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Abstract� We investigate an integration of the �rst	order method of proof
by consistency �PBC� also known as term rewriting induction� into theorem
proving in higher	order speci�cations� PBC may be seen as well	founded in	
duction over an ordering which contains the rewrite relation� and in this paper
we extend this method to the higher	order rewrite relation due to Nipkow�
This yields a proof procedure which has several advantages over conventional
induction� First� it is less control demanding� second� it is more �exible in the
sense that it does not instantiate variables precisely with every constructor�
but instantiates according to the rewrite rules� We show how a number of
technical problems can be solved in order for this integration to work� and
point out some desirable re�nements that involve challenging problems�

� Introduction

The �eld of term rewriting has attracted much attention over the last twenty�odd
years� largely triggered by seminal work of Knuth and Bendix on completion �����
From the late seventies we have seen an ever increasing body of research on methods
for the analysis of �rst�order rewrite systems� For a survey of this part of the �eld
we refer to ���� Due to their expressive power� higher�order logics are widely used for
speci�cation and veri�cation� For the extension of term rewriting in this direction�
there exist several di�erent formalisms which integrate typed lambda calculus and
term rewrite systems� including Klop ��	�� Breazu�Tannen �	� and Nipkow �

�� We
follow the approach given in the latter work� where a rewriting relation modulo ���
�� and ��conversion is considered�

In this paper we adapt the �rst�order proof method called inductionless induc�
tion� or proof by consistency � to the higher�order setting� The rationale behind this
method� which was �rst described in a paper by Musser �
��� is that the Knuth and
Bendix completion process can be used to prove or disprove properties of a rewrite
system� This is roughly done by studying the new equations that emerge in the com�
pletion process wrt� a notion of consistency� Since ��� we have seen a lot of work
on this �rst�order method� removing some of its limitations ��� ��� relaxing its close
connection with the full completion process ��� ��� and extending the set of rewrite�
based speci�cations that the method applies to �
� ��� ���� In �
�� it was pointed out
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that proof by consistency can be seen as induction over a well�founded ordering on
the term universe�

The main motivation for this work is to utilize these sophisticated induction
techniques for higher�order theorem proving� Assuming that recursive data types
are given� we basically exploit the initial structures provided by these types to apply
�implicit� induction schemes� This means that in order to prove an equation s � t�
we instead try to prove s� � t� for every substitution � that assigns �almost� ground
terms to �rst�order variables of data types� Although our data�types are essentially
�rst�order� they may contain higher�order subterms� e�g� consider induction on lists
of functions� For this we need a particular notion of substitutions� since we cannot
reason about higher�order terms via ground instances�

Theorem provers like HOL ��� and Isabelle�HOL �
	� apply an explicit induction
scheme in which variables are instantiated with constructor terms spanning the data
type� Our proposed integration of proof by consistency to higher�order equational
reasoning can be seen as a generalization of this approach� where an explicit set
of constructors for data types is not needed� Since most commonly used interactive
theorem provers usually perform induction manually� our techniques are particularly
interesting�

The paper is organized as follows� In section 
 we recall basic concepts and no�
tation for term rewriting� our notation is roughly consistent with �

�� The proof
procedure itself is given in section 	 followed by a correctness proof in section ��
Some examples are provided in section ��

� Preliminaries

From a set of base types B� we construct the set of types T with the function space
constructor� in the obvious way� Assume given a set of typed variables V � ���T V�
and a set of constants �function symbols� F � ���TF� � where V � F � � and
V� �V� � � F� �F� � � � for all distinct �� � � from T � The set of simply typed ��terms
�shorter� terms� is then de�ned inductively as follows�

x � V�
x � �

c � F�
c � �

s � � � � � t � �

�s t� � � �
x � � s � � �

��x�s� � � � � �

Usually we shall implicitly assume that all terms� constants and variables are of
suitable type� and omit the type speci�cation�

Every occurrence of the variable x in a �sub��term of the form �x�s is said to
be bound � An occurrence of a variable which is not bound� is free� We use �xn�t
as a simpler notation for �x� � � � �xn�t� and we write s�t�� � � � � tn� or s�tn� instead
of �� � � ��s t�� t�� � � � tn�� We denote terms by s� t� u� v� constants by f� g� h� bound
variables by lowercase w� x� y� z and free variables by uppercase F�G�H�W�X� Y� Z�
Variables and constants are called atoms � We denote atoms by a� b�

A position � in a term t is a sequence of integers identifying a subterm t	� of
t� In a term of the form �x�t� the proper subterms are t and every proper subterm
of t� In a term s�t�� � � � � tn�� the proper subterms are s� t�� � � � � tn and every proper
subterm of these terms� The empty position in a term t is written 
� and corresponds
to the �non�proper� subterm t� We write s�t�� to indicate the term s� but with s	�



replaced by the term t� Sometimes we omit the speci�cation of the actual position
� and write C�t� to express a term with t as subterm� Here� the term C is called a
context �

Two terms s and t are ��equivalent � written ��� if each can be obtained from
the other by a renaming of bound variables� A ��reduction is the transformation of
a �sub��term of the form ���x�s� t� into the term that is equal to s except that t
is substituted for every occurrence of the variable x that is free in s� A term is in
��normal form if it cannot be ��reduced� An ��reduction is the transformation of a
term �x��t x� into t whenever t has no free occurrences of x� A term t � �xn�a�um� in
��normal form has an ��long form de�ned as t�� �xn�k �a�um �� xn�� �� � � � � xn�k ���
where t is of type �n�k � � and xn��� � � � � xn�k are fresh variables of appropriate
types� The ��normal ��long form of a term t is written t� or �t� If two terms s and
t can be obtained from each other by ��� �� and ��conversion� we write s 	 t� A
term which is 	�equivalent to a term with no occurrences of free variables is called
a ground term� A term t in ��normal form is called a pattern if the list of arguments
to each occurrence of a free variable is ���equivalent to� a list of distinct bound
variables�

Substitutions are �nite and type preserving mappings from variables to terms�
We use �� �� �� � � to denote substitutions� If � � fx� 
� t�� � � � � xn 
� tng is a
substitution and s is a term� we de�ne s� by s� � ��xn�s��tn��� We say that � is a
ground substitution if t� is a ground term� for all terms t�

Let E be a set of equations� By �E we denote equality modulo E � that is� the
relation resulting from taking ��� �� and ��conversion together with all instances
of equations from E as axioms� and closing under re�exivity� symmetry� transitivity
and the congruence laws associated with the constructions �x�s �abstraction� and
�s t� �application�� A rewrite rule is an ordered pair s� t of terms of the same base
type� both in ��normal ��long form� such that all variables with free occurrences in
t has free occurrences in s as well� We additionally require that the left�hand side of
all rewrite rules be patterns� A rewrite system is a set of rewrite rules� and may also
be viewed as a set of �ordered� equations� Symbols not occurring at the root position
of any left�hand side of R will be called a constructor of R� Following Nipkow �

��
a rewrite system R induces a relation �

R
on terms� de�ned as follows�

s�
R

t � � �l � r��R� �� � j �s	� 	 l�  t 	 �s�r���

It should be noted that this relation is invariant under 	� in the sense that s� 	
s�

R
t 	 t� implies s� �

R
t�� Hence� �

R
may be viewed as a relation on 	�equivalence

classes of terms�
As in the �rst�order case� critical pairs are equations formed by unifying the

left�hand side of one rule with a subterm of the left�hand side of another one and
executing the corresponding rewrite step� For an exact de�nition� consult �

�� which
easily extends to our context� The set of critical pairs formed by superposing rules
from a rewrite system R onto equations from a set E is denoted by CP �R� E��

To improve syntactical control over terms� we shall from now on assume that
they are represented by their ��normal ��long forms�

Let � denote a binary relation on terms� By �� �� �� � �� and �� we denote
the inverse of � and the symmetric� the transitive� the re�exive�transitive and the
re�exive�symmetric�transitive closures of �� respectively� We write s �� t if s �� t



and t is irreducible� that is� there is no u such that t � u� A substitution � �
fx� 
� t�� � � � � xn 
� tng is said to be irreducible if t�� � � � � tn are irreducible� If there
is no in�nite sequence t� � t� � � � � � ti � � � �� we say that � is terminating �
We say that � is con�uent if �� ��� ��� ��� and convergent if it is con�uent and
terminating� �The symbol � is used for relation composition�� A convergent rewrite
system R de�nes exactly one normal form �up to 	�equality� for each term t� which
we denote by t�R�

Higher�order rewrite systems are not in general stable� in the sense that s �
R

t
implies s� �

R
t� for arbitrary substitution �� However� ��

R
is stable� for every term

rewrite system R �see ������

� Higher�order proof by consistency

The goal of this paper is to achieve inductive proof methods for higher�order sys�
tems� that is� to prove or disprove inductive theorems� We do this by integrating a
�rst�order method into the higher�order setting� Consequently� our equational rea�
soning will essentially be �rst�order� yet some problems pertaining to the higher�
order setting must be solved in order for this to work� For the correctness proof of
our procedure� we need to identify a subset of provable equations which will be of
special interest to us� More precisely� the equations which we aim at proving are
contained in the set of initial consequences�

De�nition �� A term t is �rst�order rigid� if all subterms of base type in the ��
normal form of t are rigid �i�e� have no free variable as the root symbol�� A substi�
tution is called �rst�order ground �fo�ground� if it assigns �rst�order rigid terms to
all variables��

De�nition � �Initial consequence�� We say that a higher�order equation s � t is
an initial consequence of a higher�order equation set E if s� �E t� for all fo�ground
substitutions ��

This de�nition of initial consequences extends the �rst�order notion� As a motivation
for its design� recall that we are essentially trying to adapt induction over data types
to a higher�order setting� The idea is to prove all instances of candidate equations
where variables are assigned terms which are as �concrete as possible�� This stems
from the fact that we must consider any instances� including free variables� for higher�
order subterms�

As in the �rst�order case� we get an operational grip on the initial consequences
of E through a convergent� rewrite system R which represents the same theory as
E � In that case� �E coincides with ��

R
��

��� Since R is assumed to be convergent�

we easily conclude that an equation s � t is an initial consequence of E i� the R�
normal forms of s� and t� are identical� for every fo�ground substitution �� This
last property is given a particular name�

� This implicitly refers to all variables in the terms of current interest�
� Actually� ground convergence su�ces in the �rst	order case� We conjecture that �fo	
ground� convergence is su�cient for our higher	order setting� but we do not pursue this�



De�nition � �Initial consistency�� We say that a higher�order equation s � t
is initially consistent with a convergent higher�order rewrite system R if for all fo�
ground substitutions � we have s��R 	 t��R�

We see it as our main objective to prove equations� However� proof by consistency
also has considerable refutational power� the �rst�order method is complete in this
respect� For this reason� we pursue refutational aspects to some extent here� In
the �rst�order setting� an equation is either consistent or inconsistent� We must take
more care in our setting� since our concept of initial consistency may not exhaustively
contain all provable equations� For the purpose of refuting equations� we develop a
dual notion to initial consistency�

De�nition �� A position � in a term t is persistent in t if all symbols in t above �
are either constructors or lambda binders�

Note that the root position in a term is always persistent�

De�nition � �Initial inconsistency�� We say that a higher�order equation s � t
is initially inconsistent with a convergent higher�order rewrite system R if for some
fo�ground substitution � there is a persistent position � in t��R and u��R such that
t��R	� and u��R	� have distinct constructors as roots�

The carrying idea behind the de�nition of initial inconsistency is as follows� if a
term t has a persistent position � then all symbols above � persist whatever rewrit�
ing is performed� and whatever values are given to the variables� Thus� from the
de�nition of constructor it is easy to see that if two terms s and t have distinct con�
structors in a position that is persistent in both of them� then for all interpretations
of variables� s and t will rewrite to distinct terms�

A set E of equations is deemed initially consistent with R if every equation in
E is initially consistent� and initially inconsistent if some equation in E is initially
inconsistent� In order to conclude that E is initially consistent� we need to verify
that there is no inconsistency witness of E wrt� R� that is� an equation s � t � E
and fo�ground substitution � such that s� ��

R
s� �	 t� ��

R
t�� We write this witness

as W � �s � t� ��� To conclude that E is initially inconsistent wrt� R� we must �nd
a strong inconsistency witness W � �s � t� �� of E wrt� R� where s � t � E is
initially inconsistent wrt� R and � is a fo�ground substitution playing the part of
the substitution in de�nition �� Note that every strong witness is a witness�

Typical examples of strong witnesses are clashes between di�erent constructors�
e�g� in  � s��� For a non�strong witness� suppose that f and g are extensionally
equal� e�g� both have identical de�nitions� Then �x�f�x� � �x�g�x� holds under ex�
tensionality� though this equation is not by our de�nition an initial consequence��

Furthermore some witnesses� such as F �a� � F �b�� can be reduced to strong wit�
nesses via projections� here F 
� �x�x� Since such cases seem to appear rarely� we
do not consider this further�

In the �rst�order case� the proof by consistency procedure basically computes
critical pairs between a set E of equational conjectures and the convergent rewrite

� By extensionality� we have to prove f�X � g�X instead of �x�f�x � �x�g�x� where
X is a new free variable� This extension of our framework remains to be investigated�



system R representing the given theory� This necessitates a uni�cation procedure�
However� for higher�order terms� the uni�cation problem is undecidable in general�
�Consult Prehofer �
�� for a treatment of higher�order uni�cation�� As an important
special case� Miller �
� showed that it is decidable whether two patterns are uni��
able� and if they are� a most general uni�er can be computed� and the Critical Pair
Lemma is retained �Nipkow �

��� As is customary� we assume that the left�hand
side of rewrite rules are patterns� But even if the equations we want to reason about
happen to be patterns� the procedure may generate non�pattern equations� so we
have no guarantee that uni�cation will always behave as in the �rst�order case� For
example� we run the risk of being confronted with a situation in which no minimal
and complete set of uni�ers exists� However� this happens very rarely in practice� In
the second�order case with functional �linear� rules� it does not occur at all ��
����

From now on� let R be a �xed� convergent rewrite system� To reason about our
proposed procedure� we need an ordering on witnesses� For this purpose it is natural
to exploit the orderings on higher�order terms proposed by e�g� �
�� ��� ��� ���
Our method can be seen as induction over any such ordering containing ��

R
� In the

following� we assume an ordering which is based on the well�founded ordering ��
R

and a subterm notion� We write s� t if s 	 C�t� for some context C which does not
bind any free variables in t� We de�ne �R as the transitive closure of �� ��

R
� The

strict part of �R� written �R� is a well�founded ordering �see �
����

De�nition 	� Let W � �s � t� �� and W � � �s� � t�� ��� be witnesses� We write
W �W W � if s� �R s�� and t� �R t���� We de�ne �W as the strict part of �W �

It is easy to see that �W is a well�founded ordering� We are now ready to introduce
the important concept of covering sets� which is a straight�forward adaptation of the
�rst�order notion� cf� ����

De�nition 
 Covering set� Let E and E � be sets of equations and R a convergent
rewrite system� We say that E is covered by E �� or that E � is a covering set for E �
with respect to R if for every �strong� witness W � �s � t� �� of an equation s � t
in E � there is a �strong� witness W � � �s� � t�� ��� of an equation s� � t� in E � such
that W �W W ��

We shall return to the operational aspects of this concept� For now� we only state
the following evident result�

Lemma � Assume that equation set E � covers equation set E with respect to R� If E
is initially inconsistent with R then E � is initially inconsistent with R� Furthermore�
if E is not initially consistent with R� then E � is not initially consistent with R�

Proof by consistency is based on the computation of critical pairs between the
given rewrite system R and the candidate equation s � t to be investigated� In the
same fashion as completion can be seen as a proof normalization process� proof by
consistency can be seen as witness normalization� Our correctness proof will illustrate
this�

We now describe our proof procedure which accepts as input a set E� of equations
and aims at proving that every equation in E� is initially consistent with R� or
at detecting an initially inconsistent equation in E�� The rewrite system R is left



unchanged throughout the process� and the data structure is only a set of �unordered�
equations� The procedure is started with input E�� and each step in a derivation
sequence E� � E� � � � � is governed by the following inference system�

Deduce�
E

E � fs � tg
if s � t � CP ��R� E��

Simplify�
E � fs � tg
E � fs� � tg

if s�
R

s��

Decompose�
E � fc�sn� � c�tn�g
E
S
fsi � tigni��

if c is a constructor symbol�

Cover�
E � fs � tg

E
if s � t is covered by

S
i Ei�

Delete�
E � ft � tg

E

Prove�
�

Proof

Refute�
E � fc�sm� � c��tn�g

Refutation
if c and c� are distinct constructors�

A higher�order pattern t is a strong pattern� if every non�variable subterm of base
type in the ��normal form is rigid� �This disallows subterms F �yn� of base type��
The set CP ��R� E� quoted in the Deduce rule is the subset of the critical pairs
CP �R� E� in which the involved uni�er maps variables only to strong patterns� In
practice� this is not a severe restriction� and it has the following pleasant and useful
e�ect�

Lemma � If � is a fo�ground substitution and � is a uni�er involved in the com�
putation of a critical pair in CP ��R� E�� then �� is fo�ground�

� Correctness of the procedure

We now prove the system to be correct in the sense that each step preserves initial
consistency as well as initial inconsistency� and that the conclusions made by the
halting inference rules are sound� To complete the �rst part of the proof� we employ
our ordering on witnesses and show that they occur in a �down�hill� manner in the
process� The careful reader will see that the ordering machinery is essentially only
necessary for the Cover rule� where the absence of cycles in the ordering is crucial�

Proposition � Let Ek � Ek�� be a derivation step of the above procedure with input
E�� If W � �s � t� �� is a �strong� witness in Ek� then there is a �strong� witness
W � � �s� � t�� ��� in Ek�� such that W �W W ��



Proof� By inspection of each non�halting inference rule which removes an equation�

Simplify� If s�
R

s�� then stability of��
R

yields s� ��
R

s�� for all substitutions �� Since
R is convergent� s��R � s���R� This implies that if W � �s � t� �� is a �strong�
witness in Ek� then W � � �s� � t� �� is a �strong� witness in Ek��� Furthermore�
W �W W ��

Decompose� If there is a witness W � �c�sn� � c�tn�� �� in Ek� then the R�normal
forms c�sn���R � c�un� and c�tn���R � c�vn� would be distinct for some fo�ground
substitution �� But then� si� ��

R
ui �	 vi �

�

R
ti� for some i� implying that W � �

�si � ti� �� is a witness in Ek��� Furthermore� since c�sn�� � si� and c�tn�� � ti��
we have W �W W �� Assume now that W � �c�sn� � c�tn�� �� was a strong witness
in Ek� so in addition the terms c�sn���R � c�un� and c�tn���R � c�vn� both have a
persistent position � in which they have occurrences of distinct constructors� Then�
the position �� with � � i��� is persistent in ui and vi� so W � � �si � ti� �� is a
strong witness as well�

Cover� Assume that W � �s � t� �� is a �W �minimal �strong� witness of the
equation s � t being removed� If s � t is covered by an equation s� � t� � Ej �
where j � k� then there is a �strong� witness Wj with s� � t� such that W �W

Wj � furthermore �by an induction argument over this proposition� there must be a
sequence Wj �W Wj�� �W � � � �W Wk� where each Wi is a �strong� witness of
an equation in Ei� By well�foundedness of �W � we must have W �� Wk� Now recall
that W is assumed to be a �W �minimal witness of s � t� This implies that Wk is a
witness of another equation in Ek than s � t�

Delete� Trivial� since every equation of the form t � t is initially consistent� ut

Proposition � If Ek � Ek�� is a derivation step of the above procedure with input
E� and there is no �strong� witness in Ek� then there is no �strong� witness in Ek���

Proof� By inspection of the inference rules that introduce equations�

Simplify� Note that if s �
R

s�� then s��R 	 s���R for all substitutions �� Thus� if
W � � �s� � t� �� is a �strong� witness in Ek��� then W � �s � t� �� is a �strong�
witness in Ek�

Deduce� Suppose that � is the mgu involved in the computation of a critical pair
�in CP ��R� E�� for an equation s � t� so that the actual critical pair deduced is
a simpli�ed version of s� � t�� If the critical pair has a �strong� witness �� then
� is also a �strong� witness of s� � t� �cf� the immediately preceding treatment
of Simplify�� By lemma 
� �� is fo�ground� Consequently� �� can be seen to be a
�strong� witness of s � t�

Decompose� If W � � �s � t� �� is a witness in Ek��� then s��R �	 t��R� But
then c�� � � � s� � � ����R �	 c�� � � � t� � � ����R� so W � �c�� � � � s� � � �� � c�� � � � t� � � ��� �� is a
witness in Ek� If W

� is a strong witness� then there is a persistent position � in s
and t in which these terms have occurrences of distinct constructors� Assume that
i is the position of s and t in c�� � � � s� � � �� and c�� � � � t� � � ��� respectively� Then W is
strong as well� since the position i�� is persistent in c�� � � � s� � � �� and c�� � � � t� � � ��� ut

Applying Propositions 	 and � and inspecting the inference rules Prove and
Refute� we obtain the following correctness theorem�



Theorem � Assume E� is given as input to the above procedure� If the procedure
terminates with Proof� then E� is initially consistent with R� if it terminates with
Refutation� then E� is initially inconsistent with R�

For practical application� the Cover rule requires methods for deciding whether
an equation is covered by the set

S
i Ei of all generated equations� We do not address

this question in full generality� but point out important tractable cases� �A �rst�order
approach to this is summarized in �����

De�nition � Complete position� A position � in a term t is inductively complete
with respect to a convergent rewrite system R if � is not inside a �exible subterm of
t and t	� is not 	�equivalent to a variable and �t	��� is an instance of the left�hand
side of a rule in R whenever � is an irreducible fo�ground substitution�

In the �rst�order case� it is well known that the property of ground reducibility is
decidable for terms as well as for equations ���
��� As an important tractable case for
higher�order systems� suppose that functions� say f � are totally de�ned by rewrite
rules having left�hand sides f�c��Xn��� Y �� � � � � f�cm�Xnm�� Y �� where c�� � � � � cm are
constructors spanning a recursive data type� Then any �sub��term of the form f�X� s�
will correspond to a complete position� unless it occurs below a free variable�

Lemma 	 Let R be a convergent rewrite system and s � t be an equation in which a
position � is complete wrt� R� Then� the set of critical pairs computed by superposing
rules from R on s � t in position � yields a covering set for s � t�

This lemma indicates how Cover can remove an equation after its critical pairs in
a complete position have been computed� Another application is as follows� Suppose
s �

R
s�� so that some equation s � t may be simpli�ed by R to some equation

s� � t in
S
i Ei �equal up to variable renaming� by applying a rule from R in a

position in s which is not below a free higher�order variable� Then� we also have
s� �

R
s�� for all substitutions �� In this case it is easily seen that s � t is covered

by s� � t� so the former equation may be discarded� Finally� suppose given some
equation c�sn� � c�tn� such that for each j� the equation sj � tj occurs �up to
variable renaming� in

S
i Ei or is covered by

S
i Ei� Then c�sn� � c�tn� is removed

by the Cover rule� Note that the use of Cover sketched above will sometimes
correspond to the application of an induction hypothesis�

� Examples

Example �� Consider the type of binary trees containing node elements of some �xed�
possibly higher�order type� The binary trees are generated by the constructors empty
giving the empty tree� and root taking a node of the tree and two �sub��trees as
arguments� Functions rev �mirror image of a tree� and map �application of a function
to every node� are de�ned as follows�

rev�empty� � empty
rev�root�W�X� Y �� � root�W� rev�Y �� rev�X��
map�F� empty� � empty
map�F� root�W�X� Y ��� root�F �W ��map�F�X��map�F� Y ��



�Note that in order to improve readability we do not write a higher�order variable
F in its ��expanded form �x�F �x� here�� We want to prove the equation

map�F� rev�Z�� � rev�map�F�Z�� ���

There is a complete position identifying the subterm rev�Z� in the left�hand side�
Computing critical pairs here yields a covering set for equation ���� so we may use
Deduce and Cover to replace ��� with map�F� empty� � rev�map�F� empty�� and
map�F� root�W� rev�Y �� rev�X��� � rev�map�F� root�W�X� Y ���� The former equation
is simpli�ed to empty � empty and then deleted� the latter simpli�es to

root�F �W ��map�F� rev�Y ���map�F� rev�X��� �
root�F �W �� rev�map�F� Y ��� rev�map�F�X���

�
�

If we try to decompose equation �
�� we get the new equation F �W � � F �W � as
well as map�F� rev�Y �� � rev�map�F� Y �� and map�F� rev�X�� � rev�map�F�X���
The �rst of these is deleted� and the last two are equal to ��� modulo variable
renaming� Hence �
� is covered and we end up with the empty equation set� proving
equation ����

Example 	� Consider again binary trees de�ned in the previous example� Add to this
rewrite system the rule �F �G��W � � F �G�W �� de�ning function composition� We
now want to prove the equation

map�F �G�Z� � map�F�map�G�Z�� �	�

The empty position in the left�hand side of this equation is complete� so we may
replace this equation with the set of critical pairs deduced in this position� First
we obtain empty � map�F�map�G� empty��� which simpli�es to a trivial equation
empty � empty� The next critical pair is

root��F �G��W ��map�F �G�X��map�F �G� Y �� � map�F�map�G� root�W�X� Y ��
���

which simpli�es to

root�F �G�W ���map�F �G�X��map�F �G� Y �� �
root�F �G�W ���map�F�map�G�X���map�F�map�G� Y ���

���

Decomposing this equation we get the trivial equation F �G�W �� � F �G�W ��� as
well as the equations map��F �G�� X� � map�F�map�G�X�� and map��F �G�� Y �� �
map�F�map�G� Y ��� which are both equal to �	� modulo variable renaming� Hence
we can complete the proof by the Cover rule�

� Conclusion and further work

We have presented a way of integrating the �rst�order method of proof by consistency
to theorem proving in higher�order equational speci�cations and given a correctness
proof of our proposed procedure� The main motivation is to expand the scope of this
sophisticated induction technique�



There are several advantages of this approach over conventional induction on
�rst�order data types� First� proof by consistency does not demand an explicit choice
of variables on which to do induction� and can be viewed as a more general and less
control�demanding method for inductive reasoning� Second� the instantiations for the
variable can be more speci�c than just covering all constructors� since they depend
on the rewrite rules� not on the data type declarations� In general� there can even
be simultaneous induction on several variables� Furthermore� the convergent rewrite
rules can be used for optimizations�

For using our technique in a higher�order theorem proving system� the precise
relation between our notion of �rst�order ground terms and recursive data types
should be formalized� For this� one needs to assume that all �rst�order types are
data types� which is acceptable for program veri�cation�

Our approach to higher�order proof by consistency as presented here would ben�
e�t from re�nements in several directions� First� a facility for applying lemmata
would certainly be helpful� just as it is in the �rst�order case� However� this exten�
sion relies heavily on orderings on terms� and it remains to be seen whether existing
higher�order orderings are suitable for this problem�

First�order proof by consistency as described in ��� considers the property of
ground reducibility to give more general criteria for refutation of equations� In full
generality� this concept seems to be problematic in higher order� but might be
tractable for interesting special cases�

In his treatment of higher�order narrowing� Lor��a�S�aenz ���� restricts candidate
equations to quasi��rst�order and rewrite rules to simple rewrite rules� We believe
that corresponding restrictions for proof by consistency would lead to practically
useful improvements in the directions that we have just sketched�
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