
Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting.
Both can be found at the ENTCS Macro Home Page.

Extracting a formally verified, fully executable
compiler from a proof assistant

Stefan Berghofer 1 Martin Strecker 2,3

Technische Universität München, Fakultät für Informatik, D-85748 Garching

Abstract

Compilers that have been formally verified in theorem provers are often not directly
usable because the formalization language is not a general-purpose programming
language or the formalization contains non-executable constructs. This paper takes
a comprehensive, even though simplified model of Java, formalized in the Isabelle
proof assistant, as starting point and shows how core functions in the translation
process (type checking and compilation) are defined and proved correct. From
these, Isabelle’s program extraction facility generates ML code that can be directly
interfaced with other, possibly “unsafe” code.

Key words: Java, JVM, Compiler, Theorem Proving, Code
Extraction

1 Introduction

Due to the growing performance of proof assistants, it is becoming possible
to model increasingly complex programming languages, defining compilers for
them and rigorously proving them correct. In many cases, though, the result-
ing development cannot directly be put to work, for the following reasons:

• Functions are defined in a language tailored for the specific proof assistant,
which is usually not a general-purpose programming language. In order to
be able, for example, to translate programs with the compiler implemen-
tation that has been proved correct, the compiler has to be reimplemented
manually in a programming language, which is tedious and error-prone.

• Definitions are made with the purpose of facilitating proofs and are there-
fore often given in relational (instead of functional) form or contain non-
executable constructs or highly inefficient functions.

1 Email: Stefan.Berghofer@in.tum.de
2 Email: Martin.Strecker@in.tum.de
3 This research is funded by the EU project VerifiCard

c©2002 Published by Elsevier Science B. V.

Berghofer and Strecker

These issues are addressed by a code extraction facility which has recently
been added to the proof assistant Isabelle:

• Function definitions in Isabelle can be extracted to the ML programming
language. The mechanism is sufficiently general to deal with inductively
defined relations as well, which are evaluated in a Prolog-style manner.

• The extractor permits to replace non-constructive or inefficient functions by
provably equivalent executable ones.

In this paper, we illustrate the procedure for the translation process from a
subset of Java source language to Java bytecode (see Section 2). We show how
core functions can be derived from a comprehensive, even though simplified,
formalization of Java, presented in Section 3.2. In particular, we look at

• a type checking and -inference function for which a type soundness result
can be shown (Section 3.3)

• a compilation function which provably preserves semantics and which in
addition can be shown to produce type correct bytecode (Section 3.4).

We will then discuss the general principles of program extraction and de-
scribe some of the generated functions (Section 4). The work presented here
is still in progress: Even though the approach has turned out to be viable in
general, both theoretic and practical questions need to be resolved; these are
discussed throughout the text and summarized in Section 5.

Due to space limitations, we can only sketch our formalization and the
resulting compiler. The full Isabelle development is available from the web
page http://isabelle.in.tum.de/verificard/.

2 Processing Steps

The translation from Java source language to Java bytecode proceeds in several
stages, as depicted in Figure 1, and uses both verified and unverified functions.
Here, a function is called verified if it has been defined in Isabelle and certain
correctnesss properties have been shown to hold.

.j.java assemble

parse print

compileannotatetypecheck

*.class

Fig. 1. Processing steps during compilation

The single steps are as follows:

2

Berghofer and Strecker

(i) A Java source file is parsed, using a parser generated from a downsized
Java grammar by means of a parser generator that is contained in the
Standard ML of New Jersey toolkit [SML].

(ii) Parsing yields an internal format, called a pre-program (we similarly talk
of pre-classes and pre-terms – see the description in Section 3.2). This pre-
program is then checked for structural well-formedness and well-typing
of pre-terms (Section 3.3).

(iii) If it passes these tests, the pre-program can be transformed to a genuine
program, which contains some additional annotations that are further
used during compilation, but also facilitates description of typing rules
and the operational semantics.

(iv) The program is then compiled into bytecode, which is still a symbolic
format and not binary code.

(v) For obtaining binary class files, we first print the symbolic bytcode and
then convert it using the Jasmin assembler [Mey].

The verified functions, shown in the shaded area of Figure 1, are ML
functions that have been extracted from Isabelle definitions. The mechanisms
underlying program extraction will be further explained in Section 4. Note
that the extraction facility itself has not been proved “correct”, so even the
verified functions cannot be claimed to be error-free with ultimate certainty.
This problem and possible solutions will be expounded in Section 5.

3 Isabelle Formalization

In this section, we give an overview of Isabelle and describe the existing for-
malizations of Java in Isabelle: the source language, µJava, and the Java
virtual machine language, µJVM. This reduced version of Java [NOP00] ac-
commodates essential aspects of Java, like classes, subtyping, object creation,
inheritance, dynamic binding and exceptions, but abstracts away from most
arithmetic data types, interfaces, arrays and multi-threading. It is a good
approximation of the JavaCard dialect of Java, targeted at smart cards.

3.1 An Isabelle Primer

Let us first introduce a few elementary concepts of Isabelle that will be used
in the following.

Isabelle is a generic framework that permits to encode different object
logics. In this paper, we will only be concerned with Isabelle/HOL [NPW02],
which comprises a higher-order logic and facilities for defining data types as
well as primitive and terminating general recursive functions.

Isabelle’s syntax is reminiscent of ML, so we will only mention a few pe-
culiarities: Consing an element x to a list xs is written as x#xs. Infix @ is the
append operator, xs ! n selects the n-th element from list xs.

3

Berghofer and Strecker

We have the usual type constructors T1 × T2 for product and T1 ⇒ T2 for
function space. The long arrow =⇒ is Isabelle’s meta-implication, in the fol-
lowing mostly used in conjunction with rules of the form [[P1; . . .; Pn]] =⇒ C

to express that C follows from the premises P1 . . . Pn. Apart from that, there
is the implication −→ of the HOL object logic, along with the standard con-
nectives and quantifiers.

The polymorphic option type

datatype ’a option = None | Some ’a

is frequently used to simulate partiality in a logic of total functions: Here,
None stands for an undefined value, Some x for a defined value x.

3.2 Java Language Definitions

3.2.1 Terms and Programs

The Java language is embedded deeply in Isabelle, i.e. by an explicit repre-
sentation of the Java term structure as Isabelle datatypes.

As mentioned in Section 2, the structures we obtain from parsing Java
source files are pre-programs, -terms and the like, which are then converted
to genuine programs, terms etc.. In our presentation, we concentrate on the
genuine terms and then make the correspondence to pre-terms precise.

In our term structure, we follow the traditional distinction between ex-
pressions expr and statements stmt. The latter are standard, except maybe
for Expr, which turns an arbitrary expression into a statement (this is a slight
generalization of Java). Note that currently only a few binary operations are
supported – adding more operations increases volume, but not logical com-
plexity.

datatype expr

= NewC cname -- class instance creation

| Cast cname expr -- type cast

| Lit val -- literal value, also references

| BinOp binop expr expr -- binary operation

| LAcc vname -- local (incl. parameter) access

| LAss vname expr (_::=_) -- local assign

| FAcc cname expr vname ({_}_.._) -- field access

| FAss cname expr vname expr ({_}_.._:=_) -- field ass.

| Call cname expr mname

(ty list) (expr list) ({_}_.._({_}_)) -- method call

datatype stmt

= Skip -- empty statement

| Expr expr -- expression statement

| Comp stmt stmt (_;; _)

| Cond expr stmt stmt (If (_) _ Else _)

| Loop expr stmt (While (_) _)

For some constructs, more readable mixfix syntax is defined, enclosed in

4

Berghofer and Strecker

brackets. As compared to Java input syntax, our expressions contain type
annotations, enclosed in braces. They indicate the name (cname) of the defining
class for field access, field assignment and method call, and the types (ty list)
of method parameters. Their role will become apparent when looking at the
typing rules in Section 3.3.1.

Pre-terms have the same structure as terms – in particular, we have the
same distinction between expressions pre_expr and statements pre_stmt, with
the only difference that type annotations are omitted:

datatype pre_expr = . . . | pCall pre_expr mname (pre_expr list) (_.._(_))

and similarly for field access and assignment. Thus, a method call that is
written {C}a..mn({[T1,T2]}[a1,a2]) with annotations becomes a..mn([a1,a2])

without.

It is now easy to define a function erase_tp_e :: expr ⇒ pre_expr which
erases type information from expressions. This function is the inverse of type
inference, in a sense made more precise in Section 3.3.1.

Terms are among the elementary building blocks for creating more complex
structures; in addition, we need to define types ty and name spaces, like the
one for classes (cname), variables (vname) and the like. For reasons of space,
we can only refer the reader to [NOP00] for a more detailed discussion.

On this basis, it is possible to define what is a field declaration fdecl

and a method signature sig (method name and list of parameter types). A
method declaration mdecl consists of a method signature, the method return
type and the method body, whose type is left abstract. The method body
type ’c remains a type parameter of all the structures built on top of mdecl,
in particular class (superclass name, list of fields and list of methods), class
declaration cdecl (holding in addition the class name) and program prog (list
of class declarations). Here again, we have restricted ourselves to a simplified
Java, excluding, among others, interfaces and arrays. A more comprehensive
Isabelle formalization [Sch03] shows how they can be added.

types fdecl = vname × ty

sig = mname × ty list

’c mdecl = sig × ty × ’c

’c class = cname × fdecl list × ’c mdecl list

’c cdecl = cname × ’c class

’c prog = ’c cdecl list

By instantiating the method body type appropriately, we can use these
structures in different ways: on the Java source level for terms and for pre-
terms, and then again on the bytecode level. For the source level, we take
java_mb prog, where java_mb consists of a list of parameter names, list of local
variables (i.e. names and types), and a statement block, terminated with a
single result expression (this again is a deviation from original Java).

types java_mb = vname list × (vname × ty) list × stmt × expr

Similarly, java_pre_mb replaces stmt and expr by pre_stmt and pre_expr.

5

Berghofer and Strecker

3.3 Type checking and Well-Formedness

3.3.1 Typing

For terms, we have typing judgements making precise what the type of a term
is, under a given environment. These judgements essentially serve as type
checking rules. For pre-terms, we additionally want to infer type annotations,
provided the pre-term is well-typed, so the typing judgements are combined
type checking and type inference rules.

Let’s look at typing for terms first. The typing judgements are defined as
inductive relations and come in essentially two flavours:

• E ` e :: T means that expression e has type T in environment E. We write
wtpd_expr E e for ∃ T. E ` e :: T. For expression list es and type list Ts, we
have the auxiliary notation E ` es [::] Ts with the obvious meaning.

• E ` s
√

means that statement s is well-typed in environment E.

The environment E used here is ’c env, a pair consisting of a program ’c

prog and a local environment lenv, mapping variable names to types. The
corresponding selectors are prg and localT.

The most interesting rule describes type correctness for method calls:

Call: [[E`a::Class C; E`ps[::]pTs;
max_spec (prg E) C (mn, pTs) = {((md,rT),pTs’)}]] =⇒

E`{C}a..mn({pTs’}ps)::rT

A method call expression is well-typed, provided:

• object a has type Class C,

• the parameters ps have types pTs, and

• method lookup with parameter types pTs for class C yields a single most
specific applicable method, which is defined in Class md (which may be
more general than Class C), has return type rT and parameter types pTs’

(again possibly more general than pTs).

Apart from elucidating the role of the type annotations, the rule is note-
worthy because it is defined using a non-constructive function max_spec. That
this function is not directly executable is, among others, apparent from the
fact that it yields a result of type set. We will have to say a word more about
this function in Section 3.3.2.

Meanwhile, we turn to the typing rules for pre-terms. Our typing judge-
ments are now predicates having one more argument than the corresponding
judgement for terms:

• E ` pe ; e :: T, which has to be read as: “In environment E, pre-term pe

can be turned into term e of type T”.

• E ` ps ; s
√

, with an analogous meaning for statements.

With this, the rule for method call becomes:

pCall: [[E`pa ; a ::Class C; E`pps ; ps [::]pTs;

6

Berghofer and Strecker

(max_spec_exec (prg E) C (mn, pTs)) = [((md,rT),pTs’)]]] =⇒
E`pa..mn(pps) ; {C}a..mn({pTs’}ps) :: rT

which makes it appear plausible that, in general, annotated terms e and types
T can be computed from an environment E and a pre-term pe. The mode
analysis presented in Section 4 confirms that this is indeed the case. In pass-
ing, note that we have replaced the non-executable function max_spec by an
executable variant max_spec_exec, which operates on lists instead of sets and
whose definition is constructive.

What is the correspondence between the two typing relations? Correctness
states that annotated terms inferred by the pre-term typing relation are also
well-typed for the term typing relation, and that the original pre-term can be
recovered by erasing type information:

lemma ty_pre_correct: wf_prog_struct (prg E) −→
E` pe ; e :: T −→ E` e :: T ∧ pe = erase_tp_e e

Completeness expresses that any well-typed term is the result of type in-
ference for its type erasure:

lemma ty_pre_complete: wf_prog_struct (prg E) −→
E` e :: T −→ E` (erase_tp_e e) ; e :: T

Both lemmas are proved by a rather straightforward rule induction. Both
lemmas hold under the proviso that the program component of environment
E is structurally well-formed – a condition that we will turn to now.

3.3.2 Well-Formedness conditions

For some correctness properties to hold, we have to ensure that several well-
formedness conditions are satisfied. We have already encountered the pred-
icate wf_prog_struct above. Compiler correctness requires even stronger as-
sumptions, as will be seen in Section 3.4.2. These well-formedness or well-
typing conditions are ordered in the sense that verifying some of them presup-
poses that others have already been checked. Taking care of verifying these
conditions in the correct order is usually left to the common sense of the com-
piler writer – in our case, it is enforced by preconditions in Isabelle rules and
theorems.

We now look at the most important conditions:

wf_prog_struct :: ’c prog => bool

wf_prog_struct G ==

wf_syscls G ∧ unique G ∧ (∀ c∈set G. wf_cdecl_struct G c)

wf_prog_struct expresses that a program is structurally well-formed, which
means that all system classes exist (wf_syscls), all classes in G have a unique
name and all classes of program G are well-formed (wf_cdecl_struct). The
latter implies, in particular, that the class hierarchy is acyclic.

The mentioned predicates are lengthy, but not difficult and can be con-
verted to executable functions by the Isabelle extraction facility. Note that in
general, quantification over sets, as in ∀ x∈ S. P x, is not executable, but here,

7

Berghofer and Strecker

we deal with quantification over a finite domain: set is the conversion from
lists to sets, and so ∀ x∈ set G. P x is extracted to the ML expression forall

P G.

The precondition required for compiler correctness is

wf_prog wf_mb G ==

wf_prog_struct G ∧ (∀ c∈ set G. wf_mrT G c ∧ wf_cdecl_mdecl wf_mb G c)

Apart from structural well-formedness, it requires method return types
to be well-formed and the method declarations (and in consequence also the
method body) to be well-typed. The predicate wf_mrT can, with minor effort,
be made executable. wf_cdecl_mdecl is not very interesting, it checks the
method head (signature and return types have to be valid types) and then
delegates most of the work to its parameter wf_mb :

wf_mdecl wf_mb G C == λ(sig,rT,mb). wf_mhead G sig rT ∧ wf_mb G C (sig,rT,mb)

Recall that method declarations are parametric in the type of the method
body, so the method declaration is parameterized by a predicate wf_mb of type
’c prog ⇒ cname ⇒ ’c mdecl ⇒ bool. For method bodies of type java_pre_mb,
we employ the test predicate wf_java_pre_mdecl, which we do not show in
entirety. One of its subconditions is that the body statement pblk and the
return expressions pres can be turned into a well-typed annotated term:

wf_java_pre_mdecl :: ’c prog ⇒ cname ⇒ java_pre_mb mdecl ⇒ bool

wf_java_pre_mdecl G C == λ((mn,pTs),rT,(pns,lvars,pblk,pres)).
. . . ∧
(let E = (G,map_of lvars(pns[7→]pTs)(This 7→Class C)) in

(∃ blk. E` pblk ; blk
√
) ∧ (∃ res T. E` pres ; res::T ∧ G`T�rT))

The existential quantifiers look intimidating. However, one of the functions
generated by Isabelle’s code extraction enumerates the set {blk. E` pblk ;

blk}, and so there is an effective means of checking whether this set is empty or
not. A similar remark holds for the second conjunct, even though the matter
is more complex there. Converting the above definition of wf_java_pre_mdecl

to an executable one still requires some human intervention, in the sense
that auxiliary predicates have to be defined for the existentially quantified
conditions. We are currently in the process of extending Isabelle to handle
these cases automatically.

After having defined diverse well-formedness predicates, we are in a bet-
ter position to understand the problem caused by function max_spec of Sec-
tion 3.2.1, and we can envisage a solution. The function is defined as

max_spec G C sig ==

{m. m ∈appl_methds G C sig ∧
(∀ m’∈appl_methds G C sig. more_spec G m’ m --> m’ = m)}

One source of trouble is the set comprehension based on sets appl_methds G

C sig which are not obviously finite (even though in fact they are). The great-
est problem is the definition of appl_methds, which yields the set of applicable
methods for class C and signature sig in program G :

8

Berghofer and Strecker

appl_methds G C == λ(mn, pTs).

{((Class md,rT),pTs’) |md rT mb pTs’.

method (G,C) (mn, pTs’) = Some (md,rT,mb) ∧
list_all2 (λT T’. G`T�T’) pTs pTs’}

The function list_all2 tests that corresponding elements of two lists satisfy
a binary predicate, and the set comprehension expression stands for {z. ∃
md rT mb pTs’. z = ((Class md,rT),pTs’) ∧ This particular definition has
turned out to be useful for verification purposes, but it is a catastrophe in
terms of executability: We want to collect unknown values, such as pTs’,
which are in a non-functional relation list_all2 (λT T’. G`T�T’) with given
values, such as pTs. In principle, we could enumerate all values pTs’, since
their number is finite, but this hopelessly inefficient. Instead, we have devised
another solution: we define an executable version

appl_methds_exec :: ’c prog ⇒ cname ⇒ sig ⇒ ((ty × ty) × ty list) list

appl_methds_exec G C == λ(mn, pTs).

map (λ ((mn’, pTs’), md, rT, mb). ((Class md,rT),pTs’))

[((mn’, pTs’), md, rT, mb) ∈ method_list (G, C).

mn = mn’ ∧ list_all2 (λT T’. G`T�T’) pTs pTs’]

and base our definition of max_spec on it. Are the two functions equivalent?
Yes, under some preconditions:

lemma appl_methds_appl_methds_exec: [[wf_prog_struct G; is_class G C]] =⇒
appl_methds G C (mn, pTs) = set (appl_methds_exec G C (mn, pTs))

The proofs of lemmas ty_pre_correct and ty_pre_complete only succeed
because we know that these preconditions are satisfied in the context of these
proofs.

We have sketched at some length the type checking portion of Figure 1.
With the terminology established so far, we naturally obtain functions for the
term annotation stage. For lack of space, we do not spell them out here.

3.3.3 Pains and Rewards

Why did we go through the pains of formalizing the above-mentioned features
of Java, sometimes even in a non-executable fashion? Our original aim is, in
the first place, to analyse properties of the Java language with a proof assis-
tant. Therefore, the formalizations strive to make proofs as easy as possible,
which is sometimes in conflict with efficient executability.

The reward of our effort is, among others, a type safety result, which
expresses that any statically well-typed Java programs does not produce type
violations at runtime. In order to obtain this result, other properties have to
be formalized (see [Ohe01] for a detailed exposition), among them

• an operational semantics, describing how the program state changes when
evaluating expressions and statements,

• a conformance relation, providing an invariant between dynamic and static

9

Berghofer and Strecker

types.

The operational semantics, formalized as an inductive relation, could be
subjected to the same treatment as the typing relations above, so as to yield
an executable interpreter for the Java source language. Of course, we can do
better by compiling Java to bytecode and executing it, which we will turn to
now.

3.4 Compiler

3.4.1 Compiler Definition

The compiler takes expressions of the source language, as defined in Sec-
tion 3.2.1, and produces bytecode, where bytecode is a list of instructions.

The instruction set is a reduced version of real Java bytecode, in that many
arithmetic operations are not present, and it is simplified, in the sense that
the Load and Store operations are polymorphic, thus obviating the distinction
made in Java between aload, iload and the like. As an aside, let us mention
that we do not really incur a loss of information here, as we compute bytecode
types along with bytecode instructions [Str02b], and thus can retrieve the type
of each instruction at any moment.

Compilation is now defined with the aid of a few primitive recursive func-
tions. Expressions resp. statements are compiled by compExpr and compStmt.
Apart from the expression resp. statement to be compiled, these functions
take a java_mb as argument. It is required to compute a mapping from vari-
able names to indices in the register array, which is accomplished by function
index.

Note that our compiler makes no attempt at optimizing generated code.
For example, in order to maintain the invariant used in the compiler correct-
ness statement, the bytecode for an assignment expression of the form vn::=e

contains the instruction Dup which duplicates the value on top of the operand
stack. When used as an assignment statement of the form Expr (vn::=e), this
and the following Pop instruction are superfluous.

In the following, we give a few representative clauses defining the transla-
tion. For the complete set, see [Str02a] or consult the Isabelle sources:

compExpr :: java_mb ⇒ expr ⇒ instr list

compExprs :: java_mb ⇒ expr list ⇒ instr list

compStmt :: java_mb ⇒ stmt ⇒ instr list

compExpr jmb (NewC c) = [New c]

compExpr jmb (Cast c e) = compExpr jmb e @ [Checkcast c]

compExpr jmb (Lit val) = [LitPush val]

compExpr jmb (vn::=e) =

compExpr jmb e @ [Dup, Store (index jmb vn)]

compExpr jmb (Call cn e1 mn X ps) =

compExpr jmb e1 @ compExprs jmb ps @ [Invoke cn mn X]

10

Berghofer and Strecker

compStmt jmb (Expr e) = (compExpr jmb e) @ [Pop]

compStmt jmb (c1;; c2) = (compStmt jmb c1) @ (compStmt jmb c2)

compStmt jmb (While(e) c) =

(let cnstf = LitPush (Bool False);

cnd = compExpr jmb e;

bdy = compStmt jmb c;

test = Ifcmpeq (int(length bdy +2));

loop = Goto (-(int((length bdy) + (length cnd) +2)))

in [cnstf] @ cnd @ [test] @ bdy @ [loop])

Obviously, these definitions can directly be transformed into an ML-style
functional program.

Compilation is then gradually extended to the more complex structures
presented in Section 3.2.1, such as methods, classes and entire programs. Sine
Java source and bytecode are sufficiently similar, hardly any data refinement
is necessary. For lack of space, we skip their definition.

3.4.2 Compiler Correctness

Let us briefly review the compiler correctness statement and its proof. The
presentation has to remain sketchy – we refer the reader to [Str02a] for a more
faithful description.

Roughly speaking, the compiler correctness statement takes the form of
the traditional “commuting diagram” argument: Suppose execution of a state-
ment c transforms a Java state s into a state s′. Then, for any Java Virtual
Machine (JVM) state t corresponding to s, executing the bytecode resulting
from a translation of c yields a state t′ corresponding to s′.

States on the Java source level essentially are a tripel: exception com-
ponent (indicating the presence of an exception), heap hp and local variable
assignment loc. The structure of states on the JVM level is more complex.
However, for the purpose of compiler verification, we can focus on the heap,
a local operand stack os and local variable assignment.

compExpr mb ex
{hp, os, loc} {hp’, val # os, loc’}

(None, hp, loc) val −> (None, hp’, loc’)
ex

The diagram can now be interpreted as follows: Suppose that evaluation of
expression ex in Java state (None, hp, loc) yields result val and state (None,

hp’, loc’) (we assume that no exceptions arise during evaluation of the ex-
pression). When running the bytecode compExpr mb ex generated for ex in a
JVM state having the same heap hp, an (arbitrary) operand stack os and local
variables as in loc, we obtain heap hp’, the operand stack with val on top of
it and local variables as in loc’.

This result only holds under some preconditions, where the well-formedness

11

Berghofer and Strecker

constraints of Section 3.3.2 come into play again. Among others,

• the source program has to be well-formed: wf_prog wf_java_mdecl G

• expression ex is well-typed (for a specific environment E): wtpd_expr E ex

These requirements are not very restrictive, but they exist, and it is good
to know that the preconditions of a correctness statement can be effectively
verified, as outlined above and further expanded in the following.

4 From specifications to executable code

We now focus on the question of how to translate the Isabelle/HOL speci-
fications presented in the previous sections into an executable program. As
a target language, we chose the functional programming language ML. The
main ingredients of Isabelle/HOL are datatypes, recursive functions and in-
ductive definitions. Whereas the ML translation of the first two is relatively
straightforward, translating inductive definitions is more challenging. There-
fore, the rest of this section will mainly be devoted to this topic. The key
idea behind the translation of inductive definitions is to interpret them as a
logic program in the style of Prolog. A logic program is a set of so-called Horn
Clauses, which have the form

q1(u1
1, . . . , u

1
n1

) =⇒ . . . =⇒ qm(um1 , . . . , u
m
nm) =⇒ p(t1, . . . , tk)

Logic programs usually involve nondeterminism. This means that a query
may have multiple or even infinitely many solutions, and that backtracking
may be required while searching for a solution. Moreover, a predicate may be
used in different ways in the sense that an argument of a predicate may either
be treated as input or output. A mapping that marks each position as input
or output is called a mode. In general, a predicate may have more than one
possible mode. To be able to execute a predicate p as a functional program,
we have to find a suitable execution order for the predicates q1, . . . , qn in the
body of each clause of p, which can be viewed as a kind of dataflow analysis:
When execution starts, the only variables whose value is known are those
occurring in input arguments in the clause head. Executing a predicate qi
in the body of p requires the values of all variables occurring in its input
arguments to be known. After the execution of a predicate qi, the values of
all variables occurring in its output arguments are known and may then be
used as input for subsequent executions of the remaining predicates. Finally,
when all predicates in the body of the clause have been executed, all variables
occurring in the clause head must be known. A mode for which we can find
such an execution order is called legal. In the sequel, we will denote a mode
by the set of indexes of all of its input arguments.

The ML translation of a predicate will be a function that takes as argu-
ments the input arguments of the predicate and returns a lazy list of possible
solutions. In place of unification, the translated logic program will use ML’s

12

Berghofer and Strecker

pattern matching mechanism. Rather than formally defining the notions of
legal modes and execution orders, we will illustrate them by means of an ex-
ample. The interested reader may find the formal definition of these concepts
in [BN00].

As an example for the translation, consider the predicate E` pe ; e :: T

of Section 3.3. Some of its clauses are

pNewC: is_class (prg E) C =⇒
E` (pNewC C) ; (NewC C) :: (Class C)

pCast: [[E`pe ; e::Class C; is_class (prg E) D; prg E`C�? D]] =⇒
E`pCast D pe ; Cast D e ::Class D

pLAcc: [[localT E v = Some T; is_type (prg E) T]] =⇒
E`pLAcc v ; LAcc v ::T

pBinOpAdd: [[E`pe1 ; e1::T; E`pe2 ; e2::T]] =⇒
E`pBinOp Eq pe1 pe2 ; BinOp Eq e1 e2 ::PrimT Boolean

Apart from other inductive predicates such as prg E`C�? D, the above clauses
also refer to other functions such as is_class, localT and is_type. In contrast
to constructor functions, other functions cannot easily be inverted in general.
Therefore, their occurrence is restricted to output positions in the clause head
and input positions in the clause body. We will now show that the mode {1,

2} is legal, i.e. we have to demonstrate that for each E and pe, we can compute
e and T such that E` pe ; e :: T.

• Consider clause pNewC. Assume E and pNewC C are known. We can then find
out the value of C (since pNewC is a constructor) and hence know the value
of NewC C and Class C. Therefore, the mode {1, 2} is legal for this clause.

• Consider clause pBinOpAdd. Assume E and pBinOp Eq pe1 pe2 are known. We
therefore know the value of pe1 and pe2. For the recursive call, we may
already assume that the mode {1, 2} is legal. Therefore, from E and pe1,
we can recursively compute e1 and T. By another recursive call, we can also
compute e2 from E and pe2. Since BinOp Eq e1 e2 is now known completely,
we may conlude that the mode {1,2} is also legal for this clause.

• Similar reasoning shows that the mode {1,2} is also legal for the remaining
clauses.

The ML code generated for mode {1, 2} of the above predicate is shown
in Figure 2. The function :->, which is central to the translation, is defined
as follows:

fun s :-> f = Seq.flat (Seq.map f s);

Its purpose is to compose subsequent calls of predicates, by feeding elements
of the result sequence s of a predicate into the subsequent predicate f. The
initial sequence Seq.single inp on the left of the predicate call chain con-

13

Berghofer and Strecker

fun ty_pre_expr__1_2 inp =
Seq.single inp :->
(fn (E, pNewC C) =>
?? (is_class (fst E) C) :->
(fn () => Seq.single (NewC C, RefT (ClassT C)) | _ => Seq.empty)

| _ => Seq.empty) ++
Seq.single inp :->
(fn (E, pCast (D, pe)) =>
ty_pre_expr__1_2 (E, pe) :->
(fn (e, RefT (ClassT C)) =>
?? (is_class (fst E) D) :->
(fn () =>
cast__1_2 (fst E) (C, D) :->
(fn () => Seq.single (Cast (D, e), RefT (ClassT D))
| _ => Seq.empty)

| _ => Seq.empty)
| _ => Seq.empty)

| _ => Seq.empty) ++
Seq.single inp :->
(fn (E, pLAcc v) =>

op__61__1 (snd E v) :->
(fn (Some T) =>
?? (is_type (fst E) T) :->
(fn () => Seq.single (LAcc v, T) | _ => Seq.empty)

| _ => Seq.empty)
| _ => Seq.empty) ++

Seq.single inp :->
(fn (E, pBinOp (Eq, pe1, pe2)) =>

ty_pre_expr__1_2 (E, pe1) :->
(fn (e1, T) =>
ty_pre_expr__1_2_4 (E, pe2, T) :->
(fn (e2) => Seq.single (BinOp (Eq, e1, e2), PrimT Boolean)
| _ => Seq.empty)

| _ => Seq.empty)
| _ => Seq.empty) ++

...

Fig. 2. Code generated for inductive predicate

sists of just one element corresponding to the input of the predicate which is
currently translated. Similarly, the last function in the chain returns a single-
ton sequence, which just contains the final result. Each clause may generate a
sequence of possible solutions, which are concatenated using the ++ operator.
It should be noted that we do not only allow inductive predicates to occur in
the body of a clause, but also arbitrary side conditions, which are just boolean
expressions. To make these fit into the our framework, we convert them into
sequences using the function

fun ?? b = if b then Seq.single () else Seq.empty;

which returns the empty sequence if the condition evaluates to False, or the
singleton sequence consisting of just a dummy element if the condition is True.

14

Berghofer and Strecker

Also note that the equality constraint on the type T of the arguments of
addition is taken care of by invoking the function generated for mode {1, 2, 4}.

5 Conclusions

This paper shows how important components of a compiler, such as type
checking, type inference and code generation, can be formally verified in a
proof assistant and then be made executable in a general-purpose program-
ming language such as ML. The contribution of this paper is not primarily
technical, as most of the methods have been described elsewhere (see citations
throughout the text). Rather, we want to argue that a seamless formal devel-
opment process is possible, without the ruptures (and, consequently, errors)
introduced by verifying a compiler in one environment (such as a theorem
prover) and then manually porting it to another environment or programming
language where it can be executed.

The main mechanisms are:

• Explicit definition of executable functions (such as the compilation function
compExpr in Section 3.4.1).

• Substitution of non-executable or inefficient functions by provably equiva-
lent executable ones, as for function appl methds in Section 3.3.2.

• Generation of executable functions out of inductive definitions, as for the
typing relation of pre-terms in Section 4.

Similar mechanisms for code extraction are already provided in Coq [Log02]
and could easily be integrated into other theorem provers.

There is a long history of formal language definition and compiler veri-
fication. To cite but a few: Vlisp [GMR+92] was a major effort at formal
compiler verification of Scheme down to machine code; however, it did not use
any machine assistance for carrying out proofs.

The verification of a compiler from a Pascal dialect to a micro-controller
assembler is described in [SCSW97,Ste98]. It uses Z as specification language,
some proofs are performed in PVS, and the formalization has been ported to
Prolog to make it executable. This work is impressive in that it is one of the
few real-life case studies, carried out in an industrial setting. However, it also
demonstrates the difficulty of having to deal with a multitude of formalisms.

Since the language underlying the ACL2 prover is a subset of Lisp, a major
advantage of compiler verifications [You89,Goe00] carried out in this system
is direct executability. However, as the logic is quantifier-free, some properties
are awkward to express. In fact, the type systems of the languages in the cited
references are very simple. For the complex type system of Java, extraction
of a type checking function from concise typing rules is very convenient.

Using Abstract State Machines, a model of the Java language has been
developed which is much more comprehensive than ours, together with a com-
piler [SSB01]. The semantics and compiler are executable; however, proofs

15

Berghofer and Strecker

have not been mechanically checked.

In our own approach, there are still several loose ends: From a fundamen-
talist perspective, it is reasonable to question that our development is fully
formal, since it relies on the Isabelle code extraction facility which itself is a
complex piece of code and thus subject to errors. Therefore, it could be worth
while to formalize the extraction process.

On the more practical side, our coverage of the Java language is far from
complete. Many operations are missing both on the source and the bytecode
level, class initialization is still treated in an ad-hoc manner. Besides, it is not
quite clear how to integrate libraries, such as for input/output, and how to
generate useful error messages for incorrect programs.

A major issue is the verification of the as yet unverified steps in Figure 1:
parser, assembler and printer. A proof checking approach [GHZG99,DV99]
could be promising here.

Acknowledgement

A great part of the formalizations presented here has been developed by Ger-
win Klein and David von Oheimb. The parser has been implemented by Tao
Yu. We are grateful to Tobias Nipkow, Norbert Schirmer and Martin Wild-
moser for discussions about this work.

References

[BN00] Stefan Berghofer and Tobias Nipkow. Executing higher order logic. In
Proc. TYPES Working Group Annual Meeting 2000, LNCS, 2000.

[DV99] Axel Dold and Vincent Vialard. Formal verification of a compiler back-
end generic checker program. In Proc. of the Andrei Ershov Third
International Conference Perspectives of System Informatics (PSI’99),
Lecture Notes in Computer Science. Springer-Verlag, 1999.

[GHZG99] T. Gaul, A. Heberle, W. Zimmermann, and W. Goerigk. Construction
of Verified Software Systems with Program-Checking: An Application
To Compiler Back-Ends. In Amir Pnueli and Paolo Traverso, editors,
Proceedings of RTRV ’99: Workshop on Runtime Result Verification,
Trento, Italy, 1999.

[GMR+92] J. D. Guttman, L. G. Monk, J. D. Ramsdell, W. M. Farmer, and
V. Swarup. A guide to vlisp, a verified programming language
implementation. Technical Report M92B091, The MITRE Corporation,
September 1992.

[Goe00] W. Goerigk. Proving Preservation of Partial Correctness with ACL2:
A Mechanical Compiler Source Level Correctness Proof. In Proc. of the
ACL2’2000 Workshop, Austin, Texas, U.S.A., October 2000. To appear.

16

Berghofer and Strecker

[Log02] Project Team LogiCal. The Coq Proof Assistant Reference Manual,
Version 7.3.1. INRIA Rocquencourt – CNRS - ENS Lyon, May 2002.

[Mey] Jon Meyer. Jasmin. http://mrl.nyu.edu/~meyer/jasmin/.

[NOP00] Tobias Nipkow, David von Oheimb, and Cornelia Pusch. µJava:
Embedding a programming language in a theorem prover. In F.L. Bauer
and R. Steinbrüggen, editors, Foundations of Secure Computation. Proc.
Int. Summer School Marktoberdorf 1999, pages 117–144. IOS Press,
2000.

[NPW02] Tobias Nipkow, Lawrence Paulson, and Markus Wenzel. Isabelle/HOL.
A Proof Assistant for Higher-Order Logic. LNCS 2283. Springer Verlag,
2002.

[Ohe01] David von Oheimb. Analyzing Java in Isabelle/HOL: Formalization,
Type Safety and Hoare Logic. PhD thesis, Technische Universität
München, 2001. http://www4.in.tum.de/~oheimb/diss/.

[Sch03] Norbert Schirmer. Analysing the Java package/access concepts in
Isabelle/HOL. Concurrency and Computation: Practice and Experience,
2003. To appear.

[SCSW97] David Stringer-Calvert, Susan Stepney, and Ian Wand. Using PVS to
prove a Z refinement: A case study. In FME’97: Formal Methods: Their
Industrial Application and Strengthened Foundations, Lecture Notes in
Computer Science, 1997.

[SML] SML-NJ. Standard ML of New Jersey homepage.
http://cm.bell-labs.com/cm/cs/what/smlnj/index.html.

[SSB01] R. Stärk, J. Schmid, and E. Börger. Java and the Java Virtual Machine
- Definition, Verification, Validation. Springer Verlag, 2001.

[Ste98] Susan Stepney. Incremental development of a high integrity compiler:
experience from an industrial
development. In Third IEEE High-Assurance Systems Engineering
Symposium (HASE’98), November 1998. Online version available from
http://public.logica.com/~stepneys/bib/ss/z/incdev.htm.

[Str02a] Martin Strecker. Formal verification of a Java compiler in Isabelle. In
Proc. Conference on Automated Deduction (CADE), volume 2392 of
Lecture Notes in Computer Science, pages 63–77. Springer Verlag, 2002.

[Str02b] Martin Strecker. Investigating type-certifying compilation with Isabelle.
In Proc. Conference on Logic for Programming, Artificial Intelligence,
and Reasoning (LPAR), volume 2514 of Lecture Notes in Computer
Science. Springer Verlag, 2002.

[You89] William D. Young. A mechanically verified code generator. Technical
Report 37, Computational Logic Inc., January 1989. Available from
www.cs.utexas.edu/users/boyer/ftp/cli-reports/037.pdf.

17

