
Proc. 6th Intl. Workshop on Formal Methods for Industrial Critical Systems, 7/01, pp.79-94

Model Based Testing for Real:

The Inhouse Card Case Study

A. Pretschner1, O. Slotosch2, H. Lötzbeyer1, E. Aiglstorfer3, S. Kriebel3

1Institut für Informatik, Technische Universität München
{pretschn,loetzbey}@in.tum.de

2Validas Model Validation AG
slotosch@validas.de

3Giesecke&Devrient GmbH
{Ernst.Aiglstorfer,Stefan.Kriebel}@gdm.de

Abstract

We describe the modeling concepts of the
CASE tool AutoFocus as well as our Con-
straint Logic Programming based approach to
model-based test case generation along the
lines of an inhouse smart card case study. Be-
sides testing the model itself, we used the
generated test cases to validate the respective
properties in the actual hardware.
Keywords. Automatic test case generation,
CASE, reactive systems, validation.

1 Introduction

This paper summarizes the results of a fea-
sibility study that was carried out by TU
München, Validas Model Validation AG, and
Giesecke&Devrient GmbH. Its purpose was to
determine the industrial applicability of a com-
bination of the CASE tool AutoFocus [18]
with a prototype for the automatic genera-
tion of test cases on the grounds of Constraint
Logic Programming (CLP) [21]. In this arti-
cle, the application domain is that of smart
cards. Generating test cases for these systems

turns out to be a tedious and difficult task, and
the potentials of automatization were to be as-
sessed. The main result of this study is that
for this application domain, the techniques in
question are convincing candidates for further
exploration, as expressed in concrete plans for
further collaboration of the three partners.

Overview. The paper is organized as fol-
lows. In Section 2, we briefly present the CASE
tool AutoFocus for specification, simulation,
and validation of reactive systems. Section 3
then describes the case study. In section 4, we
describe and discuss our approach to the gen-
eration of test cases as well as its embedding
into an incremental development process, and
present some experimental results. The paper
concludes with an assessment of the results of
this feasibility study which takes into account
both the modeling formalisms of AutoFocus

and the generation of test cases.

Related Work. A theory of formal testing
is tackled in [16, 4]. They share the com-
monality of defining an observational congru-
ence (“selection hypotheses”) on systems. Sim-

1



ilar relations are used in [31, 30] to compute
whether or not a system (model) conforms to
its specification. We differ from this approach
in that we do not want to prove such a con-
formance relation but rather approximate its
proof as done in traditional testing (without
an explicit formalization of the conformance
relation). (Constraint) Logic Programming for
test case generation has been used in [24, 7, 23];
our approach differs (1) in the class of systems
we consider, (2) in the input language with a
concept of interface and a combined approach
to behavior specifications with automata and
functional definitions on transitions, and (3) in
the thereby induced necessity for powerful, yet
existing, constraint handlers on the grounds of
Constraint Handling Rules (CHR, [14]). Lut-
ess [11] is a tool for the generation of test cases
for Lustre (as is Gatel [23], see above). The dif-
ference with our approach is the use of model
checkers or random number generators for the
generation of test cases as well as a restriction
to boolean data types. Code generation on the
grounds of CLP is, for various non-modular
[25] automata considered in [17, 13].

The relationship of Model Checking and
(C)LP with possibly tabled resolution proce-
dures is discussed (and used) in [9, 12, 8].
Our approach as a mixture between enumer-
ative (explicit) and symbolic approaches to
(bounded) model checking. Its symbolic na-
ture is characterized by the fact that con-
straints allow for storing possibly infinite
sets of states or inputs. Its explicit na-
ture stems from the search algorithms (depth-
first, breadth-first, best-first, tabu) we de-
ploy. Our approach is not directly applica-
ble to proving general properties; the prop-
erties we are interested in are usually exis-
tentially path-quantified (properties that, in
general, are proved by referring to universally
path-quantified formulas by means of “shift-
ing” negations). These issues are discussed in
more detail in [27, 26]. The extension of our

approach to symbolic on-the-fly model check-
ing is the subject of current work.

In the context of mutation testing, con-
straints for the generation of test cases for
transformational systems are used in [10]. The
idea is to formulate constraints that approxi-
mate criteria for killing mutants.

[6] uses a mixture of BDDs and Presburger
constraints for the representation of sets of
states in reactive systems. [1] uses linear con-
straints on real numbers for model checking hy-
brid systems. Clearly, the focus is on model
checking. The difference with our approach is
that (1) we are mixing enumerative and sym-
bolic techniques rather than computing fixed
points on sets of constraints and (2), again, use
CHR with constraint solvers on arbitrary do-
mains (e.g., FD) for allowing convenient inter-
actions and user-defined specifications of test
cases.

Evolutionary approaches to test case genera-
tion (e.g., [?]) are similar to our approach w.r.t.
the importance of finding good fitness func-
tions for the search strategies that are used.
Usually, these approaches are concerned with
transformational systems, and the technique of
generation test cases (modification of random
tests) differs from ours.

For the sake of simplicity, we synonymously
speak of test cases and test sequences as se-
quences of I/O traces of a system. [22] contains
a more precise terminology.

2 AutoFocus

AutoFocus (autofocus.in.tum.de, [18]) is a
tool for the graphical specification and valida-
tion of reactive (embedded) systems. In terms
of its focus on behavior models (automata), it
is quite similar to a subset of the UML-RT,
but we consider its simple and formalized se-
mantics to be a prerequisite for validation tech-
niques such as model checking or testing.

2



Components. Systems are structured by
decomposing them into components. A compo-
nent represents a single unit of computation.
Components synchronously communicate via
typed and directed channels. Each end of a
channel is connected to a port. Ports belong
to a component, and since channels are di-
rected, the same holds true for ports, and the
ports of a component constitute hence its in-
terface. When two components are connected
by a channel, we say that they are composed.

Composition of components is depicted in
System Structure Diagrams (SSDs). SSDs may
be hierarchical; boxes represent components,
and arrows between them represent channels.
Our case study merely consists of a single non-
hierarchic component that is depicted in Fig. 1
(the complexity of our example system lies in
the behavior, not in the structure). Compo-
nents may be associated with a set of local
variables that are manipulated by the compo-
nent’s behavior; these local variables form the
component’s data space.

Behavior. Bottom level components, i.e.,
components that are not composed of other
components, are equipped with a behavior.
Behaviors are specified by means of extended
state machines: finite state machines that can
access input and output ports as well as local
variables of the (bottom level) component they
belong to. Fig. 4 shows the pictorial repre-
sentation of such an automaton, a State Tran-
sition Diagram (STD). Circles represent con-
trol states, and arrows between them repre-
sent transitions. Transitions may fire if (1)
certain pattern matching (PM) conditions of
the form1 channel?pattern on the input chan-
nels hold and (2) their guard (G) holds. Firing
then means to update local variables (PCV )
and write outputs (PCO); this is performed

1pattern may well be the empty string; this means
that no input is allowed at channel.

in the so-called postconditions. Postcondi-
tions are thus nothing but assignments of lo-
cal variables or output channels. Each tran-
sition is hence associated with a quadruple
G : PM : PCV : PCO where some parts may
be omitted: lack of a guard, for instance,
means that the condition may always fire, pro-
vided its input pattern matching condition is
satisfied. Note that in Fig. 3 transitions are
simply labeled since the respective quadruples
would clutter the diagram.

Data and Functions. Channels were said
to be typed. Types include standard types
like integers or booleans, but they may also
be user-defined in a Gofer-like functional lan-
guage. This enables one to concisely describe
enumeration or inductive types. The same
functional language may be used for the def-
inition of new, possibly recursive, functions.
These functions can then be used in the guard
or postcondition of a transition.

Execution. AutoFocus components exe-
cute concurrently and simultaneously in a time
synchronous manner. The existence of a global
clock ensures existence of so-called ticks. Be-
fore each tick, every component reads it input
ports. It then computes pattern matching con-
ditions and preconditions for all possible tran-
sitions. Possibly non-deterministically, one of
them is then chosen; if there is none, the sys-
tem idles. In addition, it computes new val-
ues for local variables and output ports. Dur-
ing the (instantaneous) tick, it updates the re-
spective variable, and writes new values to the
output ports. Since channels connect output
to input ports and transferring messages does
not consume any time, these values are imme-
diately available for the connected component
after the tick. The procedure then repeats.
This results in a time-synchronous communi-
cation scheme with buffer size 1.

3



Interaction. Besides the architecture
(SSD), behavior (STD), and data views,
the interaction view plays an important role
in coping with reactive systems. Sequence
diagrams play thus an integral part in the
specification of systems, test cases, for simu-
lation results, and for requirements capture.
Appropriate editors have been connected to
AutoFocus.

Validation. Besides the modeling capabili-
ties of AutoFocus, there are several tools
for validating the specified models. These in-
clude simulators on the grounds of code gen-
erators for languages such as C, Java, Prolog,
or ADA. Furthermore, model checkers (SMV,
µcke), propositional solvers for test case gen-
eration (SATO), and theorem provers (VSE)
have been connected to the tool. Currently,
test tools such as ATTOL coverage/unit test
or DOORS for requirements tracing are con-
nected to AutoFocus.

3 The Inhouse Card

In this section we describe two equivalent mod-
els of the inhouse card, a sample study of
Giesecke & Devrient. The purpose of this
smart card is to serve as a security token for
personal access control, e.g., to various areas of
a company site, or personalized computer ac-
cess. One model has been built from the mod-
eler’s point of view, and the other one from
the application designer’s view. We focus on
the application view and show the differences
to the other model.

The inhouse card is a secure device which
allows the storage of secret keys. When the
smart card comes into contact with a terminal,
authentication protocols are run to start the
communication. Encryption and secret keys
ensure secure communication. The applica-
tion programming interface for the card con-

Card
read:AbsCmds OK:Signal

Figure 1: Interface of the Inhouse Card

forms to ISO 7816 [19] which comprises the
relevant commands for authentication (smart
card - terminal) and verification (user - termi-
nal / user - smart card) routines. For the au-
thentication process symmetric cryptography
with secret keys is used. The verification pro-
cess is based on the known personal identifica-
tion number (PIN) handling. The number of
failings is limited by counters. The model de-
scribes the behavior of the card, and it is used
to determine test sequences. Test sequences
shall have a good coverage among the available
commands.

3.1 Interfaces

Both models have the same interface and struc-
ture (see the SSD in Figure 1). The struc-
ture shows the interfaces of the modeled com-
ponent Card. It receives commands from the
environment via channel read, and sends re-
turn values via channel OK. The commands of
the inhouse card and their return values are
described in the specification manual. In the
following, however, we restrict ourselves to giv-
ing an abstracted version of the actual card
which we could, nonetheless, use for the com-
putation of actual test cases. After appropri-
ate transformations, these were fed into actual
hardware, i.e., in this case study, we did not
test the model but rather the implementation.

For instance, we used the following equiva-
lence classes for the verify command, an in-
tegral part of the verification protocol:

data AbsCmds =

Verify_A | // correct state & PIN

Verify_B | // wrong parameters

4



Verify_C | // wrong state

Verify_D; // wrong PIN

This command is sent from the reading device
to the card. These equivalence classes encode
not only the command itself as well as its pa-
rameters, but also the return value from the
card: Verify A denotes sending the command
with correct parameters and return value OK.

However, since in AutoFocus all elements
of an input type can be entered at any time,
it is necessary to differentiate between allowed
cases and impossible cases. For instance, since
a successful verify command cannot be entered
in every state, the equivalence classes Verify A

and Verify C are disjoint, i.e., they cannot
be tested in the same states. Our modeling
task included hence the exclusion of some com-
mands in some states. Therefore, the model
sends signals of the single valued type data

Signal = Present to the environment to in-
dicate that the received command has been ad-
missible. For the generation of test sequences
we are only interested in admissible sequences,
i.e., in sequences that accept every command
with a signal Present on the return channel
OK.

3.2 Behavior

As mentioned above, the inhouse card is used
for access control. The user puts the card
into a card reader, and with a correct PIN,
he can access the respective part of the build-
ing. The card has also a super-user mode
(with a Personal Unblocking Key, or PUK).
Authentication is achieved between card reader
and (super-user) terminals. Authentication is
based on encryption of random numbers (so-
called challenges). All (different) authentica-
tions follow the same scheme. Using our com-
mand equivalence classes, the simplified se-
quence is depicted in Figure 2.

There are six counters that count the num-
ber of authentication attempts (for different

Card

read?GetCardData_A

OK!Present

read?GetChal_A

OK!Present

read?MutAuth_A

OK!Present

Figure 2: Authentication Sequence (simplified)

situations). These counters K1C:Int, ...,

K6C:Int are declared as local variables of com-
ponent Card. Different maximum values are
declared for these counters as constants to
model the fact that the PIN can be entered
three times wrongly, and the PUK 14 times
before they are blocked (the maximum value
for the first counter, for instance, is declared
by const startK1 = 14).

The description of the behavior consists of
several main states (called “authentication”
states in the requirements specification), and
transitions between them. Some transitions
(for instance, the reset transition) change the
main state directly, whereas the authentica-
tion process requires two intermediate states
between the connected authentication states.

There are two ways of modeling these in-
termediate states in AutoFocus: The mod-
eler’s view is to model the intermediate states
as control states (see Fig. 4). This leads
to a large number of control states, and
to many reset transitions (for each inter-
mediate state). For example, the transi-

5



Reset

any possible command

AuthA

AuthB

AuthA

AuthA

AuthA

AuthA

AuthA

AuthB AuthB

AuthB
AuthB

AuthB

noAuth1

noAuth4

any possible command

any possible command
any possible command

any possible command

any possible command

any possible command

noAuth2noAuth5

noAuth3

AuthCh

noAuthCh

MF0

DF00 Init

DF01 Admin DF02 User

DF03 User

DF04 Admin

DF05 User

SelectB

Reset

Reset
Reset

Reset

Reset

Reset

Auth3Key4

Auth1Key1

PIN1Key2

PIN2Key5
PUKKey4

Auth3 Auth1
Auth3

Auth3

Auth3

Auth1

Auth1

Auth1

Auth2Key3

SelectB

SelectB

SelectB

SelectB

SelectB

((AS == GotChallange) && (K1C > 0)):read?MutAuth_A:OK!Present:K1C = startK1; AS = Ready

isDF01Cmd(X):read?X:OK!Present:

Figure 3: Inhouse Card: authentication with data states

tion that the card model fires between the
intermediate state I2 and the application
state DF02User is K1C>0; read?MutAuth A;

OK!Present; K1C=startK1.

The application view encodes the intermedi-
ate states into a variable AS:AuthState of the
type data AuthState = Ready | GotData

| GotChallenge (Fig. 3). This reduces the
number of states and reset transitions to
the application states, and the STD is now
very similar to the informal diagram in the
given requirement document. In this case, the
transition that takes care of the identifica-

tion of the terminal is AS == GotChallenge

&& K1C>0; read?MutAuth A; OK!Present;

AS=Ready; K1C=startK1.

The last modeling task is to differenti-
ate between the possible and the impossi-
ble commands at the different states. This
is done via the “any possible command”
transitions (see Figure 3): isDF01Cmd(X);

read?X; OK!Present. This transition ac-
knowledges all commands that satisfy the
predicate isDF01Cmd with the value Present.
The predicate isDF01Cmd describes the com-

6



(KEY2_KFPC > 0):read?Verify_C:OK!Present:KEY2_KFPC = (KEY2_KFPC - 1)

(KEY5_KFPC > 0):read?Verify_D:OK!Present:KEY5_KFPC = (KEY5_KFPC - 1)

(KEY6_KFPC > 0):read?VerifyCh_B:OK!Present:KEY4_KFPC = startKFPC4

(KEY6_KFPC > 0):read?VerifyCh:OK!Present:KEY6_KFPC = (KEY6_KFPC - 1)

any other command

any other command

any other command

any other command

any other command

any other command

any other command

MF0

DF00 Init

DF01 Admin

I1

I2

DF02 User

J1 J2

H1H2

DF03 User

K1

K2

DF05 User

L1

L2

DF04 Admin

M1

M2

:read?Select_B:OK!Present:

:read?GetCardData_A:OK!Present:

:read?GetChal_A:OK!Present:

(KEY1_KFPC > 0):read?MutAuth_A:OK!Present:KEY1_KFPC = startKFPC1

:read?Reset:OK!Present:

:read?Reset:OK!Present:

:read?Reset:OK!Present:

:read?Reset:OK!Present:

any other cmd

(KEY4_KFPC > 0):read?MutAuth_C:OK!Present:KEY4_KFPC = startKFPC4

any other cmd

:read?Reset:OK!Present:

:read?Reset:OK!Present:

:read?Reset:OK!Present:

:read?Reset:OK!Present:

:read?Reset:OK!Present:

:read?GetCardData_A:OK!Present:

:read?GetCardData_A:OK!Present:

:read?GetChal_A:OK!Present:

:read?GetChal_A:OK!Present:

:read?MutAuth_A:OK!Present:

:read?MutAuth_C:OK!Present:

any other cmd

any other cmd

any other cmd

any other cmd

(KEY2_KFPC > 0):read?Verify_A:OK!Present:KEY2_KFPC = startKFPC2

:read?Reset:OK!Present:

:read?GetCardData_A:OK!Present:

any other cmd

:read?GetChal_A:OK!Present:

:read?Reset:OK!Present:

:read?Reset:OK!Present:

:read?MutAuth_C:OK!Present:

:read?MutAuth_A:OK!Present:

(KEY3_KFPC > 0):read?MutAuth_B:OK!Present:KEY3_KFPC = startKFPC3

(KEY3_KFPC > 0):read?MutAuth_E:OK!Present:KEY3_KFPC = (KEY3_KFPC - 1)

:read?GetCardData_A:OK!Present:

:read?GetChal_A:OK!Present:

any other cmd

:read?Reset:OK!Present:

:read?Reset:OK!Present:

:read?Reset:OK!Present:

:read?MutAuth_A:OK!Present:
:read?MutAuth_C:OK!Present:

any other cmd any other cmd

(KEY4_KFPC > 0):read?MutAuth_F:OK!Present:KEY4_KFPC = (KEY4_KFPC - 1)
(KEY1_KFPC > 0):read?MutAuth_D:OK!Present:KEY1_KFPC = (KEY1_KFPC - 1)

(KEY5_KFPC > 0):read?Verify_B:OK!Present:KEY5_KFPC = startKFPC5

:read?Reset:OK!Present:

(KEY6_KFPC > 0):read?VerifyCh_A:OK!Present:KEY2_KFPC = startKFPC2:read?GetCardData_A:OK!Present:

:read?GetChal_A:OK!Present:

:read?MutAuth_A:OK!Present::read?MutAuth_C:OK!Present:

any other cmd

any other cmd

:read?Reset:OK!Present:

:read?Reset:OK!Present:

Figure 4: Inhouse Card: authentication with control states

mands that are admissible within the authen-
tication state DF01Admin. The predicate is de-
fined by

fun isDF01Cmd(ReadBin_A) = True

| isDF01Cmd(UpdateBin_E) = True

| ...

| isDF01Cmd(X) = False; // no others

This denotes that in these states successful
reading is allowed (described by the equiva-
lence class ReadBin A), whereas updating re-
sults in an error (command equivalence class
UpdateBin E). For every state such a predicate
is defined. This allows a very flexible modeling
process since every command can be allowed or

excluded explicitly without changing the lay-
out and the transitions of the STD.

4 Model Based Testing

In this section, we describe our approach to
model based testing on the grounds of Con-
straint Logic Programming. We restrict our-
selves to a coarse description of the basic ideas;
details of the translation may be found in
[21, 22]; the embedding in an incremental de-
velopment process is discussed in [28]. [27]
contains a detailed discussion of our approach.
While for the presented smart card example

7



the exact nature of the development process
is not crucial, we think our ideas on test case
generation are clarified by their embedding in
the process.

4.1 Process

Many modern SW development processes em-
phasize the benefits of an iterative, or incre-
mental, proceeding. These include, for in-
stance, the Rational Unified Process (RUP
[20]), Extreme Programming (XP [2]), the
Cleanroom Reference Model (CRM [29]), or
more classical prototyping approaches. Their
main benefit is usually seen in the possibility
of early interactions with the customer.

Similar to white box level specifications (i.e.,
state machines) of the CRM, we advocate the
use of high level graphical specification lan-
guages as implemented in AutoFocus. The
RUP as well as Extreme Modeling (XM [3])
focus on models as the integral entity of speci-
fications. A model is an artifact that abstracts
reality by focusing on specific aspects of it.

While the above processes necessitate a
manual step from specifications to implemen-
tations, the code generators in AutoFocus

permit (partial) automatization of this step.
This is clearly due to the focus on behavior
models–which are also in integral part in the
UML-RT. However, we prefer the formally de-
fined semantics of AutoFocus that we con-
sider crucial in being able to compute test
cases. This also is the difference to XM which,
due to using statecharts in the UML, focuses
on modeling rather than validation. In the se-
quel, when referring to models, we hence speak
about behavior models.

In an incremental development process, test
generation techniques naturally lend them-
selves to their application in regression test-
ing [28]. With suitable management tools, test
cases that have been derived for an earlier
increment may be used for regression testing

later ones. Note that we do not give a suitable
definition of “increment” here that extends be-
yond “additional functionality”; this definition
and its embedding in the development process
is the subject of ongoing work.

Furthermore, when code generators do not
satisfy requirements that are posed upon pro-
duction code, test cases for models can, after
suitable transformations, be used as test cases
for the respective hand-written code. This nat-
urally leads to the question of how test cases
on models (functional, as in XP, or structural,
i.e., satisfying some coverage criterion) relate
to test cases on implementation code. This
question is particularly important for struc-
tural test cases when certification issues enter
the game. Our vision is to use structural test
cases for models and to transform them into
test cases on implementations by maintaining
the respective coverage criterion (or switching
from a suitable criterion on models to a suit-
able one on implementations).

We thus see the application domain of our
approach in both testing models (as a debug-
ging aid for error location) as well as test-
ing implementations (where the specification
is used as an oracle), and we do recognize the
need for structural tests of implementations.
We do not, however, oppose the view of F.
Brooks [5]: “I believe the hard part of build-
ing software to be the specification, design, and
testing of this conceptual construct, not the la-
bor of representing it and testing the fidelity of
the representation.”

4.2 Test case generation

The basic idea behind our algorithm is a sym-
bolic execution of the model (see [21, 22] for
details). To this end, we generate a set of
predicates, PA, for each automaton, A. Re-
member that automata only occur in bottom
level components. Each predicate in PA en-
codes one transition, and its arguments con-

8



tain thus the state and the destination state.
Furthermore, the predicates’ arguments con-
tain formal parameters for input and output
as well as for local variables. Guards and post-
conditions are encoded in the predicate’s body,
and they are evaluated to see if the encoded
transition may fire or not, and how local vari-
ables are updated. The predicates in PA are
hence of the form

step_A(Src,Tr,Loc,In,Out,Dst):-

pre(Tr,Loc,In),

post(Tr,Loc,In,Out).

where pre and post encode guards and post-
conditions (assignments) for transition Tr from
state Src to state Dst, taking into account val-
ues of local variables Loc, input values In, and
output values Out. Both pre- and postcon-
ditions may involve arbitrary constraints. In
practice, Loc, In, and Out are tuples of pairs
rather than tuples of values. These pairs en-
code the values of the variable before and after
firing transition Tr.

Composition. Now when composing a set
of components, C, by putting them in a new
SSD and connecting their ports, a driver pred-
icate d is needed. This predicate subsequently
calls the predicates that correspond to the
state machine of each of the elements of C.
Furthermore, it takes care of the communi-
cation between two components. Since in-
ternal channels—channels that connect two
components—can be encoded by internal vari-
ables, the interface of the driver predicate d is,
in terms of its structure, exactly the same as
that of any bottom level component. Rather
than storing pairs of values before and after
firing a particular transition (or rather a set of
them, since components fire simultaneously),
we store the complete histories; this is done
since we are interested in complete traces that
are used as test cases. Histories are lists that

contain the values of the particular channel or
variable at each single tick. In this way, it
is possible to update local variables or output
channels with a value by simply concatenating
this very value to the respective history list (re-
member that, when containing free variables,
parameters in Prolog are always transient, i.e.,
the “free” parts are passed by reference). The
predicate’s head thus contains a tuple of lists
for input histories, a tuple of lists for local vari-
ables, and a tuple of lists for output histories.
The components of the tuple correspond to in-
volved system’s components; and since there
may be more than one input/output channel
or local variable, these again usually are tu-
ples.

In this way, composition for more than two
levels of hierarchy is achieved by applying this
composition procedure recursively. For the top
level component, it is necessary to take care
of stimuli from the environment (input chan-
nels). Channels can only connect ports within
one SSD: On a modeling level, inter-SSD com-
munication consists thus of many chunks that
connect a port of one atomic SSD with the in-
terfaces of a set of SSDs, and penultimately,
with an interface point of the SSD that con-
tains an atomic SSD. The connection to this
atomic SSD then forms the final chunk. Join-
ing all chunks yields a “conceptual” channel
that connects two atomic components. Com-
munication over this channel is achieved in one
tick.

Note that this simple translation scheme
only works because of the simple synchronous
communication semantics of AutoFocus.
However, when necessary, we model asyn-
chronous communication by explicit buffer
components.

Execution. Symbolic execution now means
successively calling the top level driver predi-
cate. It usually is a good idea to restrict the

9



maximum possible length of the system runs.
The exact number can be crucial in terms of
efficiency [28], and its determination is an im-
portant task (which we do not consider further
here).

Stimuli that are known (e.g., if they form
part of a test case specification) can be inserted
in the input history list; the same holds true for
the values of output channels or internal vari-
ables. The backtracking mechanism ensures
that if potentially, more than one transition of
a particular automaton can fire, all of them are
tried. This also ensures that if a predetermined
output cannot be achieved by choosing a par-
ticular transition, all other possible transitions
are tried. In addition, the use of free (i.e., un-
specified or unbound) variables in Prolog en-
ables one to compute test cases: Unspecified
stimuli in an execution are encoded by those
free variables. The choice of a transition by
the respective driver predicate, scheduled by
Prolog’s backtracking mechanism2, then binds
this variable to a concrete value. In this way,
completely instantiated system traces are com-
puted. Thus far, what happens is an explicit
generation of the system’s state space, includ-
ing the traces that led to each state.

However, this is too simple to work. The
problem with Prolog’s depth first strategy is
that, whenever possible, it executes transition
predicates in the same order as they have been
written down. This results in loops - when two
transitions emanate from a control state, the
first of which leads to this very state, the sec-
ond transition will only be taken when back-
tracking is performed. However, the problem
becomes obvious if traces of a length of 10,000
or more are taken into account. We imple-
mented two solutions to this problem. One
consists of simply memorizing for each state

2Choosing a good ordering for the transitions gives
rise to different search strategies like best-first on the
grounds of appropriate fitness functions [26].

which transition was last taken out of it, and
when the state is re-entered, another transition
is chosen. Our second implementation is based
on probabilities for transitions that influence
the choice of which transition is tried out first.
As with probabilistic models in the CRM, the
source of the transition probabilities is usually
rather esoteric. However, in cases like the one
mentioned below, it is a good idea to try a 50-
50 probability without knowing what happens
in the real system.

Constraints. Consider the guard of a tran-
sition that merely requires a local variable to
be inside a certain range at a given point in
time, t, for instance, vt > 3.2. If the local
variable vt was hitherto unbound, it could, in
principle, be bound to a value such as 3.2001.
However, this instantiation is not necessarily
essential: the system may well continue its ex-
ecution with the knowledge that vt > 3.2. This
kind of information that accompanies the com-
putation is called a constraint. If later on, for
a particular trace, it turns out that vt should
indeed have been greater than, say 5.0, the cor-
responding constraint is updated to vt > 5.0.
However, it is also possible that later on, it
turns out that the particular trace becomes im-
possible with vt > 3.2, and that rather vt = 0
would have been necessary. In such a situation
the computation is discarded: the particular
constraint is not satisfiable.

The bad news in this case are that obviously
something went wrong, and backtracking is to
be performed. The good news are that we do
not need to continue the computation for we
know that the constraint on vt cannot be sat-
isfied. This results in an a-priori pruning of the
search tree, as opposed to the usual generate-
and-test strategy that is so common in Logic
programming.

In order to do so, some additional steps have
to be taken. Since AutoFocus allows for the

10



definition of (recursive) data types and func-
tions that are used in guards and postcondi-
tions, we have to translate all data type decla-
rations and function definitions into some kind
of constraint (incidentally, > is a predefined
constraint in most CLP systems). This is done
by means of Constraint Handling Rules—CHR
[15]—, a meta language for constraint handlers
(constraint handlers are those parts of the sys-
tem that take care of checking satisfiability of
constraints). Function definitions and calls are
compiled into flat (eager) constrained predi-
cates; since the generation of test cases does
involve function inversions, we introduced an
upper bound for the number of recursions in
order to avoid infinite loops. Lazy evaluation
is achieved by means of (delaying) constraints.

Note that constraints are not only used for
representing sets of I/O but also for space effi-
cient storage of sets of states.

Constraint instantiation. The last piece of
the puzzle is concerned with an answer to the
question of what to do with remaining con-
straints. The point is that a constraint such
as it > 3.2 for an input value it for a given tick
t may lead to an execution trace that satisfies
the given test case specification (for instance,
a particular coverage criterion). The test case
specification can thus be satisfied without fur-
ther restricting the value of it. In other words,
we have just computed not one test sequence
but a whole set of them: all those traces where
input i at time t is greater than 3.2. This kind
of situation naturally occurs with other con-
straints for (user defined) types other than the
real numbers. The question than is to choose
one value for it out of the infinitely many pos-
sibilities for a significant test case. In this kind
of situation, heuristics have been developed (in
this case, so called equivalence class heuristics:
one would try three values, 3.1, 3.2, and, say,
5.0). Naturally, clever instantiations are the

major problem in the generation of test cases.
Note that this approach differs from that in,
for instance, [31] in that we deliberately use
heuristics for the determination of test cases
and not a theoretical approach that is based
on the definition of a hopefully suitable notion
of observation.

4.3 Discussion

The difference between the presented approach
to test case generation and (possibly bounded,
non-symbolic, on-the-fly) model checking be-
comes apparent in the handling of infinite sys-
tems. The relationship between (C)LP and
model checking of (infinite) systems has been
the subject of recent work [9, 12, 8, 6]. While
the intention between testing and model check-
ing is different in terms of intended complete-
ness of the result, we see one major advantage
of our approach in the higher flexibility in gen-
erating counter examples.

The use of constraint languages is also cru-
cial in the intended interactivity which we con-
sider the key to scalability of our method [27]:
abstracting the model by excluding certain sys-
tem runs, transitions, or states, is achieved
most easily. In terms of performance, the pre-
determined maximum length of the generated
test cases plays an important role: [28] con-
tains an example where changing the maxi-
mum length by as little as twenty results in a
change of as many as four orders of magnitude
in terms of time needed to compute the speci-
fied test case. Since the reason for this behav-
ior is Prolog’s search strategy, better perform-
ing strategies for an intelligent choice of transi-
tions (or, more generally, better search strate-
gies than depth-first search with simple preven-
tion of loops or probabilistic approaches) are
thus needed. Our current work aims at such
strategies; one of the ideas consists of using the
topological structure of the automata for de-
termining fitness functions for search strategies

11



as implemented, for instance, in the A* algo-
rithm. In [26], we show how a fitness function
for a specific class of test cases, namely reach-
ing states or transitions, is defined by means of
a reordering of the order in which transitions
are chosen.

A yet unanswered question is that of ap-
propriate input languages for test case speci-
fications. Constraint languages (e.g., CHR) as
an input language certainly are not always the
best choice. Graphical input languages, such
as sequence diagrams or automata, are prob-
ably better suited for a certain class of test
cases. However, constraint languages like CHR
seem to be a good choice as back end of such
interfaces.

By now, the instantiation of remaining con-
straints is done on the grounds of simple
heuristics or random instantiations. The ques-
tion of how the created sequences relate to the
model to be tested lies at the heart of our the-
oretical investigations. This is particularly in-
teresting for impossible traces that occur, for
instance, in robustness tests or in the applica-
tion of test cases that have been computed for
single components, to a composed component.

4.4 Application

We generated several test cases for this ex-
ample. The objective was to derive test se-
quences for several coverage criteria (states,
transitions) as well as for functional purposes.
We restrict ourselves to giving numbers for
the (smaller) version of the smart card where
the authentication protocol is implemented by
data states (local variables) rather than by
control states. Memory requirements for the
generation of all test cases was smaller than
10 MB; we omit the details. All measurements
have been performed on a SUN UltraSPARC,
1GB of memory, 400MHz.

One of the test purposes was to achieve
state coverage. Our system computed the cor-

responding test cases in < .01 seconds, for
a given maximum length ranging from 10 to
100. The constraint specifying this test case
is a macro cover states that (automatically)
rewrites to a set of membership constraints on
the history of states that are being visited dur-
ing execution.

For the sake of random testing, we made the
system compute a test sequence of length 1000
(which does make sense with the above men-
tioned interleaving of transitions). The first
sequence took 11.3 seconds to compute; subse-
quent ones could be obtained immediately.

Finally, Fig. 1 shows some experimental data
for functional tests that required the counters
to reach zero. For counters 1 and 2, the sys-

cnt # from-to max steps time [s]

2 3-0 11 11
3 14-12 15 59
3 14-0* 10 .66
4 14-12 15 172
4 14-0* 43 .46
6 15-14 8 118
6 15-0* 20 .16

Table 1: Required time

tem could quickly determine the required test
sequences. For counters 3, 4, and 6, this was
not the case; we stopped computations after 2
hours. The reason for this behavior was eas-
ily found: the number of transitions emanat-
ing from each state is, with the strategy of in-
terleaving transitions, too large. For counters
3 and 4, for instance, it is necessary that be-
tween two decrements exactly the same (loop-
ing) transitions have to be taken. With inter-
leaving, it is not exactly a surprise we did not
find the test case.

In a first step, we thus made the system
decrement the respective counter by 1 (or even
2), a task the system could handle. Since

12



we knew that in order to compute a trace
where the counter reaches zero, it is sufficient
to remain in the same state (because of the
above mentioned looping transitions), we sim-
ply specified the respective test case as follows:
First, make the system decrement the respec-
tive counter by one, and then, remain in the
same state until the counter reaches zero. We
thus “sliced” the model by ad-hoc restricting
ourselves to one particular state (with all loop-
ing transitions enabled). In this way, it was
again simple to finally compute the test se-
quences; the lines in the table with a ∗ indi-
cate that we helped the system in the described
manner.

It is noteworthy that with the other selec-
tion strategy of choosing transitions by means
of given probabilities, we were able to find all
test cases without “helping” the system (in rea-
sonable times, below five minutes). In a way,
however, this is a workaround: If the loop tran-
sitions in questions are given exorbitantly high
probabilities because we know what the problem
is, what we actually do is not different from
forbidding certain states or transitions. This
shows, however, that with knowledge of the
system, it is possible to even compute “diffi-
cult” systems, and, again, we consider the pos-
sibility of interaction as the key factor in scala-
bility of our approach as well as in its graceful
degradation [27]. In [26], we show the fully
(and almost instantaneous) automatic deter-
mination of the test cases in Tab. 1 with a com-
bination of best-first and tabu search where, as
mentioned above, the fitness function is defined
by means of shortest paths in the state machine
and is implicitly implemented by a transition
reordering. Tabu search is implemented by dif-
ferent strategies for storing sets of already vis-
ited states.

It might be interesting to note that in the
case of counter 6, we were able to find the cor-
responding test case without hints with one of
the model checkers connected to AutoFocus,

SMV (i.e., a trace t with t |= ♦Card.K6C =
0). For a discussion of the relationship of
(bounded) model checking and testing, we re-
fer to [27, 26]; consider also the remarks in
the paragraph on related work in the first sec-
tion. For the model checking approach we are
quite close to the complexity limit (state ex-
plosion problem). The application (modeler’s)
model has 38 (38) state-bits with 54 (72) tran-
sitions. Model checking with SMV required 30
(20) seconds, 112464 (73145) BDD nodes and
3 (2.5) MB storage. Bounded model check-
ing [32] with SATO fails to find these exam-
ples. Our approach with best-first search (see
above, [26]) succeeds in finding the test case in
less than 0.01 seconds.

5 Conclusion

We have presented some results of a feasibility
study that aimed at assessing the practicabil-
ity of a test case generator on the grounds of
Constraint Logic Programming. The results
show that the test case generator in combina-
tion with a suitable modeling tool like Auto-

Focus allows to compute relevant test cases
for industrial applications. This alleviates the
tedious task of test developers. In fact, the au-
thors’ institutions agreed to continue their co-
operation. In the remainder we briefly assess
both the modeling capabilities of AutoFocus

and the test generator.

Modeling. Specification formalisms, GUI,
and tool support of AutoFocus were per-
ceived to be easier to grasp and more compre-
hensive than other approaches used in previous
studies, e.g., product nets. The possibility to
quickly alter a model and to be able to imme-
diately (i.e., after compilation) simulate it was
also considered to be very helpful. The pos-
sibility to “replay” or simulate computed test
cases interactively is most important for indus-

13



trial testing. In addition, the integration of the
modeling and the testing tools was identified to
be crucial.

Test case generation. In addition to actu-
ally generating complete test sequences (from
specifications such as “transition tour”), it is
important to verify that a given test sequence
satisfies the intended test purpose (formalized
by a test case specification). The approach pre-
sented in this paper obviously facilitates this
task - computed test sequences do what they
ought to by construction, i.e., conform to their
test case specification.

The ability to formulate arbitrary test case
specifications by means of Constraint Handling
Rules is considered to be one of the strengths of
this approach. However, this requires expert’s
knowledge, and the tradeoff between the tool’s
computation power and interaction is acknowl-
edged. Nonetheless, formulating test case spec-
ifications by means of CHRs is considered to be
rather acceptable.

In terms of current research, we are fo-
cusing on the definition of fitness functions
for A*/best first search strategies for differ-
ent classes of test cases. This also includes
reckoning procedures for values of the maxi-
mum depth of the search tree. Storing states
by means of constraints directly lends itself to
abstractions by considering convex hulls of sets
of states rather than the exact sets.

Finally, the quantitative results in this paper
clearly lack comparative numbers. This is in
part due to the fact that the example is not
a publicly available academic example (which
does not, of course, mean that the system could
not be re-modeled in Lustre, and that existing
test tools such as Lutess [11] or Gatel [23] could
not be used for test case generation). Another
reason is that there are hardly any tools that

can be used for graphical specification as well
as for test case generation, a situation that,
with the enormous industrial interest in such
tools, is most likely to change.

References

[1] R. Alur, C. Courcoubetis, N. Halbwachs,
T. Henzinger, P. Ho, X. Nicollin, A. Olivero,
J. Sifakis, and S. Yovine. The algorithmic
analysis of hybrid systems. Theoretical Com-
puter Science, 138(1):3–34, February 1995.

[2] K. Beck. Extreme Programming Explained:
Embrace Change. Addison Wesley, 1999.

[3] M. Boger, T. Baier, F. Wienberg, and
W. Lamersdorf. Extreme modeling. In Proc.
Extreme Programming and Flexible Processes
in SW Engineering (XP’00), 2000.

[4] E. Brinksma. A theory for the derivation of
tests. In Proc. 8th Intl. Conf. on Protocol
Specification, Testing, and Verification, pages
63–74, 1988.

[5] F. Brooks. No Silver Bullet. In Proc. 10th
IFIP World Computing Conference, pages
1069–1076, 1986.

[6] T. Bultan. Automated symbolic analysis of
reactive systems. PhD thesis, University of
Maryland, 1998.

[7] A. Ciarlini and T. Frühwirth. Using Con-
straint Logic Programming for Software Val-
idation. In 5th workshop on the German-
Brazilian Bilateral Programme for Scientific
and Technological Cooperation, Königswinter,
Germany, March 1999.

[8] B. Cui, Y. Dong, X. Du, K. Narayan Kumar,
C. Ramakrishnan, I. Ramakrishnan, A. Roy-
choudhury, S. Smolka, and D. Warren. Logic
programming and model checking. In Proc.
PLILP/ALP, Springer LNCS 1490, pages 1–
20, 1998.

[9] G. Delzanno and A. Podelski. Model Check-
ing in CLP. In Proc. Tools and Algorithms
for Construction and Analysis of Systems
(TACAS’99), pages 223–239, 1999.

[10] R. DeMillo and A. Offutt. Constraint-
Based Automatic Test Data Generation.
IEEE Transactions on Software Engineering,
17(9):900–910, 1991.

14



[11] L. du Bousquet and N. Zuanon. An overview
of lutess, a specification-based tool for test-
ing synchronous software. In Proc. 14th IEEE
Intl. Conf. on Automated SW Engineering,
October 1999.

[12] L. Fribourg. Constraint logic programming
applied to model checking. In Proc. 9th Int.
Workshop on Logic-based Program Synthe-
sis and Transformation (LOPSTR’99), LNCS
1817, Venice, 1999. Springer Verlag.

[13] L. Fribourg and M. Veloso-Peixoto. Au-
tomates Concurrents à Contraintes. Tech-
nique et Science Informatiques, 13(6):837–
866, 1994.

[14] T. Frühwirth. Constraint Handling Rules. In
Constraint Programming: Basics and Trends
(LNCS 910), pages 90–107. Springer Verlag,
1995.

[15] T. Frühwirth. Theory and practice of con-
straint handling rules. J. Logic Programming,
37(1-3):95–138, October 1998.

[16] M. Gaudel. Testing can be formal, too.
In Proc. Intl. Conf. on Theory and Prac-
tice of Software Development (TAPSOFT’95),
LNCS 915, pages 82–96, Aarhus, Denmark,
May 1995.

[17] G. Gupta and E. Pontelli. A Constraint-based
Approach to Specification and Verification of
Real-time Systems. In Proc. IEEE Real-time
Symposium, pages 230–239, San Francisco,
December 1997.

[18] F. Huber, B. Schätz, and G. Einert. Con-
sistent Graphical Specification of Distributed
Systems. In Industrial Applications and
Strengthened Foundations of Formal Meth-
ods (FME’97), LNCS 1313, pages 122–141.
Springer Verlag, 1997.

[19] International Organization for Standardiza-
tion. International Standard ISO/IEC 7816:
Integrated circuit(s) cards with contacts,
1995.

[20] P. Kruchten. The Rational Unified Process:
An Introduction. Addison Wesley, 2nd edition,
2000.

[21] H. Lötzbeyer and A. Pretschner. AutoFo-
cus on Constraint Logic Programming. In
Proc. (Constraint) Logic Programming and
Software Engineering (LPSE’2000), London,
July 2000.

[22] H. Lötzbeyer and A. Pretschner. Testing
Concurrent Reactive Systems with Constraint
Logic Programming. In Proc. 2nd workshop
on Rule-Based Constraint Reasoning and Pro-
gramming, Singapore, September 2000.

[23] B. Marre and A. Arnould. Test Sequence
Generation from Lustre Descriptions: GA-
TEL. In Proc. 15th IEEE Intl. Conf on
Automated Software Engineering (ASE’00),
Grenoble, 2000.

[24] C. Meudec. ATGen: Automatic Test Data
Generation using Constraint Logic Program-
ming and Symbolic Execution. In Proc. 1st
Intl. workshop on Automated Program Analy-
sis, Testing, and Verification, Limerick, 2000.

[25] O. Müller and T. Stauner. Modelling and
verification using Linear Hybrid Automata.
Mathematical Computer Modeling of Dynam-
ical Systems, 6(1), March 2000.

[26] A. Pretschner. Classical search strategies for
test case generation with Constraint Logic
Programming, 2001. Submitted to FATES’01.

[27] A. Pretschner and H. Lötzbeyer. Model Based
Testing with Constraint Logic Programming:
First Results and Challenges, 2001. Submit-
ted to 2nd ICSE Intl. Workshop on Auto-
mated Program Analysis, Testing, and Veri-
fication (WAPATV’01).

[28] A. Pretschner, H. Lötzbeyer, and J. Philipps.
Model Based Testing in Evolutionary Soft-
ware Development. In Proc. 11th IEEE
Intl. Workshop on Rapid System Prototyping
(RSP’01), Monterey, June 2001. To appear.

[29] S. Prowell, C. Trammell, R. Linger, and
J. Poore. Cleanroom Software Engineering.
Addison Wesley, 1999.

[30] V. Rusu, L. du Bousquet, and T. Jéron. An
Approach to Symbolic Test Generation. In
Proc. Integrated Formal Methods, 2000.

[31] J. Tretmans. Test generation with inputs,
outputs and repetitive quiescence. Software–
Concepts and Tools, 17(3):103–120, 1996.

[32] G. Wimmel, H. Lötzbeyer, A. Pretschner, and
O. Slotosch. Specification Based Test Se-
quence Generation with Propositional Logic.
J. Software Testing, Validation, and Reliabil-
ity, 10(4):229–248, 2000.

15


