Higher-Order Proof by Consistency

Henrik Linnestad*!, Olav Lysne**! and Christian Prehofer***?

! Department of Informatics, University of Oslo, PB 1080 Blindern, 0316 Oslo, Norway.
2 Institut fiir Informatik, Technische Universitit Miinchen, Arcisstr. 21, D-80290
Miinchen, Germany.

Abstract. We investigate an integration of the first-order method of proof
by consistency (PBC), also known as term rewriting induction, into theorem
proving in higher-order specifications. PBC may be seen as well-founded in-
duction over an ordering which contains the rewrite relation, and in this paper
we extend this method to the higher-order rewrite relation due to Nipkow.
This yields a proof procedure which has several advantages over conventional
induction. First, it is less control demanding; second, it is more flexible in the
sense that it does not instantiate variables precisely with every constructor,
but instantiates according to the rewrite rules. We show how a number of
technical problems can be solved in order for this integration to work, and
point out some desirable refinements that involve challenging problems.

1 Introduction

The field of term rewriting has attracted much attention over the last twenty-odd
years, largely triggered by seminal work of Knuth and Bendix on completion [14].
From the late seventies we have seen an ever increasing body of research on methods
for the analysis of first-order rewrite systems. For a survey of this part of the field
we refer to [4]. Due to their expressive power, higher-order logics are widely used for
specification and verification. For the extension of term rewriting in this direction,
there exist several different formalisms which integrate typed lambda calculus and
term rewrite systems, including Klop [13], Breazu-Tannen [3] and Nipkow [22]. We
follow the approach given in the latter work, where a rewriting relation modulo a-,
(- and n-conversion is considered.

In this paper we adapt the first-order proof method called inductionless induc-
tion, or proof by consistency, to the higher-order setting. The rationale behind this
method, which was first described in a paper by Musser [21], is that the Knuth and
Bendix completion process can be used to prove or disprove properties of a rewrite
system. This is roughly done by studying the new equations that emerge in the com-
pletion process wrt. a notion of consistency. Since 1980 we have seen a lot of work
on this first-order method, removing some of its limitations [6, 8], relaxing its close
connection with the full completion process [5, 1], and extending the set of rewrite-
based specifications that the method applies to [2, 16, 17]. In [26] it was pointed out

* Email: henrikl@ifi.uio.no, Phone: +47 22 85 24 05. Partly supported by the Norwegian
Research Council.
** Email: olavly@ifi.uio.no, Phone: +47 22 85 24 34.
*** Email: prehofer@informatik.tu-muenchen.de

that proof by consistency can be seen as induction over a well-founded ordering on
the term universe.

The main motivation for this work is to utilize these sophisticated induction
techniques for higher-order theorem proving. Assuming that recursive data types
are given, we basically exploit the initial structures provided by these types to apply
(implicit) induction schemes. This means that in order to prove an equation s ~ t,
we instead try to prove so =~ to for every substitution ¢ that assigns (almost) ground
terms to first-order variables of data types. Although our data-types are essentially
first-order, they may contain higher-order subterms, e.g. consider induction on lists
of functions. For this we need a particular notion of substitutions, since we cannot
reason about higher-order terms via ground instances.

Theorem provers like HOL [7] and Isabelle/HOL [23] apply an explicit induction
scheme in which variables are instantiated with constructor terms spanning the data
type. Our proposed integration of proof by consistency to higher-order equational
reasoning can be seen as a generalization of this approach, where an explicit set
of constructors for data types is not needed. Since most commonly used interactive
theorem provers usually perform induction manually, our techniques are particularly
interesting.

The paper is organized as follows. In section 2 we recall basic concepts and no-
tation for term rewriting; our notation is roughly consistent with [22]. The proof
procedure itself is given in section 3 followed by a correctness proof in section 4.
Some examples are provided in section 5.

2 Preliminaries

From a set of base types B, we construct the set of types T with the function space
constructor — in the obvious way. Assume given a set of typed variables V = U, c7V;
and a set of constants (function symbols) F = U,c7F,, where VN F = () and
V. NV = F.NF. =0 for all distinct 7, 7' from 7. The set of simply typed \-terms
(shorter: terms) is then defined inductively as follows:

reV, ceF, s:7=17 t:T z:T S:T
T:T c:T (st): 7' Az.s):7—> 1

Usually we shall implicitly assume that all terms, constants and variables are of
suitable type, and omit the type specification.

Every occurrence of the variable z in a (sub-)term of the form Az.s is said to
be bound. An occurrence of a variable which is not bound, is free. We use AT, .t
as a simpler notation for Az; ... \z,.t, and we write s(t1,...,t,) or s(f,) instead
of (- ((s t1) t2) -+ tn). We denote terms by s,¢,u,v, constants by f,g,h, bound
variables by lowercase w, z,y, z and free variables by uppercase F,G,H. W, XY, Z.
Variables and constants are called atoms. We denote atoms by a, b.

A position w in a term t is a sequence of integers identifying a subterm ¢/w of
t. In a term of the form Ax.t, the proper subterms are ¢ and every proper subterm
of t. In a term s(¢1,...,t,), the proper subterms are s,t1,...,t, and every proper
subterm of these terms. The empty position in a term ¢ is written €, and corresponds
to the (non-proper) subterm ¢. We write s[t],, to indicate the term s, but with s/w

replaced by the term ¢. Sometimes we omit the specification of the actual position
w and write C[t] to express a term with ¢ as subterm. Here, the term C is called a
context.

Two terms s and t are a-equivalent, written =, if each can be obtained from
the other by a renaming of bound variables. A -reduction is the transformation of
a (sub-)term of the form ((Az.s) t) into the term that is equal to s except that ¢
is substituted for every occurrence of the variable x that is free in s. A term is in
B-normal form if it cannot be B-reduced. An n-reduction is the transformation of a
term Az.(t z) into t whenever ¢ has no free occurrences of z. A term t = \Zy,.a(Ty,) in
B-normal form has an n-long form defined as t = A\Tni%-a(Um T, Zni1 T, - - o> Tnik 1),
where t is of type Tnrr — 7 and Zp41,...,Zp+k are fresh variables of appropriate
types. The #-normal n-long form of a term ¢ is written ¢} or £. If two terms s and
t can be obtained from each other by a-, 5- and n-conversion, we write s = ¢t. A
term which is =-equivalent to a term with no occurrences of free variables is called
a ground term. A term ¢t in B-normal form is called a pattern if the list of arguments
to each occurrence of a free variable is (n-equivalent to) a list of distinct bound
variables.

Substitutions are finite and type preserving mappings from variables to terms.
We use o,7, i, p,8 to denote substitutions. If 0 = {z1 — t1,...,2, — t,} is a
substitution and s is a term, we define so by so = (AT,.5)(t,) . We say that o is a
ground substitution if to is a ground term, for all terms ¢.

Let £ be a set of equations. By =¢ we denote equality modulo £, that is, the
relation resulting from taking a-, 5- and n-conversion together with all instances
of equations from £ as axioms, and closing under reflexivity, symmetry, transitivity
and the congruence laws associated with the constructions Az.s (abstraction) and
(s t) (application). A rewrite rule is an ordered pair s — ¢ of terms of the same base
type, both in g-normal 7-long form, such that all variables with free occurrences in
t has free occurrences in s as well. We additionally require that the left-hand side of
all rewrite rules be patterns. A rewrite system is a set of rewrite rules, and may also
be viewed as a set of (ordered) equations. Symbols not occurring at the root position
of any left-hand side of R will be called a constructor of R. Following Nipkow [22],
a rewrite system R induces a relation — on terms, defined as follows:

s=t & Il —=r)eR,w,o|s/w=loNt=3rol,

It should be noted that this relation is invariant under =, in the sense that s’ =
s = t = t' implies s’ — t'. Hence, - may be viewed as a relation on =-equivalence
classes of terms.

As in the first-order case, critical pairs are equations formed by unifying the
left-hand side of one rule with a subterm of the left-hand side of another one and
executing the corresponding rewrite step. For an exact definition, consult [22], which
easily extends to our context. The set of critical pairs formed by superposing rules
from a rewrite system R onto equations from a set £ is denoted by CP(R,E).

To improve syntactical control over terms, we shall from now on assume that
they are represented by their S-normal n-long forms.

Let — denote a binary relation on terms. By +, <>, %, & and <> we denote
the inverse of — and the symmetric, the transitive, the reflexive-transitive and the
reflexive-symmetric-transitive closures of —, respectively. We write s = ¢ if s = ¢

and t is irreducible, that is, there is no u such that ¢ — u. A substitution o =
{z1 — t1,..., 2, — t,} is said to be irreducible if t1,...,t, are irreducible. If there
is no infinite sequence t; — t5 — -+ — t; — ---, we say that — is terminating.
We say that — is confluent if < o 5C- o<~ and convergent if it is confluent and
terminating. (The symbol o is used for relation composition.) A convergent rewrite
system R defines exactly one normal form (up to =-equality) for each term ¢, which
we denote by t!%.

Higher-order rewrite systems are not in general stable, in the sense that s — ¢
implies so — to for arbitrary substitution 0. However, — is stable, for every term
rewrite system R (see [19]).

3 Higher-order proof by consistency

The goal of this paper is to achieve inductive proof methods for higher-order sys-
tems, that is, to prove or disprove inductive theorems. We do this by integrating a
first-order method into the higher-order setting. Consequently, our equational rea-
soning will essentially be first-order, yet some problems pertaining to the higher-
order setting must be solved in order for this to work. For the correctness proof of
our procedure, we need to identify a subset of provable equations which will be of
special interest to us. More precisely, the equations which we aim at proving are
contained in the set of initial consequences.

Definition 1. A term ¢ is first-order rigid, if all subterms of base type in the 7-
normal form of ¢ are rigid (i.e. have no free variable as the root symbol). A substi-
tution is called first-order ground (fo-ground) if it assigns first-order rigid terms to
all variables.?

Definition 2 (Initial consequence). We say that a higher-order equation s ~ ¢ is
an initial consequence of a higher-order equation set £ if so =¢ to for all fo-ground
substitutions o.

This definition of initial consequences extends the first-order notion. As a motivation
for its design, recall that we are essentially trying to adapt induction over data types
to a higher-order setting. The idea is to prove all instances of candidate equations
where variables are assigned terms which are as “concrete as possible”. This stems
from the fact that we must consider any instances, including free variables, for higher-
order subterms.

As in the first-order case, we get an operational grip on the initial consequences
of £ through a convergent* rewrite system R which represents the same theory as
€. In that case, =¢ coincides with ¢ ([22]). Since R is assumed to be convergent,
we easily conclude that an equation s ~ ¢ is an initial consequence of £ iff the R-
normal forms of so and to are identical, for every fo-ground substitution o. This
last property is given a particular name:

3 This implicitly refers to all variables in the terms of current interest.
* Actually, ground convergence suffices in the first-order case. We conjecture that ’fo-
ground’ convergence is sufficient for our higher-order setting, but we do not pursue this.

Definition 3 (Initial consistency). We say that a higher-order equation s ~ ¢
is initially consistent with a convergent higher-order rewrite system R if for all fo-
ground substitutions o we have solg = tolg.

We see it as our main objective to prove equations. However, proof by consistency
also has considerable refutational power; the first-order method is complete in this
respect. For this reason, we pursue refutational aspects to some extent here. In
the first-order setting, an equation is either consistent or inconsistent. We must take
more care in our setting, since our concept of initial consistency may not exhaustively
contain all provable equations. For the purpose of refuting equations, we develop a
dual notion to initial consistency.

Definition 4. A position w in a term ¢ is persistent in t if all symbols in ¢ above w
are either constructors or lambda binders.

Note that the root position in a term is always persistent.

Definition 5 (Initial inconsistency). We say that a higher-order equation s = ¢
is initially inconsistent with a convergent higher-order rewrite system R if for some
fo-ground substitution o there is a persistent position w in to!lg and uolg such that
tolg /w and uolg /w have distinct constructors as roots.

The carrying idea behind the definition of initial inconsistency is as follows: if a
term ¢ has a persistent position w then all symbols above w persist whatever rewrit-
ing is performed, and whatever values are given to the variables. Thus, from the
definition of constructor it is easy to see that if two terms s and ¢ have distinct con-
structors in a position that is persistent in both of them, then for all interpretations
of variables, s and ¢t will rewrite to distinct terms.

A set £ of equations is deemed initially consistent with R if every equation in
€ is initially consistent, and initially inconsistent if some equation in & is initially
inconsistent. In order to conclude that £ is initially consistent, we need to verify
that there is no inconsistency witness of £ wrt. R, that is, an equation s ~ ¢t € £
and fo-ground substitution ¢ such that so — s’ #Z t' ¢ to. We write this witness
as W = (s ~ t,0). To conclude that £ is initially inconsistent wrt. R, we must find
a strong inconsistency witness W = (s ~ t,0) of £ wrt. R, where s ~ t € £ is
initially inconsistent wrt. R and o is a fo-ground substitution playing the part of
the substitution in definition 5. Note that every strong witness is a witness.

Typical examples of strong witnesses are clashes between different constructors,
e.g. in 0 ~ s(0). For a non-strong witness, suppose that f and g are extensionally
equal, e.g. both have identical definitions. Then Az.f(z) ~ Az.g(x) holds under ex-
tensionality, though this equation is not by our definition an initial consequence.’?
Furthermore some witnesses, such as F'(a) ~ F(b), can be reduced to strong wit-
nesses via projections, here F' — Az.z. Since such cases seem to appear rarely, we
do not consider this further.

In the first-order case, the proof by consistency procedure basically computes
critical pairs between a set £ of equational conjectures and the convergent rewrite

’ By extensionality, we have to prove f(X) ~ g(X) instead of Az.f(z) ~ Az.g(x), where
X is a new free variable. This extension of our framework remains to be investigated.

system R representing the given theory. This necessitates a unification procedure.
However, for higher-order terms, the unification problem is undecidable in general.
(Consult Prehofer [25] for a treatment of higher-order unification.) As an important
special case, Miller [20] showed that it is decidable whether two patterns are unifi-
able, and if they are, a most general unifier can be computed, and the Critical Pair
Lemma is retained (Nipkow [22]). As is customary, we assume that the left-hand
side of rewrite rules are patterns. But even if the equations we want to reason about
happen to be patterns, the procedure may generate non-pattern equations, so we
have no guarantee that unification will always behave as in the first-order case. For
example, we run the risk of being confronted with a situation in which no minimal
and complete set of unifiers exists. However, this happens very rarely in practice. In
the second-order case with functional (linear) rules, it does not occur at all ([24]).

From now on, let R be a fixed, convergent rewrite system. To reason about our
proposed procedure, we need an ordering on witnesses. For this purpose it is natural
to exploit the orderings on higher-order terms proposed by e.g. [27, 18, 11, 10].
Our method can be seen as induction over any such ordering containing 2. In the
following, we assume an ordering which is based on the well-founded ordering %
and a subterm notion. We write s> ¢ if s = C[t] for some context C' which does not
bind any free variables in ¢. We define >x as the transitive closure of >U —. The
strict part of >z, written >g, is a well-founded ordering (see [25]).

Definition 6. Let W = (s ~ t,0) and W' = (s’ ~ t',0') be witnesses. We write
W >w W' if so > s'c and to >x t'o’. We define >y as the strict part of > .

It is easy to see that >y is a well-founded ordering. We are now ready to introduce
the important concept of covering sets, which is a straight-forward adaptation of the
first-order notion, cf. [1].

Definition 7 Covering set. Let £ and £’ be sets of equations and R a convergent
rewrite system. We say that £ is covered by &', or that £ is a covering set for &,
with respect to R if for every (strong) witness W = (s ~ t,0) of an equation s ~ ¢
in £, there is a (strong) witness W' = (s’ ~ t',0") of an equation s’ ~ ¢’ in £ such
that W >w W'

We shall return to the operational aspects of this concept. For now, we only state
the following evident result.

Lemma 1 Assume that equation set £' covers equation set & with respect to R. If €
is initially inconsistent with R then &' is initially inconsistent with R. Furthermore,
if € is not initially consistent with R, then £’ is not initially consistent with R.

Proof by consistency is based on the computation of critical pairs between the
given rewrite system R and the candidate equation s ~ ¢ to be investigated. In the
same fashion as completion can be seen as a proof normalization process, proof by
consistency can be seen as witness normalization. Our correctness proof will illustrate
this.

We now describe our proof procedure which accepts as input a set & of equations
and aims at proving that every equation in & is initially consistent with R, or
at detecting an initially inconsistent equation in &. The rewrite system R is left

unchanged throughout the process, and the data structure is only a set of (unordered)
equations. The procedure is started with input &, and each step in a derivation
sequence & F & F -- - is governed by the following inference system:

& . "
) EU{s~t} . ,
SIMPLIFY: Uy ~1) if s — '
EU{c(En) ~cltn)} .. .
DECOMPOSE: - if ¢ is a constructor symbol.
EUlsi ~tili, Y
COVER: M if s >~ t is covered by |, &;.
DELETEC M
&
. 0
PROVE: PROOE
—\ ~ AT
REFUTE: £U{e(Em) = c'(tn)} if c and ¢’ are distinct constructors.
REFUTATION

A higher-order pattern t is a strong pattern, if every non-variable subterm of base
type in the n-normal form is rigid. (This disallows subterms F(y,) of base type.)
The set CP*(R,E) quoted in the DEDUCE rule is the subset of the critical pairs
CP(R,€&) in which the involved unifier maps variables only to strong patterns. In
practice, this is not a severe restriction, and it has the following pleasant and useful
effect:

Lemma 2 If ¢ is a fo-ground substitution and u is a unifier involved in the com-
putation of a critical pair in CP*(R,E), then po is fo-ground.

4 Correctness of the procedure

We now prove the system to be correct in the sense that each step preserves initial
consistency as well as initial inconsistency, and that the conclusions made by the
halting inference rules are sound. To complete the first part of the proof, we employ
our ordering on witnesses and show that they occur in a “down-hill” manner in the
process. The careful reader will see that the ordering machinery is essentially only
necessary for the COVER rule, where the absence of cycles in the ordering is crucial.

Proposition 3 Let & F Ex1 be a derivation step of the above procedure with input
Eo. If W = (s = t,0) is a (strong) witness in &, then there is a (strong) witness
W' = (s' ~t',0') in Exy1 such that W >y W'.

Proof. By inspection of each non-halting inference rule which removes an equation.
SIMPLIFY: If s — ', then stability of - yields so = s’o for all substitutions o. Since
R is convergent, solr = s'olg. This implies that if W = (s ~ ¢,0) is a (strong)
witness in &, then W' = (s’ ~ ¢,0) is a (strong) witness in Eg41. Furthermore,
W >w W

DECOMPOSE: If there is a witness W = (¢(5,,) ~ c¢(t,), o) in &, then the R-normal
forms ¢(5,0)!r = c(ty) and c(t,0)!x = c(v,;) would be distinct for some fo-ground
substitution o. But then, s;0 —» u; # v; < t;0 for some i, implying that W' =
(s; = t;,o) is a witness in E41. Furthermore, since c(5,,)o > s;0 and c(t,)o > t;0,
we have W >w W'. Assume now that W = (¢(3;,) ~ ¢(t,),0) was a strong witness
in &, so in addition the terms ¢(5,0)!x = ¢(uy) and c(t,0)!x = ¢(v,) both have a
persistent position w in which they have occurrences of distinct constructors. Then,
the position w' with w = i.w' is persistent in u; and v;, so W' = (s; ~ t;,0) is a
strong witness as well.

COVER: Assume that W = (s ~ t,0) is a >w-minimal (strong) witness of the
equation s ~ t being removed. If s ~ t is covered by an equation s’ ~ t' € &,
where j < k, then there is a (strong) witness W; with s’ ~ ¢’ such that W >w
W;, furthermore (by an induction argument over this proposition) there must be a
sequence W; >w Wjt1 >w -+ >w W, where each W; is a (strong) witness of
an equation in &;. By well-foundedness of >y, we must have W # W;,. Now recall
that W is assumed to be a >y/-minimal witness of s ~ ¢. This implies that W, is a
witness of another equation in & than s ~ ¢.

DELETE: Trivial, since every equation of the form ¢t ~ ¢ is initially consistent. ad

Proposition 4 If & F 41 is a derivation step of the above procedure with input
Eo and there is no (strong) witness in &, then there is no (strong) witness in Exq1.

Proof. By inspection of the inference rules that introduce equations.

SIMPLIFY: Note that if s — s, then solg = s'olg for all substitutions ¢. Thus, if
W' = (s’ ~ t,o) is a (strong) witness in Ey1, then W = (s ~ t,0) is a (strong)
witness in &.

DEDUCE: Suppose that p is the mgu involved in the computation of a critical pair
(in CP*(R,E)) for an equation s ~ t, so that the actual critical pair deduced is
a simplified version of sy ~ tu. If the critical pair has a (strong) witness o, then
o is also a (strong) witness of sy ~ tu (cf. the immediately preceding treatment
of SIMPLIFY). By lemma 2, uo is fo-ground. Consequently, uo can be seen to be a
(strong) witness of s ~ ¢.

DECOMPOSE: If W' = (s ~ t,0) is a witness in &1, then solg # tolg. But
then ¢(...,s,..)olg Zc(...,t,..)olg, so W= (c(...,s,...) ~c(...,t,...),0) is a
witness in &. If W' is a strong witness, then there is a persistent position w in s
and ¢ in which these terms have occurrences of distinct constructors. Assume that
i is the position of s and ¢ in ¢(...,s,...) and ¢(...,t,...), respectively. Then W is
strong as well, since the position i.w is persistent in ¢(...,s,...) and ¢(...,¢,...). O

Applying Propositions 3 and 4 and inspecting the inference rules PROVE and
REFUTE, we obtain the following correctness theorem.

Theorem 5 Assume & is given as input to the above procedure. If the procedure
terminates with PROOF, then &y is initially consistent with R; if it terminates with
REFUTATION, then & is initially inconsistent with R.

For practical application, the COVER rule requires methods for deciding whether
an equation is covered by the set J, &; of all generated equations. We do not address
this question in full generality, but point out important tractable cases. (A first-order
approach to this is summarized in [1].)

Definition 8 Complete position. A position w in a term ¢ is inductively complete
with respect to a convergent rewrite system R if w is not inside a flexible subterm of
t and t/w is not =-equivalent to a variable and (¢/w)o is an instance of the left-hand
side of a rule in R whenever ¢ is an irreducible fo-ground substitution.

In the first-order case, it is well known that the property of ground reducibility is
decidable for terms as well as for equations ([12]). As an important tractable case for
higher-order systems, suppose that functions, say f, are totally defined by rewrite
rules having left-hand sides f(c1(Xp,),Y), ..., f(cm(Xn,,),Y), where ci, ..., ¢y, are
constructors spanning a recursive data type. Then any (sub-)term of the form f(X,3)

will correspond to a complete position, unless it occurs below a free variable.

Lemma 6 Let R be a convergent rewrite system and s ~ t be an equation in which a
position w is complete wrt. R. Then, the set of critical pairs computed by superposing
rules from R on s ~ t in position w yields a covering set for s ~ t.

This lemma indicates how COVER can remove an equation after its critical pairs in
a complete position have been computed. Another application is as follows: Suppose
s = s, so that some equation s ~ ¢ may be simplified by R to some equation
s' ~ t in |J,;& (equal up to variable renaming) by applying a rule from R in a
position in s which is not below a free higher-order variable. Then, we also have
so — s'o for all substitutions o. In this case it is easily seen that s ~ t is covered
by s’ ~ t, so the former equation may be discarded. Finally, suppose given some
equation ¢(3;) ~ c(t,) such that for each j, the equation s; ~ ¢; occurs (up to
variable renaming) in J, &; or is covered by |J; &. Then ¢(55) ~ ¢(ty) is removed
by the COVER rule. Note that the use of COVER sketched above will sometimes
correspond to the application of an induction hypothesis.

5 Examples

Example 1. Consider the type of binary trees containing node elements of some fixed,
possibly higher-order type. The binary trees are generated by the constructors empty
giving the empty tree, and root taking a node of the tree and two (sub-)trees as
arguments. Functions rev (mirror image of a tree) and map (application of a function
to every node) are defined as follows:

rev(empty) — empty
rev(root(W, X, Y)) = root(W, rev(Y'), rev(X))
map(F, empty) — empty

map(F, root(W, X,Y)) — root(F (W), map(F, X), map(F,Y"))

(Note that in order to improve readability we do not write a higher-order variable
F in its n-expanded form Az.F(z) here.) We want to prove the equation

map(F, rev(Z)) ~ rev(map(F, Z)) (1)

There is a complete position identifying the subterm rev(Z) in the left-hand side.
Computing critical pairs here yields a covering set for equation (1), so we may use
DEDUCE and COVER to replace (1) with map(F, empty) ~ rev(map(F, empty)) and
map(F, root(W, rev(Y), rev(X))) ~ rev(map(F, root(W, X,Y"))). The former equation
is simplified to empty ~ empty and then deleted; the latter simplifies to

root(F (W), map(F, rev(Y)), map(F, rev(X))) ~ @)
root(F'(W), rev(map(F,Y)), rev(map(F, X)))

If we try to decompose equation (2), we get the new equation F(W) ~ F(W) as
well as map(F, rev(Y)) ~ rev(map(F,Y)) and map(F,rev(X)) ~ rev(map(F, X)).
The first of these is deleted, and the last two are equal to (1) modulo variable
renaming. Hence (2) is covered and we end up with the empty equation set, proving
equation (1).

Example 2. Consider again binary trees defined in the previous example. Add to this
rewrite system the rule (FoG)(W) — F(G(W)) defining function composition. We
now want to prove the equation

map(FoG, Z) ~ map(F, map(G, Z)) (3)

The empty position in the left-hand side of this equation is complete, so we may
replace this equation with the set of critical pairs deduced in this position. First
we obtain empty ~ map(F, map(G, empty)), which simplifies to a trivial equation
empty ~ empty. The next critical pair is

root((FoG)(W), map(FoG, X), map(FoG,Y)) ~ map(F, map(G, root(W, X,Y))

(4)
which simplifies to
root(F(G(W)), map(FoG, X), map(FoG,Y)) ~ 5)
root(F(G(W)), map(F, map(G, X)), map(F, map(G,Y)))

Decomposing this equation we get the trivial equation F(G(W)) ~ F(G(W)), as
well as the equations map((FoG), X) ~ map(F, map(G, X)) and map((FoG),Y)) ~
map(F, map(G,Y")), which are both equal to (3) modulo variable renaming. Hence
we can complete the proof by the COVER rule.

6 Conclusion and further work

We have presented a way of integrating the first-order method of proof by consistency
to theorem proving in higher-order equational specifications and given a correctness
proof of our proposed procedure. The main motivation is to expand the scope of this
sophisticated induction technique.

There are several advantages of this approach over conventional induction on
first-order data types. First, proof by consistency does not demand an explicit choice
of variables on which to do induction, and can be viewed as a more general and less
control-demanding method for inductive reasoning. Second, the instantiations for the
variable can be more specific than just covering all constructors, since they depend
on the rewrite rules, not on the data type declarations. In general, there can even
be simultaneous induction on several variables. Furthermore, the convergent rewrite
rules can be used for optimizations.

For using our technique in a higher-order theorem proving system, the precise
relation between our notion of first-order ground terms and recursive data types
should be formalized. For this, one needs to assume that all first-order types are
data types, which is acceptable for program verification.

Our approach to higher-order proof by consistency as presented here would ben-
efit from refinements in several directions. First, a facility for applying lemmata
would certainly be helpful, just as it is in the first-order case. However, this exten-
sion relies heavily on orderings on terms, and it remains to be seen whether existing
higher-order orderings are suitable for this problem.

First-order proof by consistency as described in [9] considers the property of
ground reducibility to give more general criteria for refutation of equations. In full
generality, this concept seems to be problematic in higher order, but might be
tractable for interesting special cases.

In his treatment of higher-order narrowing, Loria-Sdenz [15] restricts candidate
equations to quasi-first-order and rewrite rules to simple rewrite rules. We believe
that corresponding restrictions for proof by consistency would lead to practically
useful improvements in the directions that we have just sketched.

References

1. L. Bachmair. Canonical Equational Proofs. Birkhauser, 1991.

. E. Bevers and J. Lewi. Proof by consistency in conditional equational theories. In Proc.
2nd International Workshop on Conditional and Typed Rewriting Systems, volume 516
of Lect. Not. in Comp. Sci., pages 194-205. Springer-Verlag, 1990.

3. V. Breazu-Tannen. Combining algebra and higher-order types. In Proc. 3rd IEEE

Symposium on Logic in Computer Science, Edinburgh (UK), July 1988.

4. N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B, chapter 6. Elsevier, 1990.

5. L. Fribourg. A strong restriction on the inductive completion procedure. In Proc. 13th
International Colloguium on Automata, Languages and Programming, volume 226 of
Lect. Not. in Comp. Sci., pages 105-115. Springer-Verlag, 1986.

6. J. A. Goguen. How to prove inductive hypotheses without induction. In W. Bibel and
R. Kowalski, editors, Proc. of the 5th Conference on Automated Deduction, volume 87
of Lect. Not. in Comp. Sci., pages 356-373. Springer-Verlag, 1980.

7. M. J. C. Gordon. HOL: A proof generating system for higher-order logic. In
G. Birtwistle et al., editor, VLSI Specification, Verification and Synthesis. Kluwer Aca-
demic Press, 1988.

8. G. Huet and J.-M. Hullot. Proofs by induction in equational theories with constructors.
Journal of Computer and System Sciences, 25(2):239-266, 1982.

[N]

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

J.-P. Jouannaud and E. Kounalis. Automatic proofs by induction in equational theories
without constructors. In Proc. Logic in Computer Science, pages 358-366, 1986.

J.-P. Jouannaud and A. Rubio. A recursive path ordering for higher-order terms in
n-long B-normal form. In H. Ganzinger, editor, Proc. 7th International Conference
on Rewriting Techniques and Applications, volume 1103 of Lect. Not. in Comp. Sci.
Springer-Verlag, 1996.

S. Kahrs. Towards a domain theory for termination proofs. In Proc. of the 6th In-
ternational Conference on Rewriting Techniques and Applications, volume 914 of Lect.
Not. in Comp. Sci., pages 241-255. Springer-Verlag, 1995.

D. Kapur, P. Narendran, and H. Zhang. On sufficient-completeness and related prop-
erties of term rewriting systems. Acta Informatica, 24(4):395-415, 1987.

J. W. Klop. Combinatory Reduction Systems. Mathematical Centre Tracts 127, Math-
ematisch Centrum,Amsterdam, 1980.

D. Knuth and P. Bendix. Simple word problems in universal algebras. In J. Leech,
editor, Computational Problems in Abstract Algebra, pages 263—297. Pergamon Press,
Oxford, 1970.

C. A. Loria-Séenz. A Theoretical Framework for Reasoning about Program Construc-
tion Based on Extensions of Rewrite Systems. PhD thesis, Universitat Kaiserslautern,
1993.

O. Lysne. Proof by consistency in constructive systems with final algebra semantics. In
Proc. 8rd International Conference on Algebraic and Logic Programming, Pisa (Italy),
volume 632 of Lect. Not. in Comp. Sci., pages 276-290. Springer-Verlag, 1992.

O. Lysne. Extending Bachmair’s method for proof by consistency to the final algebra.
Information Processing Letters, 51:303-310, 1994.

O. Lysne and J. Piris. A termination ordering for higher order rewrite systems. In
Proc. 6th Conference on Rewriting Techniques and Applications, Kaiserslautern (Ger-
many), volume 914 of Lect. Not. in Comp. Sci., pages 26-40. Springer-Verlag, 1995.
R. Mayr and T. Nipkow. Higher-order rewrite systems and their confluence. Technical
report, Institut fiir Informatik, Technische Universitdt Miinchen, August 1994.

D. Miller. A logic programming language with lambda-abstraction, function variables,
and simple unification. In Extensions of Logic Programming, volume 475 of Lect. Not.
in Comp. Sci., pages 2563-281. Springer-Verlag, 1991.

D. L. Musser. On proving inductive properties in abstract data types. In Proceedings
of the 7th Annual ACM Symposium on Principles of Programming Languages, pages
154-162, January 1980.

T. Nipkow. Higher-order critical pairs. In Proc. of the 6th IEEE Symposium on Logic
in Computer Science, pages 342-359, 1991.

L. C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of Lect. Not. in Comp.
Sci. Springer-Verlag, 1994.

C. Prehofer. Decidable higher-order unification problems. In Proc. 12th International
Conference on Automated Deduction, Nancy, volume 814 of Lect. Not. in Art. Intell.,
pages 635—649. Springer-Verlag, 1994.

C. Prehofer. Solving Higher-Order Equations: From Logic to Programming. PhD the-
sis, Technische Universitdt Miinchen, 1995.

U. S. Reddy. Term rewriting induction. In Proc. 10th International Conference on
Automated Deduction, Kaiserslautern, volume 449 of Lect. Not. in Comp. Sci., pages
162-177. Springer-Verlag, 1990.

J. van de Pol. Termination proofs for higher-order rewrite systems. In 1st International
Workshop on Higher-Order Algebra, Logic and Term Rewriting, volume 816 of Lecture
Notes in Computer Science, pages 305—-325. Springer-Verlag, 1993.

This article was processed using the BTEX macro package with LLNCS style

