
Electronic Notes in Theoretical Computer Science 72 No. 3 (2003)
URL: http://www.elsevier.nl/locate/entcs/volume72.html 15 pages

Transforming Object Oriented Models with
BOTL

Peter Braun and Frank Marschall 1,2

Institut für Informatik
Technische Universität München

D-85748 Garching b. München, Germany

Abstract

In many application domains, like for example B2B, B2C, or CASE, a lot of het-
erogeneous applications exist which have to cooperate and exchange data. A major
task of system integration is the mapping of different data models, on which the
applications are built upon. In this paper, the Basic Object-oriented Transforma-
tion Language (BOTL) is introduced as a mathematically founded approach for
the integration of data models. Class diagrams of the Unified Modelling Language
(UML) are today established as a technique for meta modelling in the software engi-
neering domain. Therefore, BOTL uses a UML-based notation for the definition of
declarative mapping rules that allow reasoning about properties like applicability,
metamodel conformance and bidirectionality of transformations.

1 Introduction

The ever increasing popularity of themes like B2B, B2C, and Web-Services
shows that the integration of heterogeneous software systems is one of the
most challenging tasks in software engineering today. Beyond the integration
of different workflows, the major task is the transformation of data among
different representations.

In today’s heterogeneous environments, technologies like SOAP [4] are used
for communication, relying on XML [7] as a common markup language. Stan-
dards like XMI [2] or XML Schema [5], which define a schematic mapping
from class diagrams to DTDs, further ease the task of integration.

Yet, it turns out that standardized generated exchange formats cannot
finally solve the dilemma of system integration. Different models lead to dif-
ferent exchange formats, thus preventing compatibility. Either the exchanged

1 Email: braunpe@in.tum.de
2 Email: marschal@in.tum.de

c©2003 Published by Elsevier Science B. V.

mailto:braunpe@in.tum.de
mailto:marschal@in.tum.de

Braun, Marschall

data has to be transformed, e.g. with XSL [3] transformations or enhanced
methods like XAS [10], or the models have to be integrated, before they are
encoded in exchange formats like XML.

The drawback of XSL-like approaches is that these languages are only
unidirectional and lack an intuitive, graphical representation. Moreover the
increased number of transformation steps implies a lot of overhead which often
leads to consistency problems.

What is actually needed is the possibility to transform object models, not
their textual representations. Unfortunately the common way of doing this
by manually coding, maybe using textual script languages, is naturally fault-
prone, and time and cost expensive.

At this point graph grammars [12,14] seem to offer a much more elegant
solution at the first glance. Graph grammars are well known and examined in
the academic domain and can be easily supported with graphical modelling
techniques. In order to apply graph grammar transformations to object mod-
els, objects and attributes are treated as nodes connected by edges. Graph
grammar rules determine how subgraphs can be replaced.

Thus objects have to be resolved into rather fine-grained subgraphs which
leads to very big and confusing models that are, even for tools, hard to handle.
Furthermore, this approach does (basically) not address a set of features that
are of fundamental importance for object orientation. So there is no native
concept to deal with object identities; moreover graph grammars do not know
metamodels, i.e. class models, that define the structure of valid object models.
Finally, it is difficult to transform values of attributes with this approach, e.g.
transforming a temperature value from degree Fahrenheit to Celsius is much
easier with an algorithmic language than with graph grammars.

It turns out that other approaches to model transformation that originate
from database domain like mediators [8] or schema evolution [9,11,6,16] have
similar deficits when applied to object-oriented model transformations.

Hence we are convinced that neither algorithmic languages nor graph gram-
mars are appropriate and ergonomic languages to define object model trans-
formations. Therefore we propose BOTL, the Basic Object-oriented Transfor-
mation Language, as a trade-off between these two approaches.

This paper introduces the very basic concepts of the BOTL approach cur-
rently developed by the authors. BOTL comes with a sound, mathematical
founded description of the language and its transformation mechanisms. The
language offers the ability to use graphical description techniques and inte-
grated algorithmic descriptions to graphically define a set of mapping rules.

In Section 2 a small scenario is introduced that serves as a running example
throughout the paper. Section 3 gives a rough overview over the core BOTL
concepts; an extensive formal documentation is currently developed and will
be available soon. In Section 4 the application of BOTL rules for the given
example is described in detail. The paper is rounded up by a short discussion
and outlook on future work.

2

Braun, Marschall

2 Example

In this section a small example is introduced to illustrate the proposed ap-
proach. In the scenario there are two applications, the Alpha Information
System and the Beta Application, that both handle data about employees
and offices. The structure of the object models that the two applications use
is internally determined by UML class diagrams.

The class diagram for the first application, the Alpha Information System
(AIS), is depicted in Figure 1.

Employee

personID : int
firstName : String
secondName:String

Office

officeNumber: int
size: floatemployee

worksIn isIn

contains

Phone

phoneNumber: int0..2 0..1

1 1

Figure 1. The metamodel of the Alpha Information System

As one can see, every employee works in exactly one office, while an office
offers space for up to two employees. Moreover, every office may have a phone.

Person

personID : int
fullName: String
room: int

employee

worksFor
Company

name: String
owns

belongsTo
Room

roomNo: int
sqareFt: float
phone: String

1 1

* *

Figure 2. The metamodel of the Beta Application

Figure 2 shows the Beta Application’s class diagram for dealing with em-
ployees and offices. Obviously the Beta Application has no extra class for
phones; on the contrary the phone number is stored in an additional attribute
of the class Room.

Figure 3 shows a sample object model of the Alpha Information System
that should be transformed to correspond to the Beta Application’s meta-
model. We will refer to this model as the alpha model mα.

17 : Employee

personID : 17
firstName : „Gerhard“
secondName:„Popp“

1517 : Office

officeNumber: 1517
size: 17,62

employee worksIn

isIn

contains

22693 : Phone

phoneNumber: 22693

18 : Employee

personID : 18
firstName : „Andreas“
secondName:„Guenzler“

employee

worksIn

Figure 3. The alpha object model mα that is conform to the AIS metamodel

Intuitively, one can sketch a solution by interpreting the association names.
After transforming the model from Figure 3 to an instance mβ of the meta-
model shown in Figure 2 mβ should obviously look like depicted in Figure 4.
As one can see, the resulting model had to be enriched with static informa-

3

Braun, Marschall

tion, like e.g. the company name and the area code, that is not available in
the Alpha Information System but required within the Beta Application.

17 : Person

personID : 17
fullName: „Gerhard Popp“
room: 1517

employee

worksFor
„ACME“ : Company

name: „ACME“

owns

belongsTo

„+49 (89) 289 -22693“ : Room

roomNo: 1517
sqareFt: 189.59
phone: „+49 (89) 289-22693“

18 : Person

personID : 18
fullName: „Andreas Guenzler“
room: 1517

employee

worksFor

Figure 4. The transformed beta object model mβ originating from the AIS model
mα

The goal of the proposed approach is to provide a language that allows
a developer to easily express this intuitive knowledge about how two models
relate. Further the language needs a well defined semantics that allows the
generation of model transformers.

Thus the next section exposes the basic concepts of such a language that
is applied in Section 4 to this scenario.

3 The BOTL Formalism

In this section the most important core concepts of the BOTL formalism are
described. Since this paper serves only as an overview over BOTL, just a brief
sketch of those concepts is given here.

We use a metamodel enabled approach for the transformation of models.
A metamodel describes structural constraints respectively common properties
of models. As the UML [1] and the MOF [13] are nowadays wide spread
and commonly used in practice, the UML oriented approach of using class
diagrams for meta modelling is becoming more and more popular. Since it’s
our goal to use commonly accepted description techniques, BOTL is based
upon class diagrams for the description of metamodels. Unfortunately, class
diagrams are not formally defined within the UML. Thus BOTL is based upon
a straightforward formalization. In favor of clarity, our formalization of class
diagrams is not presented in detail within this paper. It is assumed that there
is a common agreement on the basic concepts of classes, objects, relations,
and types in object orientation.

Definition 3.1 A metamodel mm is a tuple of a set of types, a class allocation,
and a set of class associations. All classes have unique names. The attribute
names within each class are unique, too. All class associations connect classes

4

Braun, Marschall

of the class allocation. The types of all attributes are elements of the set of
types.

A sample for a metamodel is shown in Figure 1. In the example the class
allocation consists of three classes, which are tuples of an identifier and a set
of attributes. Attributes are tuples consisting of an identifier and a type. In
Figure 1 the class with the id Phone has one attribute PhoneNumber. Classes
may be connected by class associations of the usual UML types. A class
association as shown in Figure 1 is a set with one or two association ends that
consist of a role name, a class, and a multiplicity range. Class associations
with just one association end are symmetric class associations.

Definition 3.2 Similar to the definition of metamodels, a model m is a tuple
(mm, OS, OA) consisting of a metamodel mm, an object allocation OS, and a
set OA of object associations. OS and OA must be conform to the metamodel
mm, which means that:

(i) All objects and all object associations must be of a type defined in mm.

(ii) All ends of object associations must refer to an object of OS.

(iii) For every object in OS the sum of the cardinalities of all outgoing object
associations according to a class association has to be in the range of the
multiplicity defined by the class association.

Figure 3 shows an object diagram that describes a model according to
the metamodel of Figure 1. Similar to classes, objects have an identifier and
an object type which is a class of the metamodel. Attributes of objects have
assigned values. Objects may be connected by object associations. Object
associations have a cardinality assigned, which has value one for all object
associations in the example of Figure 3.

BOTL uses rules for the definition of a model transformation. Each rule
defines a mapping of a clipping of a source model onto a clipping of a target
model. Each rule consists of a left and a right hand side being model variables.

Definition 3.3 A model variable mv is a tuple (mm, OV S,OV A) consist-
ing of a metamodel mm, an object variable allocation OV S, and a set OV A
of object variable associations. Object variables and object variable associa-
tions refer to classes and class associations of the metamodel mm. All object
variable associations connect object variables of OV S.

In Figure 7 four model variables in two rules are shown. An object variable
is similar to an object, but instead of concrete values terms are assigned to
the identifier and to the attributes. An object variable association is like an
object association except it connects object variables. Concrete values for
the cardinalities are assigned to object variable associations. In the example
of this paper, the value one is used as the cardinality of all object variable
associations, and is not shown explicitly. A model variable may be inconsistent
with respect to the metamodel, since the cardinalities of a model variable’s

5

Braun, Marschall

association may conflict with the allowed range.

Definition 3.4 A model transformation rule ri is a tuple (mv0, mv1) con-
sisting of two model variables. A model transformation rule set r is a finite
sequence of rules between the same two metamodels.

All variables used within terms of a rule have to appear on both sides of
the rule. The special value ♦ can be used instead of a ”free´´ variable.

Definition 3.5 A model fragment mf is a tuple (OS,OA) consisting of an
object allocation OS, and an object association set OA. All object associations
connect objects of OS.

A model fragment is similar to a model (c.f. Definition 3.2), but it is not
necessarily consistent with respect to the multiplicities of class associations.
Furthermore, within model fragments, attributes may be assigned the special
value ♦, which may also be used within terms marking unset values.

Definition 3.6 A model fragment match mfmi is a tuple (mv,mf, matcho,
matcha) consisting of a model variable mv, a model fragment mf , and two
bijective functions matcho : OV S → OS and matcha : OV A → OA. matcho

takes an object variable and returns an object, so that every object variable
of OV S is bijectively mapped to an object of OS of the same type. matcha

takes an object variable association and returns an object association, so that
all object variable associations of OV A are bijectively mapped to an object
association of OA with the same association ends and the same cardinality.
Furthermore, for the result of matcho and matcha it has to hold that if an
object variable and an object variable association are connected, then also
their matches are connected.

mv0

17 : Employee

personID : 17
firstName : ,,Gerhard"
secondName:,,Popp"

1517 : Office

officeNumber: 1517
size: 17,62

employee worksIn

isIn

contains

22693 : Phone

phoneNumber: 22693

18 : Employee

personID : 18
firstName : ,,Andreas"
secondName:,,Guenzler"

employee

worksIn

id : Employee

personID : id
firstName : f
secondName:s

o : Office

officeNumber: o
size: m

employee worksIn

m

matcho

matcha

matchomf

Figure 5. A model fragment match (mv,mf,matcho,matcha)

Model fragment matches are needed to find those parts of a given source
model which match to the left hand side of a rule. They are also used to
construct model fragments of the target. In the example of Figure 5, one of

6

Braun, Marschall

two possible model fragment matches mfm0 and mfm1 is shown (c.f. Figure
8).

Definition 3.7 For a given model m and a model variable mv MFM(m, mv)
is the set of all possible (finite) model fragment match sequences mfm of model
fragment matches mfmi according to mv. It holds that 3 :

(i) ∀i, j : i 6= j : mfmi 6= mfmj

(ii) ∀i : mfmi|mf |OS ⊆ m|OS ∧mfmi|mf |OA ⊆ m|OA ∧mv = mfmi|mv

(iii) ∀mfmτ with (ii) holds for mfmτ

⇒ ∃mfm : mfmτ ∈ mfm ∈ MFM(m, mv)

The number of model fragment matches to a given finite model and a
given finite model variable is finite. For the application of a rule an arbitrary
ordered sequence of model fragment matches is needed.

Definition 3.8 A model fragment relation is a relation

mfr : (mfm0
i , rj)×mf1

where rj = (mv0, mv1) and mfm0
i |mv = mv0. Further let mf0 = mfm0

i |mf .
For mfr we require two postulations that have to hold:

(i) ∃mfm1
k, with mfm1

k|mv =rj|mv1∧
mfm1

k|mf =mf1

(ii) Regard the following sets of equations:
• For every object variable in mv0 there is a set of equations ES0 be-

tween the terms of the attributes, resp. the identifiers, in mv0 and the
corresponding values of the matching objects in mf0.

• For every object variable in mv1 there is a set of equations ES1 be-
tween the terms of the attributes, resp. the identifiers, in mv1 and the
corresponding values of the objects in mf1 that match accordingly to
the model fragment match mfm1

k.
Postulation (ii) holds iff there is a mfm1

k so that the equational system
ES = ES0 ∪ ES1 can be solved. Therefore every equation with a ♦ at
one side is ignored, because we use ♦ to state that the value of a given
attribute is arbitrary.

In Figure 6 an example for a valid model fragment relation is given. There
is a model fragment match mfm0

i of the left rule variable mv0 to a model
fragment mf0 that is indicated by the dashed pointers between the elements
of the model variable and the model fragment. As required in Definition 3.8
(i) there exists also a match mfm1

k for mv1 that leads to another model frag-
ment mf1. According to statement (ii) of the definition, we get the following
equational system:

3 we write u|x if we mean the tuple element x of u = (x, y)

7

Braun, Marschall

o : Office

officeNumber: o
size: m

isIn

contains

pn : B

phoneNumber: p

o : Room

roomNo: o
squareFt:m * 10.76
phone: ,,+49(89)289−" toStr(p)

rj

matchi
o

matchi
o

matchi
a

match1
o

mf1mf0

mv0 mv1

1517 : Office

officeNumber: 1517
size: 17,62

isIn

contains

22693 : B

phoneNumber: 22693

o : Room

roomNo: 1517
squareFt:189.59
phone: ,,+49(89)289−22693"

Figure 6. A rule rj with a model fragment match for the left side and a model
fragment mf1 where mfr((mfm0

i , rj),mf1) does hold.

ES0 : 1517 = o

17.62 = m

22693 = p

ES1 : o = 1517

m ∗ 10.76 = 189.59

phone = ” + 49(89)289− 22693”

As one can see this is a solvable equational system with valid solutions for all
variables (o = 1517, m = 17.62, p = 22693). Thus mfr((mfm0

i , rj), mf1) does
hold. 4

There may be several (or none) model fragments mf l
1 that are in the re-

lation mfr((mfm0
i , rj), mf l

1) for given mfm0
i and rj. Those relations that

hold only for one model fragment mf1 are of special interest, because then
attribute values for model fragments can be computed deterministically.

Definition 3.9 A model fragment transformation mft is a function such that

mft(mfm0
i , rj) 7→

{
mfr(mfm0

i , rj) if mfr is a function

⊥ otherwise

A model fragment transformation transforms one match of the source
model into exactly one model fragment of the target model. To transform
a complete model all matches are transformed and resulting fragments are
merged.

Definition 3.10 ∪m is the strict function which merges two model fragments
mf0, mf1 and returns a model fragment mf2 so that:

mf0|OS|id ∪mf1|OS|id = mf2|OS|id

Two objects with the same id are merged into one object. Corresponding
attributes must have the same value or at least one value is ♦ which will be

4 Please note that in this case also types like strings are used, that do not form a mathe-
matical group.

8

Braun, Marschall

overwritten. Otherwise the resulting model fragment is ⊥. Further all object
associations are preserved. The cardinality of the resulting object associations
is the maximum cardinality of the corresponding object associations in the
source model fragments. Merging ⊥ with any fragment results in ⊥.

Theorem 3.11 ∪m is commutative and associative.

The proof is based upon the commutativity and associativity of ∪.

Definition 3.12 A rule application is a function

apply(m, ri, mf0) 7→ mf1

Let mfm be an arbitrary finite model fragment match sequence with respect
to the model m and the model variable ri|mv0 .

mf1,0 = mf0

mf1,j = mf1,j−1 ∪m mft(mfmj−1, ri) , for 1 ≤ j ≤ |mfm|
mf1 = mf1,|mfm|

A rule application applies a rule ri to the source model m and merges the
resulting model fragments into the existing fragment mf0.

Theorem 3.13 The result of a rule application is invariant with respect to
different possible model fragment match sequences.

The proof of Theorem 3.13 is a direct consequence of Theorem 3.11.

Theorem 3.13 states an important property of the given formalism: within
a rule application we extend the target model by finding matches for a rule’s
model variable on the left-hand side in the source model, creating new model
fragments for the new target model, and merging them successively into the
target model. According to Theorem 3.13 the (chronological) order in which
matches are found does not matter. Consequently the order in which new
fragments are merged doesn’t matter, too. Thus a rule application always
yields to a deterministic result, independent of the chosen pattern matching
strategy.

Definition 3.14 A rule set application is a function

transform(m, r) 7→ mf|r| where

mf0 = (∅, ∅) and

mfi = apply(m, ri−1, mfi−1) for i ∈ {1...|r|}

transform is a model transformation if mf|r| is a valid model wrt. r|mv1|mm.

Definition 3.15 A rule ri is applicable iff for all possible models m0 the fol-
lowing holds:

apply(m0, ri, (∅, ∅)) 6= ⊥
9

Braun, Marschall

A rule set r is applicable iff it holds for all possible models m0:

transform(m0, r) 6= ⊥

We can give some heuristics to determine when a rule is applicable. How-
ever these heuristics are only sufficient, but not always necessary, postulations:

Theorem 3.16 A rule ri is applicable if the following three statements hold:

(i) All equations according to Definition 3.8 have a unique solution.

(ii) We can determine for every object variable ov ∈ ri|mv1|OV S that at
least one of the following statements holds:
- If the identity of ov is one-to-one dependent on a set of object variables

from the rule’s left-hand side we call this set OV . If the elements of
OV are matched to the same objects of the left-hand model then every
attribute of ov gets assigned the same value by the model fragment
transformation.

- It holds for the identity of the object variable that ov|oiv = ♦.
- All attribute values of ov are ♦.

(iii) For any two object variables in ri|mv1 of the same type with an identity
different from ♦, it has to hold that their pairwise identical attributes
have either equal values or at least one of them has the value ♦.

Please note that the postulations in Theorem 3.16 are sufficient, but pos-
tulations (ii) and (iii) are not necessary, i.e. there may be rules that are
applicable according to Definition 3.15 but this property cannot be proofed
with 3.16.

Obviously there are two possibilities to obtain ⊥ as the result of a rule
application: either a model fragment transformation returns ⊥, or a merge
operation returns ⊥ because different attribute values could not be merged.
Thus postulation (i) ensures that no model fragment transformation within
the rule application results in ⊥. Further (ii) and (iii) ensure that no attribute
values that are different from ♦ conflict in the target model. Such a conflict
couldn’t be solved deterministically.

To prove the properties of Theorem 3.16 (ii) BOTL comes with a set of
mechanisms to decide if an object may be created twice within one rule. If
an object variable has an id equal to ♦, a unique value for this id is created
(and no other object variable may randomly create this id). Thus all objects
“created” from this object variable are mutually different. 3.16 (ii) states that
if the id term of an object variable is one-to-one dependent on some source
id’s, then this id is considered unique (if there is no other object variable with
the same type).

Of course one may develop more sophisticated and powerful heuristics that
allow the proof of applicability for a greater set of rules than this deliberations
allow.

10

Braun, Marschall

Theorem 3.17 A sufficient but not necessary criterion for a rule set r to be
applicable is that the following holds for all rules ri:

(i) ri is applicable

(ii) for any two different rules there are no terms that lead to mutually con-
tradictory attribute values of one object.

Beyond applicability, it is further possible to verify that a set of rules is:

• valid, i.e. all created target models comply to a given target metamodel

• bijective, i.e. the result of the application and the reverse application with
interchanged source and target is isomorphic to source.

Furthermore, the structure of the according metamodel and the model
variable can be used to compute an upper bound of possible matches for which
the above mentioned objects with unique id’s are considered as fix. From this
information some further propositions can be made. E.g. this information is
necessary to compute an upper bound of the cardinalities of associations, while
the lower bound can be seen directly from every rule. With this information
a sufficient but not necessary criterion for the validity of rules (or rule sets) is
given within the BOTL formalism.

Due to the formalization of BOTL it is possible to check these properties for
a set of given rules and eventually generate programs that transform models
according to a given rule set.

4 Application

The BOTL is now used to define a transformation from models of the Alpha
Information System to those of the Beta Application. The application of this
transformation is illustrated with the models mα and mβ.

id : Employee

personID : id
firstName : f
secondName:s

o : Office

officeNumber: o
size: m

employee

worksIn id : Person

personID : id
fullName: f „ “ s
room: o

employee

worksFor
„ACME“ : Company

name: „ACME“

owns

belongsTo

o : Room

roomNo: o
sqareFt: m*10.76
phone:

o : Office

officeNumber: o
size:

isIn

contains

pn : Phone

phoneNumber:pn

o : Room

roomNo:o
sqareFt:
phone: „+49 (89) 289 -“ toStr(pn)

r0:

r1:

Figure 7. Sample BOTL rule set r = (r0, r1)

To define the relation among alpha and beta models we use a rule set

11

Braun, Marschall

r = (r0, r1), shown in Figure 7, that consists of two BOTL rules. Informally
speaking, the first rule r0 identifies employees and their offices and relates
them to a pair of Person and Room objects in the beta model. Thereby
the Company object “ACME” of the beta model remains always constant.
As already mentioned in Section 2 the author of the rules can add static
information to the rules. Thereby he can determine that the company is
always ACME and provide the full phone number for the Beta Application,
since the AIS does not have this information.

Note that the identity of objects is determined by relating them with an
attribute value. This allows one to access generated objects in the target
model.

In terms of our formalism, a model transformation is a rule set application
as defined in 3.14. Accordingly, the result can be obtained from the function
transform(mα, r). Inserting the example’s values leads to

transform(mα, r) 7→ mf2 = apply(mα, r1, apply(mα, r0, (∅, ∅)))

From Definition 3.6 and 3.7 we can figure out an arbitrary model fragment

(a)

(b)

17 : Employee

personID : 17
firstName : „Gerhard“
secondName:„Popp“

1517 : Office

officeNumber: 1517
size: 17,62

employee

worksIn

1517 : Office

officeNumber: 1517
size: 17,62

18 : Employee

personID : 18
firstName : „Andreas“
secondName:„Guenzler“

employee

worksIn

Figure 8. The model fragments (a) mfm0(r0|mv0) and (b) mfm1(r0|mv0)

match sequence mfm = (mfm0, mfm1) of all (in our case two) possible model
fragment matches in mα and the model variable r0|mv0 . Figure 8 shows the
model fragment matches mfm0 and mfm1. This model fragment match se-
quence is needed to resolve the inner apply operator according to Definition
3.12:

apply(mα, r0, (∅, ∅)) = (mf0 ∪m mft(mfm0, r0))∪m mft(mfm1, r0)

Below, the set of equations for the first model fragment transformation mft
is depicted. The left column shows the equations descending from the source
model fragment mfm0(r0|mv0) and the left side of the rule r0|mv0 . The right

12

Braun, Marschall

column shows the equations from the right side r0|mv1 .

17 = id

“Gerhard” = f

“Popp” = s

1517 = o

17, 62 = m

name = “ACME”

personID = id

fullName = f ◦ “ ” ◦ s

room = o

roomNo = o

squareF t = m ∗ 10.76

phone = ♦

In general not all systems of equations can be resolved as easily as in this
example. The example already shows that data types like strings together with
the concatenation operator “◦” may occur that do not form a mathematical
group. Hence a useful tool support for the presented approach must provide
the ability to plug-in user defined solution strategies.

17 : Person

personID : 17
fullName: „Gerhard Popp“
room: 1517

employee

worksFor
„ACME“ : Company

name: „ACME“

owns

belongsTo

1517 : Room

roomNo: 1517
sqareFt: 189.59
phone:

„ACME“ : Company

name: „ACME“

owns

belongsTo

1517 : Room

roomNo: 1517
sqareFt: 189.59
phone:

18 : Person

personID : 18
fullName: „Andreas Guenzler“
room: 1517

employee

worksFor

(a) (b)

Figure 9. The created model fragments (a) gmf0,0 and (b) gmf0,1

Since all the values can be derived deterministically, mft is a model frag-
ment transformation with respect to Definition 3.9. The generated model
fragment gmf0,0 := mft(mfm0, r0) is depicted in Figure 9 (a). Likewise, we
get the second generated model fragment gmf0,1 depicted in Figure 9 (b).

When the first rule r0 is applied it holds that mf0 = (∅, ∅). Thus,

mf0 ∪m mft(mfm0, r0) = (∅, ∅)∪m gmf0,0 = gmf0,0

i.e. the model fragment gmf0,0 is merged into an empty model fragment. Re-
solving the apply function according to 3.10 we retrieve gmf0 (c.f. Fig. 10):

apply(mα, r0, (∅, ∅)) = gmf0,0 ∪m gmf0,1 = gmf0

The value for the attribute phone will be generated by the application of the
second rule. According to Theorem 3.11 we could also permute the model
fragment matches mfm0 and mfm1 and would still get the same result.

The application of the second rule r1 is performed analogously, but it starts
with gmf0. Since the merge operator ensures that already created objects are
merged with those that are newly created, the phone attribute is set correctly
in all existing Room objects. The result of the transformation is shown in
Figure 4.

13

Braun, Marschall

17 : Person

personID : 17
fullName: „Gerhard Popp“
room: 1517

employee

worksFor „ACME“ : Company

name: „ACME“ owns

belongsTo 1517 : Room

roomNo: 1517
sqareFt: 189.59
phone:

18 : Person

personID : 18
fullName: „Andreas Guenzler“
room: 1517

employee

worksFor

Figure 10. The result of apply(mα, r0, (∅, ∅)) = gmf0: The Person and Room objects
are already created, but there is no value for the phone attribute yet.

Finally we can state that our rule set is applicable, because the two rules
comply with the two postulations of Theorem 3.17. First, all equations have
a unique solution. Second, there are no different object variables of the same
type on the right side of any rule and all terms for attributes stem only from
object variables which determine the identity of an object. Note that the term
o within the object variable “Person” of rule r0 is no problem as an Employee
worksIn exactly one Office. Also the use of ♦ terms ensure that there are no
contradictory terms for any two different rules. Thus the rule set is applicable.

5 Conclusion

We have shown that the BOTL approach is helpful for transforming models
according to two different metamodels. Besides the illustrated example, BOTL
is used within the FORSOFT II project Automotive [15] for the transformation
of models between three different CASE tools: DOORS, The UML Suite, and
ASCET-SD. As already stated in this paper, we have a mathematical model
of restricted UML class diagrams as a formal base for BOTL. In the paper
we have informally shown theorems which deal with the applicability of rules.
Even more interesting are formally shown heuristics when a transformation
generates models for arbitrary source models. We are currently working on
improved statements to recognize that a given rule set is bijective. Bijective
means that the result of the reverse transformation of the transformation of
a source model is isomorphic to the source model. Also we are currently
developing some tool support for the BOTL.

Finally we would like to thank the Bayerische Forschungsstiftung for fund-
ing our work in FORSOFT II. We also thank Bernhard Schätz and Martin
Rappl for many fruitful discussions and suggestions.

References

[1] OMG Unified Modeling Language Specification (1999).

[2] XML Metadata Interchange (XMI), OMG Document ad/99-10-02 (1999).

[3] XSL Transformations (XSLT) Version 1.0, W3C Recommendation (1999).

14

Braun, Marschall

[4] Simple Object Access Protocol (SOAP) 1.1 (2000).

[5] XML Schema Home Page (2002), http://www.w3.org/XML/Schema.

[6] Bouneffa, M. and N. Boudjlida, Managing Schema Changes in Object-
Relationship Databases, in: M. Papazoglou, editor, OOER 95 Object-Oriented
and Entity-Relationship Modeling, number 1021 in LNCS (1995).

[7] Bray, T. and J. Paoli, “Extensible Markup Language (XML) 1.0,” W3C, 1998,
available at http://www.w3.org/TR/1998/REC-xml-19980210.

[8] Busse, S., A Specification Language for Model Correspondence Assertions,
Technical report, Technische Universität Berlin, Fachbereich 13 Informatik,
Computergestützte Informationssysteme (1999).

[9] Casais, E., “Managing Class Evolution in Object-Oriented Systems,” The
Object-Oriented Series Object-Oriented Software Composition, Prentice
Hall, 1995 .

[10] Chen, S.-K., M.-L. Lo, S. Padmanabhan and J.-Y. Chung, XAS: A system for
accessing componentized, virtual XML documents, in: Proc. 23rd Int’l Conf.
Software Engineering (2001), pp. 493–502.

[11] Liu, C.-T., P. K. Chrysanthis and S.-K. Chang, Database Schema Evolution
through the Specification and Maintenance of Change on Entities and
Relationships, in: P. Lucopoulos, editor, Entity-Relationship Approach - ER’94,
number 881 in LNCS (1994).

[12] Nagl, M., editor, “Building Tightly Integrated Software Development
Environments: The IPSEN Approach,” Springer, 1996.

[13] OMG, OMG Meta Object Facility (MOF), Technical Report 1.3.1, formal/01-
11-02, Object Management Group (OMG), www.omg.org (2001).

[14] Schürr, A., Specification of Graph Translators with Triple Graph Grammars,
in: G. Tinhofer, editor, Proc. WG’94 20th Int. Workshop on Graph-Theoretic
Concepts in Computer Science, number 903 in LNCS (1994), pp. 151–163.

[15] v.d. Beeck, M., P. Braun, M. Rappl and C. Schröder, Automotive Software
Development: A Model Based Approach, number 2002-01-0875 in SAE Technical
Papers Series, Society of Automotive Engineers (2002).

[16] Vidal, V. M. and M. Winslett, A Rigorous Approach to Schema Restructuring,
in: M. Papazoglou, editor, OOER 95 Object-Oriented and Entity-Relationship
Modeling, number 1021 in LNCS (1995).

15

	Introduction
	Example
	The BOTL Formalism
	Application
	Conclusion
	References

