
Verified Bytecode Verification and

Type-Certifying Compilation

Gerwin Klein, Martin Strecker

Technische Universität München, Fakultät für Informatik, D-85748 Garching

Abstract

This article presents a type certifying compiler for a subset of Java and proves the
type correctness of the bytecode it generates in the proof assistant Isabelle. The
proof is performed by defining a type compiler that emits a type certificate and by
showing a correspondence between bytecode and the certificate which entails well-
typing. The basis for this work is an extensive formalization of the Java bytecode
type system, which is first presented in an abstract, lattice-theoretic setting and
then instantiated to Java types.

Key words: Java, JVM, Compiler, Bytecode Verification, Theorem Proving

1 Introduction

This paper provides an in-depth analysis of type systems in compilation, by
taking the Java source language and Java bytecode as examples and showing
that the bytecode resulting from compiling a type correct source program
yields type correct bytecode.

We do not cover all language constructs of Java and neglect some subtleties,
in particular exceptions and the jump-subroutine mechanism, while otherwise
using a faithful model of Java and the Java Virtual Machine (JVM). It is an ad-
vance of this work over previous investigations of this kind that the definitions
and proofs have been done entirely within the Isabelle verification assistant,
resulting in greater conceptual clarity, as far as notation is concerned, and

Email addresses: Gerwin.Klein@in.tum.de (Gerwin Klein),
Martin.Strecker@in.tum.de (Martin Strecker).
1 This research is funded by the EU project VerifiCard

Preprint submitted to Elsevier Science 31 March 2003

a more precise statement of theorems and proofs than can be achieved with
pencil-and-paper formalizations (see Section 7 for a discussion).

Type correctness of bytecode produced by our compiler, comp, is proved by
having a type compiler, compTp, emit a type certificate and showing that this
certificate is a correct type of the code, in a sense to be made precise. This
type certificate is related to (even though not identical with) what would be
inferred by a bytecode verifier (BCV). Transmitting such a certificate along
with bytecode and then checking its correctness is an attractive alternative
to full bytecode verification, in particular for devices with restricted resources
such as smart cards. The idea of using separate type certificates is not novel
(see the concept of “lightweight bytecode verification” [RR98,KN01,Ros02]);
however, we are not aware of a Java compiler other than ours which explicitly
generates them.

Apart from this potential application, compilation of types, in analogy to com-
pilation of code, gives insight into type systems of programming languages and
how they are related. Incompatibilities discovered in the source and bytecode
type systems of Java [SS01] demonstrate the need for such a study. Even
though these inconsistencies do not arise in the language subset we exam-
ine, we hope to cover larger fragments with the same techniques as presented
below.

The work described here is part of a larger effort aiming at formalizing diverse
aspects of the Java language, such as its operational and axiomatic seman-
tics [Ohe01], its bytecode type system and bytecode verifier [Kle03] and the
correctness (in the sense of preservation of semantics) of a compiler [Str02a].

This article extends on a previous paper [Str02b] by providing an in-depth
exposition of the bytecode type system and by presenting large parts of the
formalization of the type compiler and a detailed discussion of the type preser-
vation proof. As far as we are aware, ours is the first fully formal treatment
covering these aspects of Java in one comprehensive model.

In the following, we will first summarize the most important concepts of our
Java and JVM formalization (Section 2). The bytecode type system and its
relation to bytecode verification are further elaborated in Section 3. We define
the code compiler comp in Section 4, the type compiler compTp in Section 5.
The type correctness statement for generated code and a detailed discussion of
the proof follow in Section 6. Section 7 concludes with a discussion of related
and future work.

Due to space limitations, we can only sketch our formalization. The full Isabelle
sources are available from http://isabelle.in.tum.de/verificard/.

2

2 Language Formalizations

In this section, we give an overview of Isabelle and describe the existing formal-
izations of Java in Isabelle: the source language, µJava, and the Java virtual
machine language, µJVM. This reduced version of Java [NOP00] accommo-
dates essential aspects of Java, like classes, subtyping, object creation, in-
heritance, dynamic binding and exceptions, but abstracts away from most
arithmetic data types, interfaces, arrays and multi-threading. It is a good ap-
proximation of the JavaCard dialect of Java, targeted at smart cards.

2.1 An Isabelle Primer

Isabelle is a generic framework for encoding different object logics. In this pa-
per, we will only be concerned with Isabelle/HOL [NPW02], which comprises
a higher-order logic and facilities for defining data types as well as primitive
and terminating general recursive functions.

Isabelle’s syntax is reminiscent of ML, so we will only mention a few pecu-
liarities: Consing an element x to a list xs is written as x#xs. Infix @ is the
append operator, xs ! n selects the n -th element from list xs.

We have the usual type constructors T1 × T2 for product and T1 ⇒ T2 for
function space. The long arrow =⇒ is Isabelle’s meta-implication, in the fol-
lowing mostly used in conjunction with rules of the form [[P1; . . .; Pn]] =⇒ C

to express that C follows from the premises P1 . . . Pn. Apart from that, there
is the implication −→ of the HOL object logic, along with the standard con-
nectives and quantifiers.

The polymorphic option type

datatype ’a option = None | Some ’a

is frequently used to simulate partiality in a logic of total functions: Here,
None stands for an undefined value, Some x for a defined value x. Lifted to
function types, we obtain the type of “partial” functions T1 ; T2, which just
abbreviates T1 ⇒ (T2 option).

The constructor Some has a left inverse, the function the :: ’a option ⇒ ’a ,
defined by the sole equation the (Some x) = x. This function is total in the
sense that also the None is a legal, but indefinite value. Another frequently
used term describing an indefinite value is the polymorphic arbitrary.

Ultimately, indefinite values are defined with Hilbert’s ε operator. They denote

3

a fixed, but otherwise unknown value of their respective type. 2 In particular,
they cannot be shown to be equal to any specific value of the type. Thus, we
cannot prove an equation like f arbitrary = arbitrary. Indefinite values are
therefore not “undefined” values in the sense of denotational semantics. One
consequence is, for example, that an indefinite value delivered by the source
semantics and mapped to the bytecode level is not equal to an indefinite value
delivered by the bytecode semantics. We therefore always have to ensure that
we deal with defined values – see Section 4.2.

2.2 Java Source Language

2.2.1 Terms and Programs

The Java language is embedded deeply in Isabelle, i.e. by an explicit repre-
sentation of the Java term structure as Isabelle datatypes. We make the tra-
ditional distinction between expressions expr and statements stmt. The latter
are standard, except maybe for Expr, which turns an arbitrary expression into
a statement (this is a slight generalization of Java). For some constructs, more
readable mixfix syntax is defined, enclosed in brackets.

datatype expr

= NewC cname

| Cast cname expr

| Lit val

| BinOp binop expr expr

| LAcc vname

| LAss vname expr (_::=_)

| FAcc cname expr vname

| FAss cname expr vname

| Call cname expr mname (ty list) (expr list) ({_}_.._({_}_))

datatype stmt = Skip

| Expr expr

| Comp stmt stmt (_;; _)

| Cond expr stmt stmt (If (_) _ Else _)

| Loop expr stmt (While (_) _)

The µJava expressions form a representative subset of Java: NewC creates a new
instance, given a class name cname ; Cast performs a type cast; Lit embeds
values val (see below) into expressions. µJava contains only a few binary
operations binop : test for equality and integer addition. There is access to

2 Since types in HOL are guaranteed to be non-empty, such an element always
exists.

4

local variables with LAcc, given a variable name vname ; assignment to local
variables LAss ; and similarly field access, field assignment and method call.
The type annotations contained in braces { } are not part of the original Java
syntax; they have been introduced to facilitate type checking.

The type val of values is defined by

datatype val = Unit | Null | Bool bool | Intg int | Addr loc

Unit is a (dummy) result value of void methods, Null a null reference. Bool
and Intg are injections from the predefined Isabelle/HOL types bool and int

into val, similarly Addr from an uninterpreted type loc of locations.

The µJava types ty are either primitive types or reference types. Void is the
result type of void methods; note that Boolean and Integer are not Isabelle
types, but simply constructors of prim_ty. Reference types are the null pointer
type NullT or class types. We abbreviate RefT (ClassT C) by Class C and
RefT NullT by NT.

datatype prim_ty = Void | Boolean | Integer

datatype ref_ty = NullT | ClassT cname

datatype ty = PrimT prim_ty | RefT ref_ty

On this basis, we define field declarations fdecl and a method signatures sig

(method name and list of parameter types). A method declaration mdecl con-
sists of a method signature, the method return type and the method body,
whose type is left abstract. The method body type ’c remains a type param-
eter of all the structures built on top of mdecl, in particular class (superclass
name, list of fields and list of methods), class declaration cdecl (holding in
addition the class name) and program prog (list of class declarations).

types fdecl = vname × ty

sig = mname × ty list

’c mdecl = sig × ty × ’c

’c class = cname × fdecl list × ’c mdecl list

’c cdecl = cname × ’c class

’c prog = ’c cdecl list

By instantiating the method body type appropriately, we can use these struc-
tures both on the source and on the bytecode level. For the source level, we
take java_mb prog, where java_mb consists of a list of parameter names, list
of local variables (i.e. names and types), and a statement block, terminated
with a single result expression (this again is a deviation from original Java).

types java_mb = vname list × (vname × ty) list × stmt × expr

java_prog = java_mb prog

5

2.2.2 Typing

Typing judgements come in essentially two flavours:

• E ` e :: T means that expression e has type T in environment E. We write
wtpd_expr E e for ∃ T. E ` e :: T.
• E ` c

√
means that statement c is well-typed in environment E.

The environment E used here is java_mb env, a pair consisting of a Java
program java_mb prog and a local environment lenv.

In order to convey a feeling for the typing rules, we give a particularly unspec-
tacular one:

[[E ` e ::PrimT Boolean; E ` s1
√
; E ` s2

√
]] =⇒

E ` If(e) s1 Else s2
√

It says that a conditional is well-typed provided the expression e is Boolean
and the statements s1 and s2 are well-typed.

A program G is well-formed (wf_java_prog G) if the bodies of all its methods
are well-typed and in addition some structural properties are satisfied – mainly
that all class names are distinct and the superclass relation is well-founded.

2.2.3 Operational Semantics

The operational semantics, in the style of a big-step (natural) semantics, de-
scribes how the evaluation of expressions and statements affects the program
state, and, in the case of an expression, what is the result value. The semantics
is defined as inductive relation, again in two variants:

• for expressions, G ` s -e� v-> s’ means that for program G, evaluation
of e in state s yields a value v and a new state s’ (note that the evaluation
of expressions may have side-effects).
• for statements, G ` s -c→ s’ means that for program G, execution of c in

state s yields a new state s’.

The state (of type xstate) is a triple, consisting of an optional exception
component that indicates whether an exception is active, a heap aheap which
maps locations loc to objects, and a local variable environment locals map-
ping variable names to values.

aheap = loc ; obj

locals = vname ; val

state = aheap × locals

xstate = val option × state

6

An object obj is a pair consisting of a class name (the class the object belongs
to) and a mapping for the fields of the object (taking the name and defining
class of a field, and yielding its value if such a field exists, None otherwise).

obj = cname × (vname × cname ⇒ val option)

The semantics has been designed to be non-blocking even in the presence of
certain errors such as type errors. For example, dynamic method binding is
achieved via a method lookup function method that selects the method to be
invoked, given the dynamic type dynT of expression e (whereas C is the static
type) and the method signature (i.e. method name mn and parameter types
pTs). Again, the method m thus obtained is indefinite if either dynT does not
denote a valid class type or the method signature is not defined for dynT.

[[. . .; m = the (method (G,dynT) (mn,pTs)); . . .]] =⇒
G`Norm s0 -{C}e..mn({pTs}ps)�v-> s’

The evaluation rules could be formulated differently so as to exclude indefi-
nite values, at the expense of making the rules unwieldy, or they could block
in the case of type errors, which would make a type correctness statement
impossible (see [Ohe01] for a discussion). Fortunately, the type safety results
provided in the following show that this kind of values does not arise anyway.
Unfortunately, the rules force us to carry along this type safety argument in
the compiler correctness proof.

2.2.4 Conformance and Type-Safety

The type-safety statement requires as auxiliary concept the notion of confor-
mance, which is defined in several steps:

• Conformance of a value v with type T (relative to program G and heap
h), written G, h`v::�T, means that the dynamic type of v under h is a
subtype of T.
• Conformance of an object means that all of its fields conform to their de-

clared types.
• Finally, a state s conforms to an environment E, written as s::� E, if all

“reachable” objects of the heap of s conform and all local variables of E

conform to their declared types.

The type safety theorem says that if evaluation of an expression e well-typed
in environment E starts from a conforming state s, then the resulting state
is again conforming; in addition, if no exception is raised, the result value v

conforms to the static type T of e. An analogous statement holds for evaluation
of statements.

7

2.3 Java Bytecode

We shall now take a look at the µJava VM (Section 2.3.1) and its operational
semantics, first without (Section 2.3.2) and then with (Section 2.3.3) runtime
type checks.

2.3.1 State Space

The runtime environment, i.e. the state space of the µJVM, is modeled closely
after the real JVM. The state consists of a heap, a stack of call frames, and a
flag whether an exception was raised (and if yes, a reference to the exception
object).

jvm_state = val option × aheap × frame list

The heap is the same as on the source level: a partial function from locations
to objects.

As in the real JVM, each method execution gets its own call frame, containing
its own operand stack (a list of values), its own set of registers (also a list of
values), and its own program counter. We also store the class and signature
(i.e. name and parameter types) of the method and arrive at:

frame = opstack × registers × cname × sig × nat

opstack = val list

registers = val list

2.3.2 Operational semantics

This section sketches the state transition relation of the µJava VM. Figure 1
shows the instruction set. Method bodies are lists of such instructions together
with the exception handler table and two integers mxs and mxl containing the
maximum operand stack size and the number of local variables (not counting
the this pointer and parameters of the method which get stored in the first
0 to n registers). So the type parameter ’c for method bodies gets instan-
tiated with nat × nat × instr list × ex_table , i.e. mdecl becomes the
following:

mdecl = sig × ty × nat × nat × instr list × ex_table

As exceptions are not yet handled by the compiler we do not define ex_table

formally here.

8

datatype instr =

Load nat load from register
| Store nat store into register
| LitPush val push a literal (constant)
| New cname create object on heap
| Getfield vname cname fetch field from object
| Putfield vname cname set field in object
| Checkcast cname check if object is of class cname

| Invoke cname mname (ty list) invoke instance method
| Return return from method
| Dup duplicate top element
| Dup_x1 duplicate and push 2 values down
| IAdd integer addition
| Goto int goto relative address
| Ifcmpeq int branch if equal
| Throw throw exception

Fig. 1. The µJava bytecode instruction set.

Method declarations come with a lookup function method (G,C) sig that
looks up a method with signature sig in class C of program G. It yields a
value of type (cname × ty × ’c) option indicating whether a method with
that signature exists, in which class it is defined (it could be a superclass of C
since method takes inheritance and overriding into account), and also the rest
of the declaration information: the return type and body.

The state transition relation s
jvm−→ t is built on a function exec describing

one-step execution:

exec :: jvm_state ⇒ jvm_state option

exec (xp, hp, []) = None

exec (Some xp, hp, frs) = None

exec (None, hp, f#frs) = let (stk,reg,C,sig,pc) = f;

ins = 5th (the (method (G,C) sig));

in find_handler (exec_instr (ins!pc) hp stk reg C sig pc frs)

It says that execution halts if the call frame stack is empty or an unhandled
exception has occurred. In all other cases execution is defined; exec decom-
poses the top call frame, looks up the current method, retrieves the instruction
list (the 5th element) of that method, delegates actual execution for single in-
structions to exec_instr, and finally sets the pc to the appropriate exception
handler (with find_handler) if an exception occurred. Again, we leave out
the formal definition of find_handler, because the compiler does not handle
exceptions. As throughout the rest of this article, the program G is treated as
a global parameter.

9

The state transition relation is the reflexive transitive closure of the defined
part of exec :

s
jvm−→ t = (s,t) ∈ {(s,t) | exec s = Some t}∗

The definition of exec_instr is straightforward, but large. We only show one
example here, the Load idx instruction: it takes the value at position idx in
the register list and puts it on top of the stack. Apart from incrementing the
program counter the rest remains untouched:

exec_instr (Load idx) hp stk regs Cl sig pc frs =

(None, hp, ((regs ! idx) # stk, regs, Cl, sig, pc+1) # frs)

This style of VM is also called aggressive, because it does not perform any
runtime type or sanity checks. It just assumes that everything is as expected,
e.g. for Load idx that the index idx indeed is a valid index of the register set,
and that there is enough space on the stack to push it. If the situation is not
as expected, the operational semantics is unspecified at this point. In Isabelle
this means that there is a result (because HOL is a logic of total functions),
but nothing is known about that result. It is the task of the bytecode verifier
to ensure that this does not occur.

2.3.3 A Defensive VM

Although it is possible to prove type safety by using the aggressive VM alone, it
is crisper to write and a lot more obvious to see just what the bytecode verifier
guarantees when we additionally look at a defensive VM. Our defensive VM
builds on the aggressive one by performing extra type and sanity checks. We
can then state the type safety theorem by saying that these checks will never
fail if the bytecode is welltyped.

To indicate type errors, we introduce another datatype.

’a type_error = TypeError | Normal ’a

Similar to Section 2.3.2 we build on a function check_instr that is lifted over
several steps. At the deepest level, we take apart the state to feed check_instr

with parameters (which are the same as for exec_instr) and check that the
pc is valid:

check :: jvm_state ⇒ bool

check (xp, hp, []) = True

check (xp, hp, f#frs) = let (stk,reg,C,sig,pc) = f;

ins = 5th (the (method (G,C) sig));

in pc < size ins ∧ check_instr (ins!pc) hp stk reg C sig pc frs

10

exec

exec−d

s t

Normal s Normal t

Fig. 2. Aggressive and defensive µJVM commute if there are no type errors.

The next level is the one step execution of the defensive VM which stops in
case of a type error and calls the aggressive VM after a successful check:

exec_d :: jvm_state type_error ⇒ jvm_state option type_error

exec_d TypeError = TypeError

exec_d (Normal s) = if check s then Normal (exec s) else TypeError

Again we take the reflexive transitive closure after getting rid of the Some and
None constructors:

s
djvm−→ t ≡

(s,t) ∈ ({(s,t)|exec_d s = TypeError ∧ t = TypeError} ∪
{(s,t)|∃ t’. exec_d s = Normal (Some t’) ∧ t = Normal t’})∗

It remains to define check_instr, the heart of the defensive µJava VM. Again,
this is relatively straightforward. A typical example is the IAdd instruction
which requires two elements of type Integer on the stack.

check_instr IAdd hp stk regs Cl sig pc frs =

1<size stk ∧ isIntg (hd stk) ∧ isIntg (hd (tl stk))

We have shown that defensive and aggressive VM have the same operational
one step semantics if there are no type errors.

Theorem 1 One step execution in aggressive and defensive machines com-
mutes if there is no type error.

exec_d (Normal s) 6=TypeError =⇒ exec_d (Normal s)=Normal (exec s)

Figure 2 depicts this result as a commuting diagram.

For executing programs we will later also need a canonical start state. In the
real JVM a program is started by invoking its static main method. In the
µJVM this is similar. We call a method main method of class C if there is
a method body b such that method (G,C) (main,[]) = Some (C, b) holds.
For main methods we can define the canonical start state start G C as the
state with exception flag None, an otherwise empty heap start_hp G that has

11

preallocated system exceptions 3 , and a frame stack with one element: empty
operand stack, this pointer set to Null, the rest of the register set filled up
with a dummy value arbitrary, the class entry set to C, signature to (main,[])

and program counter 0.

start :: jvm_prog ⇒ cname ⇒ jvm_state

start G C ≡ let (_,_,_,mxl,_,_) = the (method (G,C) (main,[]));

regs = Null # replicate mxl arbitrary

in Normal (None, start_hp G, [([], regs, C, (main,[]), 0)])

3 Bytecode Verification

We begin the part about bytecode verification with an informal introduction
in Section 3.1. The µJava bytecode verifier is then built in two steps: Sec-
tion 3.2 presents an abstract typing framework, Section 3.3 instantiates it for
the µJVM. The type safety theorem in Section 3.4 shows that the bytecode
verifier we have constructed is sound.

3.1 An Example

Bytecode verification is an abstract interpretation of the bytecode program:
instead of values we only consider their types. This abstraction allows us to
view a program as a finite state machine working on so called state types. A
state type characterizes a set of runtime states by giving type information for
the operand stack and registers. For example the first state type in Figure 3
([],[Class B, Int]) characterizes all states whose stack is empty, whose reg-
ister 0 contains a reference to an object of class B (or to a subclass of B), and
whose register 1 contains an integer. We say a method is welltyped if we can
assign a welltyping to each instruction. A state type (ST,LT) is a welltyping
for an instruction if it can be executed safely on a state whose stack is typed
according to ST and whose registers are typed according to LT. In other words:
the arguments of the instruction are provided in correct number, order and
type.

The example in Figure 3 shows the instructions on the left and the type of
stack elements and registers on the right. The method type is the right-hand
side of the table, a state type is one line of it. The type information attached

3 We use preallocated system exceptions in the style of JavaCard to circumvent
the unspecified situation where there is no space left to create a new OutOfMemory

exception object.

12

-

instruction stack local variables

Load 0 Some ([], [Class B, Int])

Store 1 Some ([Class A], [Class B, Err])

Load 0 Some ([], [Class B, Class A])

Getfield F A Some ([Class B], [Class B, Class A])

Goto -3 Some ([Class A], [Class B, Class A])

Fig. 3. Example of a welltyping

to an instruction characterizes the state before execution of that instruction.
We assume that class B is a subclass of A and that A has a field F of type A.

Execution starts with an empty stack and the two registers hold a reference
to an object of class B and an integer. The first instruction loads register 0,
a reference to a B object, on the stack. The type information associated with
the following instruction may puzzle at first sight: it says that a reference to
an A object is on the stack, and that usage of register 1 may produce an error.
This means the type information has become less precise but is still correct: a
B object is also an A object and an integer is now classified as unusable (Err).
The reason for these more general types is that the predecessor of the Store

instruction may have either been Load 0 or Goto -3. Since there exist different
execution paths to reach Store, the type information of the two paths has to
be “merged”. The type of the second register is either Int or Class A, which
are incompatible, i.e. the only common supertype is Err. The Some before each
of the type entries means that we were able to predict some type for each of
the instructions. If one of the instructions had been unreachable, the type
entry would have been None.

Bytecode verification is the process of inferring the types on the right from the
instruction sequence on the left and some initial condition, and of ensuring
that each instruction receives arguments of the correct type. Type inference is
the computation of a method type from an instruction sequence, type checking
means checking that a given method type fits an instruction sequence.

Figure 3 was an example for a welltyped method (we were able to find a
welltyping). Had we changed the third instruction from Load 0 to Store 0,
the method would not be welltyped. The Store instruction would try to take
an element from the empty stack and could therefore not be executed. We
would also not be able to find any other method type that is a welltyping.

3.2 An Abstract Framework

The abstract framework for data flow analysis is independent of the JVM, its
typing rules, and instruction set. Since it is a slightly extended version of the

13

framework already presented in [Nip01] and (with more detail) in [KN02], we
concentrate on the general setting and the result of the data flow analysis. We
leave out the data flow analysis itself, i.e. Kildall’s algorithm.

3.2.1 Orders and semilattices

This section introduces the HOL-formalization of the basic lattice-theoretic
concepts required for data flow analysis and its application to the JVM.

Partial orders Partial orders are formalized as binary predicates. Based on
the type synonym ’a ord = ’a ⇒ ’a ⇒ bool and the two order notations
x ≤r y = r x y and x < r y = (x ≤r y ∧ x 6= y) we say that r is a partial
order iff the predicate order :: ’a ord ⇒ bool holds for r :

order r = (∀ x. x ≤r x) ∧ (∀ x y. x ≤r y ∧ y ≤r x −→ x=y) ∧
(∀ x y z. x ≤r y ∧ y ≤r z −→ x ≤r z)

Semilattices Based on the type synonyms ’a binop = ’a ⇒ ’a ⇒ ’a and
’a sl = ’a set × ’a ord × ’a binop and the notation x + f y = f x y for
the supremum, we call the tuple (A,r,f) :: ’a sl a semilattice iff the pred-
icate semilat :: ’a sl ⇒ bool holds:

semilat (A,r,f) = order r ∧ closed A f ∧
(∀ x y∈A. x ≤r x + f y) ∧ (∀ x y∈A. y ≤r x + f y) ∧
(∀ x y z∈A. x ≤r z ∧ y ≤r z −→ x + f y ≤r z)

where closed A f = ∀ x y∈A. x + f y ∈ A.

Data flow analysis is usually phrased in terms of infimum semilattices. We
have chosen a supremum semilattice because it fits better with our intended
application, where the ordering is the subtype relation and the join of two
types is the least common supertype (if it exists).

The error type and err-semilattices Theory Err introduces an error
element to model the situation where the supremum of two elements does not
exist. We introduce both a datatype and an equivalent construction on sets:

datatype ’a err = Err | OK ’a

err A = {Err} ∪ {OK a | a ∈ A}

An ordering r on ’a can be lifted to ’a err by making Err the top ele-
ment. To do so, we define a functional le that takes an existing partial order
r :: ’a ord and lifts it to ’a err ord.

14

le r (OK x) (OK y) = x ≤r y

le r Err = True

le r Err (OK y) = False

The following lifting functional is useful below:

lift2 :: (’a ⇒ ’b ⇒ ’c err) ⇒ ’a err ⇒ ’b err ⇒ ’c err

lift2 f (OK x) (OK y) = f x y

lift2 f = Err

This brings us to the notion of an err-semilattice. It is a variation of a semilat-
tice with top element. Because the behavior of the ordering and the supremum
on the top element are fixed, it suffices to say how they behave on non-top
elements. Thus we can represent a semilattice with top element Err compactly
by a triple of type esl :

’a ebinop = ’a ⇒ ’a ⇒ ’a err

’a esl = ’a set × ’a ord × ’a ebinop

Conversion between the types sl and esl is easy:

esl :: ’a sl ⇒ ’a esl

esl(A,r,f) = (A,r,λx y. OK(f x y))

sl :: ’a esl ⇒ ’a err sl

sl(A,r,f) = (err A,le r,lift2 f)

Now we define L :: ’a esl to be an err-semilattice iff sl L is a semilattice.
It follows easily that esl L is an err-semilattice if L is a semilattice. In a
strongly typed environment like HOL we found err-semilattices easier to work
with than semilattices with top element.

3.2.2 Welltypings

In this abstract setting, we do not yet have to talk about the instruction se-
quences themselves. They will be hidden inside functions app and eff that
characterize their behavior. These functions together with the semilattice
(A,r,f) form the parameters of our model, namely the type system and the
data flow analyzer. In the Isabelle formalization, they are parameters of ev-
erything. In this article, we often make them “implicit parameters”, i.e. we
pretend they are global constants, thus increasing readability.

Data flow analysis and type systems are based on an abstract view of the se-
mantics of a program in terms of types instead of values. Since our programs
are sequences of instructions the semantics can be characterized by two func-
tions app :: nat ⇒ ’s ⇒ bool and eff :: nat ⇒ ’s ⇒ (nat × ’s) list .

15

t1

3 4

4

0

t

s s s s1

Fig. 4. Data flow graph for eff 3 s3 = [(1,t1),(4,t4)]

While app checks if an instruction is applicable in the current state type, eff
is the abstract execution function: eff p s provides the results of executing
the instruction at p starting in state s together with the positions to which
these results are propagated. Contrary to the usual concept of transfer func-
tion or flow function in the literature, eff p not only provides the result, but
also the structure of the data flow graph at position p. This is best explained
by example. Figure 4 depicts the information we get when eff 3 s3 returns
the list [(1,t1),(4,t4)] : executing the instruction at position 3 with state
type s3 may lead to position 1 in the graph with result t1, or to position 4

with result t4.

Note that the length of the list and the target instructions do not only depend
on the source position p in the graph, but also on the value of s. It is possible
that the structure of the data flow graph dynamically changes in the iteration
process of the analysis. We will not use this flexibility to its fullest extent in
this article, but it is necessary to handle more advanced features of the BCV
like the Jsr/Ret instructions.

The correctness and termination theorem about the dataflow analysis algo-
rithm imposes several restrictions (like monotonicity) on app, eff, and the
semilattice order r (see [Nip01,KN02] for more). Here, we are only interested
in the nature of welltypings, and for that no such restrictions are necessary.
Using the semilattice order and the functions app and eff, we can define when
a method type ϕ :: ’s list is a welltyping:

wt_app_eff ϕ ≡
∀ p<size ϕ. app p (ϕ!p) ∧ (∀ (q,t)∈set(eff p (ϕ!p)). t ≤r ϕ!q)

This is very natural: every instruction is applicable in its start state, and the
effect is compatible with the state expected by all successor instructions. The
JVM specification also requires a start condition to be met. We shall come to
that in the next section.

3.3 Instantiating the Framework

In the following sections we shall instantiate the abstract typing framework
with a concrete type system for the µJVM. We define the semilattice structure

16

in Section 3.3.1, the data flow functions app and eff in Section 3.3.2, and
finally refine the notion of welltyping to Java-specifics in Section 3.3.3.

3.3.1 The Semilattice

In this section we take the first step to instantiate the framework of Section 3.2.
We define the semilattice structure on which µJava’s bytecode verifier builds.
We begin by turning the µJava types ty into a semilattice.

The carrier set types is easy: the set of all types declared in the program.

types = {T| is_type G T}

The order is the standard subtype ordering � of µJava. It builds on the direct
subclass relation subcls G induced by the program G.

T � T

NT � RefT T

Class C � Class D if (C,D) ∈ (subcls G)∗

The expression (C,D) ∈ (subcls G)∗ means that C is a subclass of D. For
every class hierarchy, i.e. for every program, this subtype ordering may be a
different one. In the Isabelle formalization the ordering � therefore has G as
an additional parameter, in this paper G is implicit.

The supremum operation follows the ordering.

sup :: ty ⇒ ty ⇒ ty err

sup NT (Class C) = OK (Class C)

sup (Class C) NT = OK (Class C)

sup (Class C) (Class D) = OK (Class (lub C D))

sup t1 t2 = if t1 = t2 then OK t1 else Err

The lub function computes the least upper bound of two classes by walking
up the class hierarchy until one is a subclass of the other. Since, in a well-
formed program, every class is a subclass of Object, this least upper bound
is guaranteed to exist. We call a program G wellformed if each subclass has
at most one direct superclass, i.e. G represents a single inheritance hierarchy,
and if subcls G is acyclic.

With these three components we proved the following theorem.

Theorem 2 The triple JType.esl ≡ (types, �, sup) is an err-semilattice
provided the program G is wellformed.

We can now construct the stack and register structure. State types in the

17

µJava BCV are the same as in the example in Figure 3: values on the operand
stack must always contain a known µJava type ty, values in the local variables
may be of an unknown type and therefore be unusable (encoded by Err). To
handle unreachable code, the BCV will not directly work on state_type, but
on state_type option instead. If None occurs in the welltyping, the corre-
sponding instruction is unreachable. A method type is then a list of such state
types.

state_type = ty list × ty err list

method_type = state_type option list

It is easy to prove

Theorem 3 If G is wellformed then method types form an err-semilattice.

The three components of the semilattice are states (the carrier set), <=’

(the subtype ordering lifted pointwise to stack and registers), and sup (the
supremum, also lifted pointwise).

The executable BCV of [Nip01,KN02] contains an additional Err layer on top
which turns the err-semilattice into a proper semilattice and which is used to
indicate type errors in the data flow analysis. Since we are only interested in
the result of the analysis, the welltyping, we have left it out here.

3.3.2 Applicability and Effect

In this section we will instantiate app and eff for the instruction set of the
µJVM. The definitions are divided into one part for normal and one part for
exceptional execution. We only show the definitions for the normal case here.

Since the BCV verifies one method at a time, we can see the context of a
method and a program as fixed for the definition. The context consists of the
following values:

G :: program the program,
mxs :: nat maximum stack size of the method,
mxr :: nat size of the register set,
mpc :: nat maximum program counter,
rT :: ty return type of the method,
pc :: nat program counter of the current instruction.

The context variables are proper parameters of eff and app in the Isabelle for-
malization. We treat them as global here to spare the reader endless parameter
lists in each definition.

We begin with applicability of instructions in the normal, non-exception case.

18

app’ :: instr × state_type ⇒ bool

app’ (Load idx, (ST,LT)) = idx < LT ∧ LT!idx 6= Err ∧
size ST < mxs

app’ (Store idx, (T#ST,LT)) = idx < size LT

app’ (LitPush v, (ST,LT)) = size ST < mxs ∧
typeof v 6= None

app’ (Getfield F C, (T#ST,LT)) = is_class G C ∧ T � Class C ∧
(∃ T’. field (G,C) F = Some (C, T’))

app’ (Putfield F C, (T1#T2#ST,LT)) = is_class G C ∧
(∃ T’. field (G,C) F = Some (C,T’) ∧

T2 � Class C ∧ T1 � T’)

app’ (New C, (ST,LT)) = is_class G C ∧ size ST < mxs

app’ (Checkcast C, T#ST,LT)) = is_class G C ∧ isRefT T

app’ (Dup, (T#ST,LT)) = 1+size ST < mxs

app’ (Dup_x1, (T1#T2#ST,LT)) = 2+size ST < mxs

app’ (IAdd, (T1#T2#ST,LT)) = T1 = T2 ∧ T1 = PrimT Integer

app’ (Ifcmpeq b,(T1#T2#ST,LT)) = 0 ≤ int pc + b ∧ ((T1 = T2) ∨
(isRefT T1 ∧ isRefT T2))

app’ (Goto b, s) = 0 ≤ int pc + b

app’ (Return, (T#ST,LT)) = T � rT

app’ (Throw, (T#ST,LT)) = isRefT T

app’ (Invoke C mn ps, (ST,LT)) = size ps < size ST ∧
is_class G C ∧
method (G,C) (mn,ps) 6= None ∧
let as = rev (take (size ps) ST);

t = ST!size ps

in t � Class C ∧ as [�] ps

app’ (i,s) = False

Fig. 5. Applicability of instructions.

We ignore the option layer at first: app’, defined in Figure 5, works on
state_type, app then lifts it to state_type option.

In app’, a few new functions occur: typeof :: val ⇒ ty option returns None
for addresses, and the type of the value otherwise; field is analogous to
method and looks up declaration information of object fields (defining class
and type); rev and take are the obvious functions on lists, [�] pointwise
lifts the subtyping relation � to lists.

With app’, we can now build the full applicability function app : an instruction
is applicable when it is unreachable (then it can do no harm) or when it is
applicable in the normal and in the exceptional case (xcpt_app). Additionally,

19

succs :: instr ⇒ nat ⇒ nat list

succs (Ifcmpeq b) pc = [pc+1, nat (int pc + b)]

succs (Goto b) pc = [nat (int pc + b)]

succs Return pc = []

succs Throw pc = []

succs i pc = [pc+1]

Fig. 6. Successor program counters for the non-exception case.

we require that the pc does not leave the instruction sequence.

app :: instr ⇒ state_type option ⇒ bool

app i s ≡ case s of None ⇒ True

| Some s ⇒ xcpt_app i ∧ app’ (i,s) ∧
(∀ (pc’,s’)∈set (eff i s). pc’<mpc)

This concludes applicability. It remains to build the effect function eff. In eff

we must calculate the successor program counters together with new state
types. We define them separately in Figure 6.

Again, most instructions are as expected. The relative jumps in Ifcmpeq and
Goto use the nat and int functions to convert the HOL-types nat to int and
vice versa. Return and Throw have no successors if there is no exception.

As with app we first define the effect eff’ on state_type (Figure 7). The de-
structor ok_val is defined by ok_val (OK x) = x. The large method expression
for Invoke merely determines the return type of the method in question. Note
that it must drop 1+size ps elements form the stack: the parameters and the
reference on which the method was invoked.

eff’ :: instr × state_type ⇒ state_type

eff’ (Load idx, (ST,LT)) = (ok_val (LT!idx)#ST, LT)

eff’ (Store idx, (T#ST,LT)) = (ST, LT[idx:= OK T])

eff’ (LitPush v, (ST,LT)) = (the (typeof v)#ST, LT)

eff’ (Getfield F C,(T#ST,LT)) = (snd (the (field (G,C) F))#ST,LT)

eff’ (Putfield F C, (T1#T2#ST,LT)) = (ST,LT)

eff’ (New C, (ST,LT)) = (Class C # ST,LT)

eff’ (Checkcast C, (T#ST,LT)) = (Class C # ST,LT)

eff’ (Dup, (T#ST,LT)) = (T#T#ST,LT)

eff’ (Dup_x1, (T1#T2#ST,LT)) = (T1#T2#T1#ST,LT)

eff’ (IAdd, T1#T2#ST,LT)) = (PrimT Integer#ST,LT)

eff’ (Ifcmpeq b, (T1#T2#ST,LT)) = (ST,LT)

eff’ (Invoke C mn ps, (ST,LT)) = let ST’ = drop (1+size ps) st;

(,rT , , ,) = the (method (G,C) (mn,ps))

in (rT#ST’, LT)

Fig. 7. Effect of instructions on the state type.

20

We use option_map :: (’a ⇒ ’b) ⇒ ’a option ⇒ ’b option to lift func-
tions to the option type canonically:

option_map f None = None

option_map f (Some x) = Some (f x)

Lifting eff’ to state_type option is then:

norm_eff :: instr ⇒ state_type option ⇒ state_type option

norm_eff i s ≡ option_map (λs. eff’ (i,s))

This is the effect of instructions in the non-exception case. If we apply it to
every successor instruction pc’ returned by succs and append the effect for
the exception case xcpt_eff, we arrive at the final effect function eff.

eff :: instr ⇒ state_type option ⇒ (nat × state_type option) list

eff i s ≡
(map (λpc’. (pc’, norm_eff i s)) (succs i pc)) @ (xcpt_eff i s)

3.3.3 Welltypings

Having defined the semilattice and the transfer function in Section 3.3.1 and
3.3.2, we show in this section how the parts are put together to get a definition
of welltypings for the µJVM.

The framework of Section 3.2 gives us a predicate wt_app_eff describing well-
typings ϕ :: state_type option list as method types that fit an instruc-
tion sequence. The JVM specification requires an additional start condition
for instruction 0 (at method invocation). It also requires that the instruction
sequence is not empty.

The JVM specification tells us what the first state type (at method invocation)
looks like: when method m in class C is invoked, the stack is empty, the first
register contains the this pointer (of type Class C), the next registers con-
tain the parameters of m, the rest of the registers is reserved for local variables
(which do not have a value yet). As above, ps are the parameters, and mxl the
number of local variables (which is related to mxr by mxr = 1+size ps+mxl).
Below, for the compiler, this context will be expanded. The <=’ is the semi-
lattice order on state_type option of Section 3.3.1.

wt_start ϕ ≡
Some ([],(OK (Class C))#(map OK ps)@(replicate mxl Err)) <=’ ϕ!0

We call ϕ a welltyping, if it satisfies wt_method.

wt_method ϕ ≡ 0 < mpc ∧ wt_start ϕ ∧ wt_app_eff ϕ

21

For the type compiler it is useful to have a more fine-grained version of
wt_app_eff for single instructions:

wt_instr p ϕ ≡ app p (ϕ!p) ∧ (∀ (q,t)∈set(eff p (ϕ!p)). t <=’ ϕ!q)

With this, we get the following equality for wt_method :

wt_method ϕ = 0 < mpc ∧ wt_start ϕ ∧ (∀ p < mpc. wt_instr p ϕ)

It remains to lift welltypings from methods to programs. Welltypings of pro-
grams are functions Φ :: cname ⇒ sig ⇒ state_type option list that re-
turn a welltyping for each method and each class in the program. We call a
program welltyped if there is a welltyping Φ such that wt_jvm_prog G Φ holds.
The function wt_jvm_prog returns true if wt_method (Φ C sig) holds for ev-
ery C and sig such that C is a class in G and sig a method signature declared
in C. Additionally, wt_jvm_prog checks that G is wellformed, i.e. that the class
hierarchy is a well founded single inheritance hierarchy.

3.4 Type Safety

This section presents the type safety theorem. It says that the bytecode verifier
is correct, that it guarantees safe execution. If the bytecode verifier succeeds
and we start the program G in its canonical start state (see Section 2.3.3), the
defensive µJVM will never return a type error.

Theorem 4 If C is a class in G with a main method, then

[[wt_jvm_prog G Φ; start G C
djvm−→ τ]] =⇒ τ 6= TypeError

To prove this theorem, we set out from a program G for which the bytecode
verifier returns true, i.e. for which there is a Φ such that wt_jvm_prog G Φ
holds. The proof builds on the observation that all runtime states σ that
conform to the types in Φ are type safe. If σ conforms to Φ, we write Φ ` σ

√
.

For Φ ` σ
√

to be true, the following must hold: if in state σ execution is
at position pc of method (C,sig), then the state type (Φ C sig)!pc must
be of the form Some s, and for every value v on the stack or in the register
set the type of v must be a subtype of the corresponding entry in its static
counterpart s. We have shown that conformance is invariant during execution
if the program is welltyped.

Lemma 5 Conformance is invariant during execution in welltyped programs.

[[wt_jvm_prog G Φ; Φ ` σ
√
; σ

jvm−→ τ]] =⇒ Φ ` τ
√

22

The proof of this central lemma is by induction over the length of the execu-
tion, and by case distinction over the instruction set. For each instruction, we
conclude from the conformance of σ together with the app part of wt_jvm_prog
that all assumptions of the operational semantics are met (e.g. non-empty
stack). Then we execute the instruction and observe that the new state τ

conforms to the corresponding t in eff pc s.

For the proof to go through, the intuitive notion of conformance we have given
above is not enough, the formal conformance relation Φ ` σ

√
is stronger. It

describes the states that can occur during execution, the form of the heap, and
the form of the method invocation stack. As it is very large (about four pages
of pure Isabelle code) and [Pus99,NOP00,KN02] already contain detailed de-
scriptions of it, we will not formally define the full conformance relation here.

Lemma 5 is still not enough, though: it might be the case that there is no σ

such that Φ ` σ
√

. Lemma 6 shows that this is not so.

Lemma 6 If C is a class in G with a main method, then

wt_jvm_prog G Φ =⇒ Φ ` (start G C)
√

Lemmas 5 and 6 together say that all states that occur in any execution of
program G conform to Φ if we start G in the canonical way.

The last step in the proof of Theorem 4 is Lemma 7.

Lemma 7 An execution step started in a conformant state cannot produce a
type error in welltyped programs.

[[wt_jvm_prog G Φ; Φ ` σ
√

]] =⇒ exec_d (Normal σ) 6= TypeError

The proof of Lemma 7 is a case distinction on the current instruction in σ.
Similar to the proof of Lemma 5, the conformance relation together with the
app part of wt_jvm_prog ensure check_instr in exec_d returns true. Because
we know that all states during execution conform, we can conclude Theorem 4:
there will be no type errors in welltyped programs.

23

4 Compiling Code

4.1 Definition of Compiler

Compilation is defined with the aid of a few directly executable functions.
Expressions resp. statements are compiled by compExpr and compStmt, whose
definitions we give in Figure 8 resp. Figure 9 for comparison with the type
compilation functions defined in Section 5.

The compiler definitions are straightforward: Apart from the expression resp.
statement to be compiled, the functions take a java_mb as argument. It is
required to compute a mapping from variable names to indices in the register
array, which is accomplished by function index.

Note that our compiler makes no attempt at optimizing generated code. For
example, in order to maintain the invariant used in the compiler correctness
statement, the bytecode for an assignment expression of the form vn::=e con-
tains the instruction Dup which duplicates the value on top of the operand
stack. When used as an assignment statement of the form Expr (vn::=e), this
and the following Pop instruction are superfluous.

compExpr :: java_mb ⇒ expr ⇒ instr list

compExprs :: java_mb ⇒ expr list ⇒ instr list

compExpr jmb (NewC c) = [New c]

compExpr jmb (Cast c e) = compExpr jmb e @ [Checkcast c]

compExpr jmb (Lit val) = [LitPush val]

compExpr jmb (BinOp bo e1 e2) = compExpr jmb e1 @ compExpr jmb e2 @

(case bo of

Eq ⇒ [Ifcmpeq 3,LitPush(Bool False),Goto 2,LitPush(Bool True)]

| Add ⇒ [IAdd])

compExpr jmb (LAcc vn) = [Load (index jmb vn)]

compExpr jmb (vn::=e) =

compExpr jmb e @ [Dup, Store (index jmb vn)]

compExpr jmb ({cn}e..fn) =

compExpr jmb e @ [Getfield fn cn]

compExpr jmb (FAss cn e1 fn e2) =

compExpr jmb e1 @ compExpr jmb e2 @ [Dup_x1, Putfield fn cn]

compExpr jmb (Call cn e1 mn X ps) =

compExpr jmb e1 @ compExprs jmb ps @ [Invoke cn mn X]

compExprs jmb [] = []

compExprs jmb (e#es) = compExpr jmb e @ compExprs jmb es

Fig. 8. Compilation of expressions

24

compStmt :: java_mb ⇒ stmt ⇒ instr list

compStmt jmb Skip = []

compStmt jmb (Expr e) = (compExpr jmb e) @ [Pop]

compStmt jmb (c1;; c2) = (compStmt jmb c1) @ (compStmt jmb c2)

compStmt jmb (If(e) c1 Else c2) =

(let cnstf = LitPush (Bool False);

cnd = compExpr jmb e;

thn = compStmt jmb c1;

els = compStmt jmb c2;

test = Ifcmpeq (int(size thn +2));

thnex = Goto (int(size els +1))

in [cnstf] @ cnd @ [test] @ thn @ [thnex] @ els)

compStmt jmb (While(e) c) =

(let cnstf = LitPush (Bool False);

cnd = compExpr jmb e;

bdy = compStmt jmb c;

test = Ifcmpeq (int(size bdy +2));

loop = Goto (-(int((size bdy) + (size cnd) +2)))

in [cnstf] @ cnd @ [test] @ bdy @ [loop])

Fig. 9. Compilation of statements

Compilation is then gradually extended to the more complex structures pre-
sented in Section 2.2, first of all methods. Our compiler first initializes all
local variables (compInitLvars), then translates the body statement and re-
turn expression. Incidentally, we have to refer to the type compilation func-
tion compTpMethod here already to determine the maximum operand stack size
reached by executing the bytecode. This, together with the length of the regis-
ter array, are the two numbers required by bytecode verification, as indicated
in Section 2.3.2. Also note that the exception table component, the last com-
ponent of a java_mb mdecl, is left empty because we do not take exception
handling into account here.

compMethod :: java_mb prog ⇒ cname ⇒ java_mb mdecl

⇒ jvm_method mdecl

compMethod G C jmdl ≡ let (sig, rT, jmb) = jmdl;

(pns,lvars,blk,res) = jmb;

mt = (compTpMethod G C jmdl);

bc = compInitLvars jmb lvars @

compStmt jmb blk @ compExpr jmb res @

[Return]

in (sig, rT, max_ssize mt, size lvars, bc, [])

The compilation function comp for programs is essentially defined by mapping

25

compMethod over all methods of all classes.

compClass :: java_mb prog => java_mb cdecl=> jvm_method cdecl

compClass G ≡ λ (C,cno,fdls,jmdls).

(C,cno,fdls, map (compMethod G C) jmdls)

comp :: java_mb prog => jvm_prog

comp G ≡ map (compClass G) G

This concludes the definition of the compiler.

4.2 Compiler Correctness

Let us briefly review the compiler correctness statement and its proof – we
refer the reader to [Str02a] for a more detailed discussion.

In a rough sketch, the compiler correctness statement takes the form of the
traditional “commuting diagram” argument: Suppose execution of a statement
c transforms a µJava state s into a state s′. Then, for any µJVM state t
corresponding to s, executing the bytecode resulting from a translation of c
yields a state t′ corresponding to s′.

This sketch has to be refined in that the notion of correspondence has to
be made precise, both for expressions and for statements. Besides, compiler
correctness depends on a few assumptions that will be spelled out below.

We first need a notion describing the effects of completely evaluating an expres-
sion or executing a statement on a µJVM state, in analogy to the evaluation
and execution relations on the µJava level. We note the following:

• Apart from the exception indicator and the heap, only the topmost frame
is affected, but not the remaining frame stack.
• When executing an instruction sequence instrs, the program counter ad-

vances by size instrs, provided instrs is part of the bytecode of a method
body (which in particular implies that the start and end positions of the
program counter are well-defined).

Of course, these observations do not hold for intermediate steps of a compu-
tation, e.g. when frames are pushed on the frame stack during a method call
or when jumping back to the start of a while loop, but only after comple-
tion, when the frames have been popped off again or the whole while loop has
finished.

This suggests a progression relation, defined as:

26

{G,C,S} ` {hp0, os0, lvars0} >- instrs → {hp1, os1, lvars1} ≡
∀ pre post frs.

(gis (gmb G C S) = pre @ instrs @ post) −→
G ` (None,hp0,(os0,lvars0,C,S,size pre)#frs)

jvm−→
(None,hp1,(os1,lvars1,C,S,(size pre) + (size instrs))#frs)

Here, {G,C,S} ` {hp0, os0, lvars0} >- instrs → {hp1, os1, lvars1} ex-
presses that execution of instructions instrs transforms heap hp0, operand
stack os0 and local variables lvars0 into hp1, os1 and lvars1. Since excep-
tions are excluded from consideration here, the exception indicator of the
states is invariantly None.

The instructions instrs are a subsequence of the instructions (selected by gis)
of the method body (selected by gmb) of signature S in class C of program
G. During execution, the program counter advances from the first position
of instrs (at size pre) to the position right behind instrs (at size pre +

size instrs). This indirect coding of the program counter movement not only
makes the correctness statement more concise. It is also helpful in the proof,
as it removes the need for complex “program counter arithmetic” – abstract
properties like transitivity of progression are sufficient most of the time.

We are now prepared to clarify the notion of correspondence between µJava
and µJVM states and present the correctness theorem for evaluation of ex-
pressions (the one for execution of statements is analogous).

Suppose that evaluation of expression ex in µJava state (None, hp, loc)

yields result val and state (None, hp’, loc’), and some other conditions
explained in a moment are met. We assume that expression ex is part of the
method which can be identified by program G, class C and signature S. When
running the bytecode compExpr (gmb G C S) ex generated for ex in a µJVM
state having the same heap hp, an (arbitrary) operand stack os and local vari-
ables as in loc, we obtain heap hp’, the operand stack with val on top of it
and local variables as in loc’ (the representation of local variables is refined
by function locvars_locals). Thus, we obtain the following

Theorem 8

[[G ` (None,hp,loc) -ex � val-> (None,hp’,loc’);

wf_java_prog G;

class_sig_defined G C S;

wtpd_expr (env_of_jmb G C S) ex;

(None,hp,loc) ::� (env_of_jmb G C S)]] =⇒
{(TranslComp.comp G), C, S} `

{hp, os, (locvars_locals G C S loc)}

>- (compExpr (gmb G C S) ex) →
{hp’, val#os, (locvars_locals G C S loc’)}

27

The theorem is displayed diagrammatically below – note the simplification
regarding local variables on the bytecode level.

compExpr E ex
{hp, os, loc} {hp’, val # os, loc’}

(None, hp, loc) val −> (None, hp’, loc’)
ex

Fig. 10. Compiler Correctness statement

Let us now take a look at the preconditions:

• The source program has to be well-formed as described in Section 2.2.2.
• The class signature has to be defined in the sense that C is a valid class in

G and method lookup with S gives a defined result.
• Expression ex is well-typed in the environment of the method body. This

environment (env_of_jmb G C S) is generated by the types of the local
variables and the method parameters.
• Finally, the start state of the computation, (hp, loc), conforms to this

environment, in the sense of Section 2.2.4.

Most of these conditions are provided in order to maintain a consistent and
well-defined program state throughout execution of the source program. We
thus avoid having to deal with undefined values, as discussed in Section 2.1.

These requirements are not very restrictive: the well-formedness and well-
typing conditions are standard for compilers; the conformance condition is
satisfied when a program is started with an empty heap and the local variables
are initialized to their default values.

5 Compiling Types

5.1 Motivation

Given the above correctness theorem, the question arises whether semanti-
cally correct code could be type-incorrect. Quite abstractly, note that a type
system always imposes a constraint on a language, thus marking even “valid”
programs as type-incorrect. And indeed, the empirical evidence given in [SS01]
shows that there is a mismatch between the Java source and bytecode type
systems: Code containing a try . . . finally statement is accepted by a stan-
dard Java typechecker, compiled to semantically equivalent bytecode, but then

28

A

B B

A

BB

... Return...Goto...Goto

Fig. 11. Semantically unproblematic, but type-incorrect bytecode

rejected by the bytecode verifier. The deeper reason is that source code type-
checker and bytecode verifier have different notions of when variables have
been “definitely assigned” [BGJS00]. Since our restricted language fragment
does not contain the above-mentioned construct, we cannot reproduce this
problem.

Still, there are sufficient sources of potential bytecode type errors. For example,
different branches leading to a jump target could generate operand stacks of
different heights - possibly an innocuous situation if not all of the operand
stack is used in the sequel (see Figure 11). However, such code is rejected by
the bytecode verifier.

5.2 Definition of Type Compiler

In a first approximation, generation of the type certificate proceeds in analogy
to compilation of code with the aid of functions compTpExpr, compTpStmt etc.
that yield a list of state types having the same length as the bytecode pro-
duced by compExpr, compStmt etc. However, it becomes apparent in the proofs
that the resulting state type lists are not self-contained and therefore the im-
mediately following state type also has to be taken into account. For example,
the position directly behind the code of an If statement can be reached via at
least two different paths: either by a jump after completion of the then branch
of the statement, or by regular completion of the else branch. When proving
type correctness of the resulting code, it has to be shown that both paths lead
to compatible state types.

This suggests that, e.g., compTpExpr should not have type expr ⇒ method_type

but rather expr ⇒ state_type ⇒ method_type × state_type. The function
definitions are shown in Figures 12 and 13. For technical reasons, the function
takes two other arguments, a Java program G, and a Java method body jmb,
which essentially is used for computing the variable type, given a variable
name (for example in the case of variable access).

Composition of the results of subexpressions is then not simple list concatena-
tion, but rather a particular kind of function composition f1 2 f2, defined as

29

compTpExpr :: java_mb ⇒ java_mb prog ⇒ expr ⇒ state_type

⇒ method_type × state_type

compTpExprs :: java_mb ⇒ java_mb prog ⇒ expr list

⇒ state_type ⇒ method_type × state_type

compTpExpr jmb G (NewC c) = pushST [Class c]

compTpExpr jmb G (Cast c e) =

(compTpExpr jmb G e) 2 (replST 1 (Class c))

compTpExpr jmb G (Lit val) = pushST [the (typeof (λv. None) val)]

compTpExpr jmb G (BinOp bo e1 e2) =

(compTpExpr jmb G e1) 2 (compTpExpr jmb G e2) 2

(case bo of

Eq ⇒ popST 2 2 pushST [PrimT Boolean] 2

popST 1 2 pushST [PrimT Boolean]

| Add ⇒ replST 2 (PrimT Integer))

compTpExpr jmb G (LAcc vn) =

(λ(ST,LT). pushST [ok_val (LT ! (index jmb vn))] (ST, LT))

compTpExpr jmb G (vn::=e) =

(compTpExpr jmb G e) 2 dupST 2 (popST 1)

compTpExpr jmb G ({cn}e..fn) =

(compTpExpr jmb G e) 2 replST 1 (snd (the (field (G,cn) fn)))

compTpExpr jmb G (FAss cn e1 fn e2) =

(compTpExpr jmb G e1) 2 (compTpExpr jmb G e2) 2

dup_x1ST 2 (popST 2)

compTpExpr jmb G ({C}a..mn({fpTs}ps)) =

(compTpExpr jmb G a) 2 (compTpExprs jmb G ps) 2

(replST ((size ps) + 1) (rT_of (the (method (G,C) (mn,fpTs)))))

compTpExprs jmb G [] = comb_nil

compTpExprs jmb G (e#es) =

(compTpExpr jmb G e) 2 (compTpExprs jmb G es)

Fig. 12. Compilation of expression types

compTpStmt :: java_mb ⇒ java_mb prog ⇒ stmt ⇒ state_type

⇒ method_type × state_type

compTpStmt jmb G Skip = comb_nil

compTpStmt jmb G (Expr e) = (compTpExpr jmb G e) 2 popST 1

compTpStmt jmb G (c1;; c2) =

(compTpStmt jmb G c1) 2 (compTpStmt jmb G c2)

compTpStmt jmb G (If(e) c1 Else c2) =

(pushST [PrimT Boolean]) 2 (compTpExpr jmb G e) 2 popST 2 2

(compTpStmt jmb G c1) 2 nochangeST 2 (compTpStmt jmb G c2)

compTpStmt jmb G (While(e) c) =

(pushST [PrimT Boolean]) 2 (compTpExpr jmb G e) 2 popST 2 2

(compTpStmt jmb G c) 2 nochangeST

Fig. 13. Compilation of statement types

30

λx0. let (xs1, x1) = (f1 x0); (xs2, x2) = (f2 x1) in (xs1 @ xs2, x2).

A few elementary functions describe the effect on a state type or components
thereof. For example, pushST pushes types tps on the operand type stack, and
replST n tp replaces the topmost n elements by tp, whereas storeST stores
the topmost stack type in the local variable type array:

pushST :: ty list ⇒ state_type ⇒ method_type × state_type

pushST tps ≡ λ(ST, LT). ([Some (ST, LT)], (tps @ ST, LT))

replST n tp ≡ λ(ST, LT). ([Some (ST, LT)], (tp # (drop n ST), LT))

storeST i tp ≡ λ(ST,LT). ([Some (ST,LT)], (tl ST, LT [i:=OK tp]))

nochangeST sttp ≡ ([Some sttp], sttp)

dupST ≡ λ(ST, LT). ([Some (ST, LT)], (hd ST # ST, LT))

dup_x1ST ≡ λ(ST, LT). ([Some (ST, LT)],

(hd ST # hd (tl ST) # hd ST # (tl (tl ST)), LT))

popST n ≡ λ(ST, LT). ([Some (ST, LT)], (drop n ST, LT))

In order to make the inner workings of these definitions more transparent, let
us take a look at how the type compiler would translate an expression 1+2,
more precisely BinOp Add (Lit 1) (Lit 2).

Note that the bytecode emitted by compExpr is the instruction sequence

[LitPush 1, LitPush 2, IAdd]

Translation of (Lit 1) with compTpExpr yields a function which, given a state
type (ST, LT), produces the method type [(ST, LT)] plus the state type
(PrimT Integer # ST, LT), which indicates that LitPush 1 has the effect of
leaving behind an integer on the operand stack. Translation of (Lit 2) yields
a function which transforms a state type, such as the one just obtained, by
pushing another PrimT Integer on the operand type stack. The 2 operator
concatenates the resulting method type lists and returns the state type (PrimT

Integer # PrimT Integer # ST, LT). Finally, the IAdd instruction pops the
topmost two elements from the operand type stack and leaves behind a method
type and state type as depicted in Figure 14.

31

(Int # Int # ST, LT) Int # ST

Int # ST

LitPush 1 LitPush 2 IAdd

(ST, LT) (Int # ST, LT) (Int # Int # ST, LT)

(ST, LT) (Int # ST, LT)

(Int # ST, LT) (Int # Int # ST, LT)

(ST, LT) (Int # Int # ST, LT)(Int # ST, LT)

Fig. 14. Example of type compilation

Given the above functions, the function generating the bytecode type of a
method can be defined:

start_ST :: opstack_type

start_ST ≡ []

start_LT :: cname ⇒ ty list ⇒ nat ⇒ ty err list

start_LT C pTs n ≡ (OK (Class C))#(map OK pTs)@(replicate n Err)

compTpMethod :: [java_mb prog, cname, java_mb mdecl] ⇒ method_type

compTpMethod G C ≡ λ((mn,pTs),rT, jmb).

let (pns,lvars,blk,res) = jmb

in (mt_of

((compTpInitLvars jmb lvars 2

compTpStmt jmb G blk 2

compTpExpr jmb G res 2

nochangeST)

(start_ST, start_LT C pTs (size lvars))))

Starting with a state type that consists of an empty operand type stack and
a local variable type array that contains the current class C (corresponding
to the this pointer), the parameter types pTs and types of uninitialized local
variables, we first initialize the variable types (compTpInitLvars), then com-
pute the type of the method body and the return expression. The final Return
instruction does not change the state type, which accounts for nochangeST.
These computations yield a pair method_type × state_type, from which we
extract the desired method type (mt_of).

32

Finally, compTp raises compilation of bytecode types to the level of programs,
in analogy to comp :

compTp :: java_mb prog ⇒ prog_type

compTp G C sig ≡ let (D, rT, jmb) = (the (method (G, C) sig))

in compTpMethod G C (sig, rT, jmb)

Is there any difference between computed method types and method types a
bytecode verifier would infer? Possibly yes: Our procedure yields a method
type which is a fixpoint wrt. the type propagation carried out by a bytecode
verifier, but not necessarily the least one. As an example, take the bytecode a
compiler would produce for the method

void foo (B b) { A a; a = b; return; }

with B a subtype of A. We would assign the type A to the bytecode variable
representing a, but a bytecode verifier would infer the more specific type B,
because in any computation, variable a holds at most values of type B.

6 Well-Typedness: Theorem and Proof

We can now state our main result:

Theorem 9 The code generated by comp is well-typed with respect to the byte-
code type generated by compTp, provided the program G to be compiled is well-
formed:

wf_java_prog G =⇒ wt_jvm_prog (comp G) (compTp G)

Let us first give a sketch of the proof before going into details: In a first step,
we essentially unfold definitions until we have reduced the problem to verify-
ing well-typedness of individual methods, i.e. to showing that the predicate
wt_method holds for the results of compMethod and compTpMethod. For this, we
need to show that the start condition wt_start is satisfied for the state type
(start_ST, start_LT C pTs n), which is straightforward, and then prove that
wt_instr holds for all instructions of the bytecode.

The functions constructing bytecode and bytecode types have a very similar
structure, which we exploit to demonstrate that a relation bc_mt_corresp be-
tween bytecode and method types is satisfied and which gives us the desired
result about wt_instr. In particular, bc_mt_corresp is compatible with the op-
erators @ and 2, so that correspondence of compMethod and compTpMethod is
decomposed into correspondence of compExpr and compTpExpr resp. compStmt
and compTpStmt. The key lemmas establishing this correspondence are proved

33

by induction on expressions resp. statements and constitute the major part of
the proof burden.

We will now look at some details, beginning with the definition of predicate
bc_mt_corresp, which states that bytecode bc and state type transformer f

correspond in the sense that when f is applied to an initial state type sttp0,
it returns a method type mt and a follow-up state type sttp such that each
instruction in bc up to an index idx is well-typed.

bc_mt_corresp :: [bytecode, state_type ⇒ method_type × state_type,

state_type, jvm_prog, ty, p_count] ⇒ bool

bc_mt_corresp bc f sttp0 cG rT idx ≡
let (mt, sttp) = f sttp0 in

size bc = size mt ∧
(∀ mxs pc.

mxs = max_ssize (mt@[Some sttp]) −→
pc < idx −→
wt_instr (bc!pc) cG rT (mt@[Some sttp]) mxs (size mt+1) [] pc)

As mentioned in Section 5, when checking for wt_instr, we also have to peek at
the position directly behind mt, so we have to use the state type list mt@[Some

sttp] instead of just mt. The definition of bc_mt_corresp is further compli-
cated by the fact that wt_instr depends on the maximum operand stack size,
which we keep track of by computing max_ssize.

bc_mt_corresp is compatible with @ and 2, provided that the results of the
state type transformers f1 and f2 are seamlessly fitted together (expressed
by start_sttp_resp).

Lemma 10 Decomposition of bc_mt_corresp_comb:

[[bc_mt_corresp bc1 f1 sttp0 cG rT (size bc1);

bc_mt_corresp bc2 f2 (sttp_of (f1 sttp0)) cG rT (size bc2);

start_sttp_resp f2]]
=⇒ bc_mt_corresp (bc1@bc2) (f12f2) sttp0 cG rT (size (bc1@bc2))

At first glance, this lemma looks abstract, i.e. does not seem to refer to partic-
ular instructions. A closer analysis reveals that this is not so: In the proof of
the lemma, we have to show that well-typed code can be “relocated” without
losing its type-correctness. For example, adding bytecode bc_post resp. byte-
code types mt_post to the end, as in the following lemma, does not impair
well-typing of an instruction at position pc :

Lemma 11

[[wt_instr (bc ! pc) cG rT mt mxs max_pc et pc;

bc’ = bc @ bc_post; mt’ = mt @ mt_post;

34

mxs ≤ mxs’; max_pc ≤ max_pc’;

pc < size bc; pc < size mt; max_pc = (size mt)]]
=⇒ wt_instr (bc’ ! pc) cG rT mt’ mxs’ max_pc’ et pc

The proof of this lemma requires, among others, monotonicity of the app pred-
icate of Section 3.3.2 with respect to the maximum stack size mxs - intuitively
because executing more instructions might lead to an increase in the maximum
stack size:

[[app i G mxs rT pc s; mxs ≤ mxs’]] =⇒ app i G mxs’ rT pc s

This is shown by case distinction over the instruction i and so indirectly
requires properties that depend on a particular instruction set.

Let us now turn to the cornerstone of our proof, the correspondence between
bytecode and bytecode types for expressions and statements. To provide an
intuition for the argument, let us contrast type inference, as carried out by
a bytecode verifier, with our a priori computation of a method type. During
type inference, a bytecode verifier has to compare the state types that result
from taking different data paths in the bytecode, such as when jumping to
the instruction following a conditional from the then and else branch. If these
state types differ, an attempt is made to merge them, by computing the least
common supertype. If merging fails because there is no such supertype, the
bytecode is not typeable. Otherwise, type inference continues with the updated
state type.

Why is the bytecode type we compute with compTpExpr and compTpStmt stable
in the sense that no such updates are necessary? Recall that our compiler
initializes all local variables at the beginning of a method. It is now possible
to determine the most general type a bytecode variable can assume: it is the
type the variable has in the source language. Any assignment of a more general
type on the bytecode level would indicate a type error on the source code level.

The predicate is_inited_LT expresses that the local variable array has been
initialized with the appropriate types:

is_inited_LT :: [cname, ty list, (vname × ty) list, ty err list]

⇒ bool

is_inited_LT C pTs lvars LT ≡
(LT = (OK (Class C))#(map OK pTs)@(map (OK ◦ var_type) lvars))

We can now enounce the lemma establishing the correspondence between
compStmt and compTpStmt – the one for expressions is similar:

Lemma 12

[[wf_prog wf_java_mdecl G; jmb = (pns,lvars,blk,res);

35

E = (local_env G C (mn, pTs) pns lvars); E ` s
√
;

is_inited_LT C pTs lvars LT;

bc’ = (compStmt jmb s); f’ = (compTpStmt jmb G s)]]
=⇒ bc_mt_corresp bc’ f’ (ST, LT) (comp G) rT (size bc’)

Note the two most important preconditions: the statement s under consider-
ation has to be well-typed (E ` s

√
) and the local variable array LT has to be

initialized properly.

The proof of this lemma is by induction on statements. Apart from decom-
position (Lemma 10), it makes use of lemmas which further clarify the effect
of the state type transformers. The lemma for expressions reads, in abridged
form:

[[E ` ex :: T; is_inited_LT C pTs lvars LT]]
=⇒ sttp_of (compTpExpr jmb G ex (ST, LT)) = (T # ST, LT))

It states that the bytecode computing the value of an expression ex leaves
behind its type T on the operand type stack ST and does not modify the local
variable type array LT, provided the latter is appropriately initialized. Thus,
it can be understood as an abstraction of the compiler correctness statement
of Section 4.2.

7 Conclusions

7.1 Related Work

In this paper, we have defined a type certifying compiler and shown the type
correctness of the code it generates. Even though the definitions are given in
the proof assistant Isabelle, we can convert them to executable ML code using
Isabelle’s extraction facility [BN00,BS03].

Our encoding of the Java source language owes much to the formalization on
paper in [DE99], which has also been the basis for an alternative formalization,
including a type soundness proof, in the Declare system [Sym99]. Both differ
from our definition in that they use a small-step operational semantics. Each
approach has particular merits: A small-step semantics is suitable for mod-
elling non-terminating computations and concurrency; type soundness can be
defined in terms of a defensive machine, as for the JVM in Section 2.3.3. How-
ever, it is often clumsy to handle: For stating a compiler correctness theorem,
we would have needed a complex bisimulation relation between source and
target states.

36

Barthe et al. [BDJ+01,BDJ+02] employ the Coq system for proofs about the
JVM and bytecode verification. They formalize the full JavaCard bytecode
language, but do not have a compiler.

In [PV98], Posegga and Vogt look at bytecode verification from a model
checking perspective. They transform a given bytecode program into a fi-
nite state machine and check type safety, which they phrase in terms of
temporal logic, by using an off-the-shelf model checker. Basin, Friedrich, and
Gawkowski [BFG02] use Isabelle/HOL, µJava, and the abstract BCV frame-
work [Nip01] to prove the model checking approach correct.

Working towards a verified implementation in Specware, Qian, Goldberg
and Coglio have specified and analyzed large portions of the bytecode veri-
fier [CGQ98,CGQ00]. Goldberg [Gol98] rephrases and generalizes the overly
concrete description of the BCV given in the JVM specification [LY99] as an
instance of a generic data flow framework. Qian [Qia99] specifies the BCV
as a set of typing rules, a subset of which was proved correct formally by
Pusch [Pus99]. Qian [Qia00] also proves the correctness of an algorithm for
turning his type checking rules into a data flow analyzer.

Stata and Abadi [SA98] were the first to specify a type system for a subset
of Java bytecode. They focused on the problem of bytecode subroutines. The
typing rules they use are clearer and more precise than the JVM specification,
but they accept fewer safe programs.

Freund and Mitchell [FM98,FM99,Fre00] develop typing rules for increasingly
large subsets of the JVM, including exception handling, object initialization,
and subroutines. They do not look at compilation.

Leroy [Ler01,Ler03] gives a very good overview on bytecode verification, and
proposes a polyvariant data flow analysis in the BCV to solve the notori-
ous subroutine problem. Coglio [Cog01,Cog02] provides an even simpler anal-
ysis for handling subroutines in the BCV. The most recent version of our
BCV [Kle03] uses this scheme as basis for the formalization of subroutines in
µJava.

Compiler correctness proofs have for a long time been an active research area,
starting with pencil-and-paper proofs for a simple expression language [MP67],
and more recently using diverse specification formalisms such as Z [Ste98]
and verification systems such as ACL2 [You89,Goe00], HOL [Cur93] and PVS
[DV01]. Little attention is given to preservation of type correctness, which is
not surprizing since the source language (such as Lisp) or the target language
only have a weak type system. The Verifix project [GZ99] has attempted to
develop an appropriate compiler correctness criterion for finite resources (such
as memory) and nondeterministic programs. Neither of these is a problem in
our case. In particular, our source and target language are abstracted over the

37

same memory model.

In recent years, compilation with types has been the subject of intense study,
which however has mostly ignored the aspect of general compiler correctness
and instead focused on the preservation of certain safety properties. The source
languages are mostly functional, having ML-like [Mor95,SA95] type systems
or even stronger ones such as System F [MWCG99]. The purpose is to exploit
types for a program analysis that allows for more efficient closure conversion
[WDMT97] or that avoids boxing polymorphic variables. In [LST02], Java is
compiled not to bytecode, but to a functional intermediate language which
can also be used as the target of functional programming languages [LST03].

Since compilation is a multi-stage process involving several intermediate lan-
guages, well-typing of programs has to be preserved during compilation. The
type correctness statement is mostly proved on paper. Critical questions such
as naming of bound variables and α-convertibility are often glossed over, even
though there is good evidence that proofs of typing properties of lambda cal-
culi become quite demanding once these details are taken into account [NN99].

The extensive pencil-and-paper formalization of Java using Abstract State
Machines in [SSB01] is complementary to ours: whereas the ASM formalization
is much more complete with respect to language features, the proofs are less
detailed, and some of the underlying proof principles are unclear, such as, for
example, extending inductive proofs “modularly” to deal with new language
constructs.

7.2 Extensions

We are not proponents of the idea of necessarily carrying proofs to ultimate
perfection, but believe that once a fully formal basis has been laid, it can
be extended with moderate effort and provides a convenient experimental
platform for new language features.

The dataflow framework described in Section 3 is sufficiently general to encom-
pass, among others, exception handling and object initialization. Even Java’s
tricky jump-subroutine mechanism can be incorporated, by changing the no-
tion of state types to sets of stack and local variable types. This is described
in detail in [Kle03].

When trying to extend the compiler to deal with exceptions, we have to face
the problem that the target semantics ceases to precisely simulate the source
code semantics, in the following sense: Evaluating a source code expression ter-
minates as soon as the expression has been fully processed, no matter whether
an exception results or not. However, the JVM keeps running after an excep-

38

tion has occurred and pops stack frames even beyond the frame in which the
current computation has been started (all this is hidden in the definition of
find handler in Section 2.3.2). A remedy is to define a more fine-grained ex-
ecution function than exec with which source and target machines can be
synchronized.

Also, the non-local transfer of control caused by exceptions makes the type
compiler more difficult. Recall that type compilation for an expression yields
a function of type state type ⇒ method type × state type , where the sec-
ond component delivered by the function is the state type resulting from
executing the corresponding code. If control can be transferred to several des-
tinations, several different state types can result. Accordingly, the composition
function 2 will become more complex. Given this, we expect the type com-
piler to be stated as naturally as in Section 5.2 even for a language including
exceptions.

There are several other limitations of our source language whose consequences
for the type compiler have not yet been fully explored. For example, our opera-
tional semantics of the source language initializes all variables at the beginning
of a method body. In standard Java, no such initialization is necessary, but
a “Definite Assignment” check ensures that variables are assigned to before
being used. When adapting our source code type system, we could include
contextual information about initialization status in the type compiler. In
a similar vein, we could deal with block structure with local variable dec-
larations, by replacing the fixed parameter jmb in the type compiler by a
context-dependent type assignment.

Acknowledgements

We are grateful to Tobias Nipkow, Norbert Schirmer and Martin Wildmoser
for discussions about this work.

References

[BDJ+01] G. Barthe, G. Dufay, L. Jakubiec, S. Melo de Sousa, and B. Serpette. A
Formal Executable Semantics of the JavaCard Platform. In D. Sands,
editor, Proceedings of ESOP’01, volume 2028 of Lecture Notes in
Computer Science, pages 302–319. Springer Verlag, 2001.

[BDJ+02] G. Barthe, G. Dufay, L. Jakubiec, S. Melo de Sousa, and B. Serpette. A
formal correspondence between offensive and defensive JavaCard virtual
machines. In A. Cortesi, editor, Proceedings of VMCAI’02, volume 2294

39

of Lecture Notes in Computer Science, pages 32–45. Springer Verlag,
2002.

[BFG02] David Basin, Stefan Friedrich, and Marek Gawkowski. Verified
bytecode model checkers. In Theorem Proving in Higher Order Logics
(TPHOLs’02), volume 2410 of Lecture Notes in Computer Science,
pages 47–66, Virginia, USA, August 2002. Springer-Verlag.

[BGJS00] Gilad Bracha, James Gosling, Bill Joy, and Guy Steele. The Java
Language Specification. Addison-Wesley, second edition, June 2000.

[BN00] Stefan Berghofer and Tobias Nipkow. Executing higher order logic. In
Proc. TYPES Working Group Annual Meeting 2000, LNCS, 2000.

[BS03] Stefan Berghofer and Martin Strecker. Extracting a formally verified,
fully executable compiler from a proof assistant. In Proc. 2nd
International Workshop on Compiler Optimization Meets Compiler
Verification (COCV’2003), Electronic Notes in Theoretical Computer
Science, 2003.

[CGQ98] Alessandro Coglio, Allen Goldberg, and Zhenyu Qian. Toward a
provably-correct implementation of the JVM bytecode verifier. In
OOPSLA’98 Workshop Formal Underpinnings of Java, 1998.

[CGQ00] Alessandro Coglio, Allen Goldberg, and Zhenyu Qian. Toward a
provably-correct implementation of the JVM bytecode verifier. In
Proc. DARPA Information Survivability Conference and Exposition
(DISCEX’00), Vol. 2, pages 403–410. IEEE Computer Society Press,
2000.

[Cog01] Alessandro Coglio. Simple verification technique for complex Java
bytecode subroutines. Technical Report, Kestrel Institute, December
2001.

[Cog02] Alessandro Coglio. Simple verification technique for complex Java
bytecode subroutines. In Proc. 4th ECOOP Workshop on Formal
Techniques for Java-like Programs. Technical Report NIII-R0204,
Computing Science Department, University of Nijmegen, 2002.

[Cur93] Paul Curzon. A verified Vista implementation. Technical Report 311,
University of Cambridge, Computer Laboratory, September 1993.

[DE99] Sophia Drossopoulou and Susan Eisenbach. Describing the semantics
of Java and proving type soundness. In J. Alves-Foss, editor, Formal
Syntax and Semantics of Java, volume 1523 of Lecture Notes in
Computer Science, pages 41–82. Springer Verlag, 1999.

[DV01] A. Dold and V. Vialard. A mechanically verified compiling specification
for a Lisp compiler. In Proc. FSTTCS 2001, December 2001.

[FM98] Stephen N. Freund and John C. Mitchell. A type system for object
initialization in the Java bytecode language. In ACM Conf. Object-
Oriented Programming: Systems, Languages and Applications, 1998.

40

[FM99] Stephen N. Freund and John C. Mitchell. A formal framework for the
Java bytecode language and verifier. In ACM Conf. Object-Oriented
Programming: Systems, Languages and Applications, 1999.

[Fre00] Stephen N. Freund. Type Systems for Object-Oriented Intermediate
Languages. PhD thesis, Stanford University, 2000.

[Goe00] W. Goerigk. Proving Preservation of Partial Correctness with ACL2:
A Mechanical Compiler Source Level Correctness Proof. In Proc. of the
ACL2’2000 Workshop, Austin, Texas, U.S.A., October 2000.

[Gol98] Allen Goldberg. A specification of Java loading and bytecode
verification. In Proc. 5th ACM Conf. Computer and Communications
Security, 1998.

[GZ99] G. Goos and W. Zimmermann. Verification of compilers. In Correct
System Design, volume 1710 of Lecture Notes in Computer Science,
pages 201–230, 1999.

[Kle03] Gerwin Klein. Verified Java Bytecode Verification. PhD thesis, Institut
für Informatik, Technische Universität München, 2003.

[KN01] Gerwin Klein and Tobias Nipkow. Verified lightweight bytecode
verification. Concurrency and Computation: Practice and Experience,
13(13):1133–1151, 2001. Invited contribution to special issue on Formal
Techniques for Java.

[KN02] Gerwin Klein and Tobias Nipkow. Verified bytecode verifiers.
Theoretical Computer Science, 2002. to appear.

[Ler01] Xavier Leroy. Java bytecode verification: an overview. In G. Berry,
H. Comon, and A. Finkel, editors, Computer Aided Verification,
CAV’01, volume 2102 of Lecture Notes in Computer Science, pages 265–
285. Springer Verlag, 2001.

[Ler03] Xavier Leroy. Java bytecode verification: algorithms and formalizations.
Journal of Automated Reasoning, 2003. To appear.

[LST02] Christopher League, Zhong Shao, and Valery Trifonov. Type-preserving
compilation of Featherweight Java. ACM Transactions on Programming
Languages and Systems (TOPLAS), 24(2):112–152, March 2002.

[LST03] Christopher League, Zhong Shao, and Valery Trifonov. Precision in
practice: A type-preserving Java compiler. In Proc. Int’l. Conf. on
Compiler Construction, April 2003.

[LY99] Tim Lindholm and Frank Yellin. The Java Virtual Machine
Specification. Addison-Wesley, second edition, April 1999.

[Mor95] Greg Morrisett. Compiling with Types. PhD thesis, CMU, December
1995.

41

[MP67] John McCarthy and J. Painter. Correctness of a compiler for arithmetic
expressions. In J. T. Schwartz, editor, Proceedings Symposium in
Applied Mathematics, Vol. 19, Mathematical Aspects of Computer
Science, pages 33–41. American Mathematical Society, Providence, RI,
1967.

[MWCG99] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From System
F to Typed Assembly Language. ACM Transactions on Programming
Languages and Systems, 21(3):528–569, May 1999.

[Nip01] Tobias Nipkow. Verified bytecode verifiers. In M. Miculan F. Honsell,
editor, Foundations of Software Science and Computation Structures
(FOSSACS 2001), volume 2030 of Lecture Notes in Computer Science.
Springer Verlag, 2001.

[NN99] Wolfgang Naraschewski and Tobias Nipkow. Type inference verified:
Algorithm W in Isabelle/HOL. Journal of Automated Reasoning,
23:299–318, 1999.

[NOP00] Tobias Nipkow, David von Oheimb, and Cornelia Pusch. µJava:
Embedding a programming language in a theorem prover. In F.L. Bauer
and R. Steinbrüggen, editors, Foundations of Secure Computation.
Proc. Int. Summer School Marktoberdorf 1999, pages 117–144. IOS
Press, 2000.

[NPW02] Tobias Nipkow, Lawrence Paulson, and Markus Wenzel. Isabelle/HOL.
A Proof Assistant for Higher-Order Logic. LNCS 2283. Springer Verlag,
2002.

[Ohe01] David von Oheimb. Analyzing Java in Isabelle/HOL: Formalization,
Type Safety and Hoare Logic. PhD thesis, Technische Universität
München, 2001. http://www4.in.tum.de/~oheimb/diss/.

[Pus99] Cornelia Pusch. Proving the soundness of a Java bytecode verifier
specification in Isabelle/HOL. In W.R. Cleaveland, editor, Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’99),
volume 1579 of Lecture Notes in Computer Science, pages 89–103.
Springer Verlag, 1999.

[PV98] Joachim Posegga and Harald Vogt. Java bytecode verification using
model checking. In OOPSLA’98 Workshop Formal Underpinnings of
Java, 1998.

[Qia99] Zhenyu Qian. A formal specification of Java Virtual Machine
instructions for objects, methods and subroutines. In J. Alves-Foss,
editor, Formal Syntax and Semantics of Java, volume 1523 of Lecture
Notes in Computer Science, pages 271–311. Springer Verlag, 1999.

[Qia00] Zhenyu Qian. Standard fixpoint iteration for Java bytecode
verification. ACM Transactions on Programming Languages and
Systems, 22(4):638–672, 2000.

42

[Ros02] Eva Rose. Vérification de Code d’Octet de la Machine Virtuelle Java.
Formalisation et Implantation. PhD thesis, Université Paris VII, 2002.

[RR98] E. Rose and K. H. Rose. Lightweight bytecode verification. In Workshop
“Formal Underpinnings of the Java Paradigm”, OOPSLA’98, 1998.

[SA95] Zhong Shao and Andrew W. Appel. A type-based compiler for Standard
ML. In Proc. ACM SIGPLAN ’95 Conference on Programming
Language Design and Implementation, pages 116–129, La Jolla, CA,
1995.

[SA98] Raymie Stata and Mart́ın Abadi. A type system for Java bytecode
subroutines. In Proc. POPL’98, 25th ACM SIGPLAN-SIGACT Symp.
Principles of Programming Languages, pages 149–161. ACM Press,
1998.

[SS01] R. F. Stärk and J. Schmid. The problem of bytecode verification in
current implementations of the JVM. Technical report, Department of
Computer Science, ETH Zürich, Switzerland, 2001.

[SSB01] R. Stärk, J. Schmid, and E. Börger. Java and the Java Virtual Machine
- Definition, Verification, Validation. Springer Verlag, 2001.

[Ste98] Susan Stepney. Incremental development of a high integrity compiler:
experience from an industrial development. In Third IEEE High-
Assurance Systems Engineering Symposium (HASE’98), November
1998.

[Str02a] Martin Strecker. Formal verification of a Java compiler in Isabelle.
In Proc. Conference on Automated Deduction (CADE), volume 2392 of
Lecture Notes in Computer Science, pages 63–77. Springer Verlag, 2002.

[Str02b] Martin Strecker. Investigating type-certifying compilation with Isabelle.
In Proc. Conference on Logic for Programming, Artificial Intelligence,
and Reasoning (LPAR), volume 2514 of Lecture Notes in Computer
Science. Springer Verlag, 2002.

[Sym99] Donald Syme. Declarative Theorem Proving for Operational Semantics.
PhD thesis, University of Cambridge Computer Laboratory, 1999.

[WDMT97] J. B. Wells, Allyn Dimock, Robert Muller, and Franklyn A. Turbak.
A typed intermediate language for flow-directed compilation. In
TAPSOFT, pages 757–771, 1997.

[You89] William D. Young. A mechanically verified code generator. Technical
Report 37, Computational Logic Inc., January 1989.

43

