A, Technische Universitdt Miinchen, 1994.

[BS94] M. Broy and K. Stelen. Specification and refinement of finite dataflow networks — a relational
approach. In H. Langmaack, W.-P. de Roever, and J. Vytopil, editors, Proc. FTRTFT 9,
Lecture Notes in Computer Science 863, pages 247-267, 1994.

[BS95] M. Broy and K. Stglen. A framework for the specification and development of reactive systems.
Submitted, January 1995.

[FP95] M. Fuchs and J. Philipps. Formal development of a production cell in Focus — a case study. In
C. Lewerenz and T. Lindner, editors, Formal Development of Reactive Systems: Case Study
Production Cell, Lecture Notes in Computer Science 891, pages 187-200. 1995.

[FS93] M. Fuchs and K. Stglen. Development of a distributed Min/Max Component. Technical
Report SFB 342/18/93 A, Technische Universitdt Miinchen, 1993.

[HS94] E. Holz and K. Stglen. An attempt to embed a restricted version of SDL as a target language
in Focus. In D. Hogrefe and S. Leue, editors, Proc. Forte’94, page 7, 1994. Extended version
available as Technical Report SFB 342/11/94 A, Technische Universitdt Miinchen.

[Jon90] C. B. Jones. Systematic Software Development Using VDM, Second Edition. Prentice-Hall,
1990.

[Kah74] G. Kahn. The semantics of a simple language for parallel programming. In J.L. Rosenfeld,
editor, Proc. Information Processing 74, pages 471-475. North-Holland, 1974.

[Kel78] R. M. Keller. Denotational models for parallel programs with indeterminate operators. In
E. J. Neuhold, editor, Proc. Formal Description of Programming Concepts, pages 337—366.
North-Holland, 1978.

[Mor90] C. Morgan. Programming from Specifications. Prentice-Hall, 1990.

[SDW95] K. Stglen, F. Dederichs, and R. Weber. Specification and refinement of networks of asyn-
chronously communicating agents using the assumption/commitment paradigm. 1995. To
appear in Formal Aspects of Computing. Also available as SFB-report 342/2/93 A.

