
Towards Tool Support for Service-Oriented Development of
Embedded Automotive Systems

Vina Ermagan1, To-Ju Huang1, Ingolf H. Krüger1,
Michael Meisinger2, Massimiliano Menarini1, Praveen Moorthy1

1 Department of Computer Science
University of California, San Diego

La Jolla, CA 92093-0404, USA
{vermagan,t3huang,ikrueger,mamenari,pmoorthy}@cs.ucsd.edu

2 Institut für Informatik
Technische Universität München

Boltzmannstr. 3, 85748 Garching, Germany
meisinge@in.tum.de

Abstract: The development of embedded systems is a challenging task because of
the distributed, reactive and real-time nature of such systems. Distribution of embed-
ded components across buses and networks causes high interaction complexity. We
propose a model-based development approach to handle this complexity. We model
the individual functionalities of the system – the services – independently from each
other in an interaction modeling and architecture definition language. Methodological
steps allow us to refine and modify the models. A development process determines the
order in which to perform the steps. Our service-oriented development methodology
spans the entire development process from requirements analysis to implementation,
verification and validation. We have developed integrated tool support that governs
this process; it provides an effective means to apply and evaluate our approach. In this
paper we introduce our service-oriented methodology and describe our tool as part of
an integrated tool suite supporting this process by means of an automotive example:
the Central Locking System (CLS).

1 Introduction

Designing complex distributed systems is a difficult task. Systems like these can be found
in application domains such as avionics and automotive control systems – in the form of
embedded systems – and in telecommunications and business information systems. Also
sensor networks and mobile applications are growing areas for complex distributed sys-
tems. The common property among all of these systems is that distribution and com-
plex interactions between distributed nodes are key enablers of their success. Distribution
makes the system architecture much more modular and decentralized, which contributes to
fault tolerance, component reuse, system robustness, maintainability and further positive
system properties.

However, heavily distributed systems are among the most complex man-made artifacts
known; the high degree of distribution makes development of these systems very chal-
lenging. The number of states and conditions – for functional behavior as well as for error
conditions – increase exponentially with the number of distributed nodes. Furthermore, lo-
gistics and maintenance problems originate from the distribution of entities. In fact, nodes
can be developed, maintained, extended and replaced independently, potentially harming
the overall system integrity and consistency.

1.1 Problem Definition

Important questions that need to be addressed when designing distributed systems and
their architectures include, for instance, what is the functional behavior of the system
i.e. what are the individual services that the system and its parts offer to the environment
and how are services connected to provide the full system functionality. Important further
questions are how to design the objects/components of the system and their interfaces so
that they can provide the identified services with the required quality properties; how to
connect and distribute them i.e. how to design the communication topology, and how to
replicate components for most efficient operation on a given middleware. Answering these
questions requires a systematic, iterative approach in system design. Often, this involves
changes to the designed system behavior and consideration and exploration of different
alternative architecture candidates that can provide the designed services.

Model-based development is a promising approach to mitigating the difficulties and com-
plexities of developing a system from requirements analysis to system execution [Bro05].
Models are abstractions of reality that are targeted to express specific views on the system
serving a specific purpose. Different models exist at different stages of the development
process. Having a collection of complementing models, it is possible to understand, de-
sign and modify concepts that are otherwise too complex to handle. If the models used for
system development are integrated and consistent, and if there is a systematic process from
models of high abstraction through refinement to the realized system, we speak of model-
based development. The degree of precision, the level of formality and the used modeling
notations and concepts vary significantly from one model-based approach to another.

One model-based approach to designing distributed embedded systems is to separate an
overall system model into logical models (also called domain models [Eva03]) and imple-
mentation models; approaches advocating this separation are architecture-centric software
development [OMG05] and model-driven architecture [OMG03]. The logical models de-
scribe functionality, distribution of components and quality properties independently of
implementation details and deployment architecture design decisions. The implementa-
tion models are consistent refinements of the logical models and contain these details
and decisions. The advantage of this separation is that one logical model can be refined
into many implementation models. This provides an independence of system functional-
ity from the actual deployment architectures, for instance to defer design decisions or to
switch to a different architecture.

A clear separation into logical and implementation models is often difficult to achieve
– especially in situations where requirements suggest a tight coupling between the two
types of models. This is often the case when requirements include specific performance
and other Quality-of-Service properties. A core source of complexity is that the scenarios
supported by the system typically involve a multitude of collaborating entities partaking in
complex interactions. These interactions are part of both the logical and implementation
models. A well-defined mapping needs to exist between the interactions in both models.

Our goal is to provide a solution where a logical system behavior model can be reused
unchanged across all implementation models (or target-architectures). The major step
toward achieving this goal is to decouple the “features” or “services” a system provides
from the architecture on which it is deployed.

A development approach must be supported by efficient tools to provide a practical ap-
plication environment. The methodology establishes the formal and logical basis on top
of which tools need to leverage the practical problems and day-to-day routines. Tools
automate methodological steps and enable graphical, iterative system modeling, develop-
ment and verification. Different tools need to be integrated in order to provide seamless
modeling support, a high degree of automation and short turn-around times.

1.2 Service-Oriented Specifications

In this paper, we propose an approach to service-oriented development of distributed em-
bedded systems that establishes a clean separation between the services provided by the
system under consideration, and the architecture – comprised of components and their
relationships – implementing the services. Our approach is well suited for tool support,
which we will explain subsequently.

We use the notion of service to decouple abstract behavior from implementation archi-
tectures supporting it. The term “service” is used in multiple different meanings and
on multiple different levels of abstraction throughout the Software Engineering commu-
nity [TRH+04]. Web Services [STK02] currently receive a lot of attention from both
academia and industry, but services are also emerging in embedded systems. Fig. 1 shows
a typical “layout” of applications composed of a set of services. Often such systems con-
sist of at least two distinct layers: one domain layer, which houses all domain objects
and their associated logic; and one service layer, which acts as a facade to the underly-
ing domain objects – in effect offering an interface that shields the domain objects from
client software. For an embedded system, the service layer, for instance, consists of the
functions this system exposes to the environment by exposing an access interface on a
broadcast bus network, such as CAN and FlexRay. The domain layer consists of “plain
old objects” representing the data and logic of the underlying implementation. Typically,
services in this sense coordinate workflows among the domain objects; they may also call,
and thus depend on, other services. Some of the services, say Service 1 and Service 2 in
our example, may reside on the same electronic control unit (ECU), whereas others, such
as Service n may be accessible remotely via the bus network.

Service 1 Service 2 Service n
Service Layer /

Facades ...

Domain Layer

Figure 1: Service-Oriented Architectures

The layout shown in Fig. 1 is prototypical for many domains where complex, often
distributed applications are expected to offer externally accessible interfaces. Indeed,
service-oriented approaches to system development, leading to similar application struc-
tures, are prominent for business information systems using web services [STK02] and
in the telecommunications domain [Zav01] and are emerging in the automotive do-
main [BKM06a, BKM06b]. Abstracting from the domain-specific details we observe that
services often encapsulate the coordination of sets of domain objects to implement “use
cases”.

We view services as specializations of use cases to specify interaction scenarios; services
“orchestrate” the interaction among certain entities of the system under consideration to
achieve a certain goal [Eva03]. In contrast to use cases, which describe functionality typi-
cally in prose and on a coarse level of detail, we define a service via the interaction pattern
among a set of collaborators required to deliver the functionality. Services are partial in-
teraction specifications. For a formal definition of the service notion, see [KMLS05].

S
e
r
v
ic
e

E
li
c
it
a
ti
o
n

A
r
c
h
it
e
c
tu
r
e

D
e
fi
n
it
io
n

Use Case Graph Roles

R1 R2 R3
R1

R3

Role Domain Model

R2

C4

C1
C2

C3

Architecture

C2:R2

C3:R2

C1:R1

C4:R3

R2R1C1

C2

Mapping Component Configuration

Services

R2R1

request

msc service1

Figure 2: Service-Oriented Development Process

We employ a two-phase, iterative development process as shown in Fig. 2. Phase (1), Ser-
vice Elicitation, consists of defining the set of services of interest – we call this set the
service repository, our logical model. Phase (2), Architecture Definition, consists of map-
ping the services to component configurations to define deployments of the architecture –
the implementation model.

In phase (1) we identify the relevant use cases and their relationships in the form of a
use case graph. This gives us a relatively large-scale, scenario-based view on the system.

From the use cases, we derive sets of roles and services as interaction patterns among roles.
Using roles decouples from interaction details, because roles abstract from components or
objects. Roles describe the contribution of an entity to a particular service independently
of what concrete implementation component will deliver this contribution. An object or
component of the implementation typically will play multiple roles at the same time. The
relationships between the roles, including aggregations and multiplicities, develop into the
role domain model.

In phase (2) the role domain model is refined into a component configuration, onto which
the set of services is mapped to yield an architectural configuration. These architectural
configurations can be readily implemented and evaluated as target architectures for the
system under consideration.

The process is iterative both within the two phases, and across: Role and service elicita-
tion feeds back into the definition of the use case graph; architectures can be refined and
refactored to yield new architectural configurations, which may lead to further refinement
of the use cases.

1.3 Contributions and Outline

As main contribution, this work presents a systematic approach to the development of dis-
tributed, reactive embedded systems and an integrated tool suite we have developed that
supports this approach throughout the entire development cycle. We present the applica-
tion of our modeling approach and the accompanying chain of tools by means of a running
example through all stages of development.

In particular, we explain the purpose and depencencies of the individual tools: We use
our SODA tool to track requirements of service-oriented systems and generate process
required documentation. Our M2Code tool models interaction patterns that define ser-
vices. The Component Synthesizer of M2Code generates state machines for the modeled
services. These state machines can then be transformed into executable code (using RT
CORBA CodeGen and M2Aspects), and verified for correctness against the specification
(using S2Promela, ServiceDebug and MSCCheck).

In Sect. 2, we introduce the automotive Central Locking System (CLS) as our running
example and show how it is modeled in terms of services. In Sect. 3, we show how we
make use of tools to support our approach. We present our integrated tool landscape and
explain the relevance of specific tools in the process. In Sect. 4, we report on experiences
for CLS applying our approach and the tools; we also provide a brief discussion. In Sect. 5
we show related work. Sect. 6 contains conclusions and an outlook.

2 Service-oriented model of CLS

To demonstrate our approach, we use the Central Locking System (CLS), a well-studied
and documented example of one automotive vehicle functionality. The CLS integrates a
multitude of separate subsystems in the vehicle, ranging from safety critical ones (mo-
tor control and crash sensors) to comfort functions (automatic seat positioning and tuner
presets in luxury vehicles). For reasons of brevity, we present a simplified and abstract
adaptation of the CLS. We direct the reader to [NP03, KNP04] for a more comprehensive
description. Here, we focus on some specific use cases during the locking and unlocking
of the vehicle: operation of locks, signaling, transfer driver ID, and impact sensing.

The Central Locking System in the described form acts as a representative for similar
problems in automotive control electronics and distributed, reactive systems in other appli-
cation domains. For instance, business information systems with distributed components
communicating via web services, and database systems implementing distributed transac-
tions by two-phase commit protocols share many of the same properties and challenges;
thus, the example and approach presented in the following, provide telling insight for these
domains as well.

The first step in the service-oriented process is analyzing the requirements, which leads
to a number of use cases and actors. The main parts of the CLS system are a remote key
fob and a controller within the car, which receives the lock and unlock command signals
from the key fob. The controller also interacts with the lighting system in order to operate
the lights, the security module, in order to validate a driver’s identity by checking the key
fob’s secure identity token, and the door locking subsystem in order to lock and unlock the
doors. In addition, upon impact, an impact sensor will send a signal to the controller. For
simplification, we will abstract away the complications of the door locking subsystem by
introducing a Lock Manager, which will act as an interface for locking or unlocking the
doors.

In the following, we explain in detail how to specify the CLS in our service-oriented
modeling approach. We follow our development process, introduced above, to define,
implement and verify architectures for distributed, reactive systems. Along the way we
introduce our Architecture Definition Language (Service-ADL) that we use for specifying
roles, services and architectures; the details of this notation are documented in [KM04,
Mat04].

After capturing the use cases and actors, the first step towards a service-oriented system
specification is to identify the participating roles, which emerge out of the found actors
within the use cases. We identify key fob (KF), controller (CONTROL), lock manager
(LM), security module (SM), lighting system (LS), database (DB), which holds the infor-
mation for each driver ID, and the impact sensor (IS). These roles are the logical entities
in our system that communicate locally or over the network to provide the required system
functionalities. Fig. 3 shows the role definitions in our Service-ADL.

The next step in our process is to elicit the services that the system needs to support based
on the found use cases. For instance, the service Vehicle Unlocking involves the communi-
cation between the key fob and the controller, which, in turn, communicates with the lock

role CONTROL

description

 Entity acting as a controller for all CLS functions

states

(UNLD: Doors unlocked) (LCKD: Doors locked)

role KF

description

 Represents the receiver unit for a driver’s key fob

states

(INITIAL: initial state)

role DB description Database component …

role IS description Impact sensor …

role LM description Lock manager …

role LS description Lighting system …

role SM description Security module …

Figure 3: Role Definitions in Service-ADL

manager (for physical door unlocking), the lighting system (for flashing the lights) and
the security module (to validate and store the driver id). Fig. 4 depicts the communication
connections between the roles for all services in the CLS example, as part of the service
repository definition in Service-ADL.

CLS Controller

CONTROL

Key Fob

KF

Lock Manager

LM

Lighting System

LS

Security Module

SM

Database

DB

Impact Sensor

IS

service repository CLS

description

Central Locking System

roles

(KF)(CONTROL)(SM)(LM)(DB)(IS)(LS)

services

(CLS-0)(CLS-1)(UNLK-e)(LCK)(LCK-1)

(LCK-2)(UNLK)(UNLK-1)(UNLK-2)

role domain model

Figure 4: CLS Service Repository Definition

We specify the services of the CLS system using a notation based on Message Sequence
Charts (MSC) [IT96, Krü00, OMG05]. An MSC defines the relevant sequences of mes-
sages (represented by labeled arrows) among the interacting roles. Roles are represented
as vertical axes in our MSC notation. Fig. 6 and 7 show the specification of several ser-
vices as interaction patterns. The MSC syntax we use should be fairly self-explanatory,
especially to readers familiar with UML2 [OMG05]. In particular, we support labeled
boxes in our MSCs indicating alternatives and conditional repetitions (as bounded and un-

bounded loops). Labeled boxes on an axis indicate actions, such as local computations;
diamond-shaped boxes on an axis indicate state labels. High-level MSCs (HMSCs) in-
dicate sequences of, alternatives between and repetitions of services in two-dimensional
graphs – the nodes of the graph are references to MSCs, to be substituted by their respec-
tive interaction specifications. HMSCs can be translated into basic MSCs without loss of
information [Krü00]. Fig. 5 shows the use of HMSCs in the CLS example. The left HMSC
shows the infinite sequence of locking followed by unlocking back to locking, and the right
side shows an HMSC defining the Vehicle Unlocking (UNLK) service as a composition of
two sub-services.

JOIN

UNLK-2

UNLK-1

LCK

UNLK

msc CLS-1 msc UNLK

Figure 5: CLS High Level Services CLS-1, LCK

We model the CLS Vehicle Unlocking service by joining two modular sub-services (in-
teraction patterns): UNLK-1 and UNLK-2. Fig. 6 shows the UNLK-1 service, which
captures the Operation of Locks and Signaling. Upon receipt of the unlck message from
KF, CONTROL issues an unlck message to LM. Once LM acknowledges this with an
ok message, CONTROL requests signaling of the unlocking from LM by means of a
door unld sig message. Once it has issued this message, CONTROL sends an ok mes-
sage back to KF. The Transfer Driver ID service – storing the driver’s id for further access
– is also triggered by the unlck message from KF to CONTROL, and is captured in UNLK-
2. The corresponding interaction pattern is shown in Fig. 7 as part of a screenshot of our
service modeling tool M2Code. In a subsequent iteration of the development process we
could use the SODA tool (see Sect. 3.2) to capture the requirement that a failed security
check will not unlock the vehicle; consequently the UNLK-1 service could then be modi-
fied to include an interaction with SM before the locks are operated.

A number of extensions to the standard MSCs warrant explanation [Krü03, KM04]. First,
we take each axis to represent a role rather than a class, object, or component. The map-
ping from roles to components is a design step in our approach and will be described
below. Furthermore, we use an operator called join [Krü00, Krü03], which we use exten-
sively to compose overlapping service specifications. We call two services overlapping
if their interaction scenarios share at least two roles and at least one message between
shared roles. The join operator will synchronize the services on their shared messages, and
otherwise result in an arbitrary interleaving of the non-shared messages of its operands.

KF CONTROL LM LS

INITIAL LCKD INITIAL INITIAL

unlck

unlck

ok

door_unld_sig

UNLDINITIAL INITIAL INITIAL

ok

Figure 6: UNLK-1: Operation of Locks & Signaling

Join is a powerful operator for separating an overall service into interacting sub-services.
The availability of such an operator also distinguishes our approach from many others in
literature. For instance, we use the join operator (as seen on the right side of Fig. 5) to
compose the described two unlocking services from Fig. 6 and 7.

Figure 7: UNLK-2: Transfer Driver ID (screenshot)

To specify preemptive behavior, we introduced the preempt operator [Krü00, Krü03]. For
CLS, the vehicle must also unlock in case of a crash impact. Upon impact, IS will send an
impact signal to CONTROL. At this point, the routine interactions should be preempted,
and CONTROL should immediately unlock the doors by sending an unlock message to
LM and receiving its acknowledgment. Fig. 8 gives an example for the use of the preempt
operator. Both triggering multiple services with the same message and preempting a set

of such complex services with another critical service are powerful capabilities of our
approach, as shown in the example.

PREEMPT IS CONTROL Impact;

IS CONTROL

CLS-1

LM

unlck

unlck_ok

UNLD

INITIAL

FINAL INITIAL

DB SMKF LS

INITIALINITIALINITIALUNLD

service UNLK-e

description

 Routine operations (CLS-1) are interrupted when an impact is detected

interaction

Figure 8: Adding Emergency Unlocking using Preemption

So far, we modeled the logical behavior of the system via services, independently of any
underlying deployment architecture. This approach maximizes flexibility and reusability
of the logical model. The next step after eliciting the services is to define a suitable compo-
nent architecture that can provide these services and to define a mapping from the logical
model to the deployment model, which includes the mapping of roles to components. We
must make sure that the architecture observes the dependencies of the roles and further
constraints given by the requirements. Fig. 9 shows how we specify components in our
Service-ADL. When a role is mapped to a component, that component plays the mapped
role. Intuitively, “playing a role” in an architecture means implementing all interactions in
which this role partakes. Multiple roles can be mapped to the same component. The more
roles it plays, the more functionality it implements. Interactions between different com-
ponents usually mean expensive distributed communications, while interactions between
roles within one component can be implemented very efficiently as subroutine or method
calls. Also, we can map the same role to multiple components, indicating a replication of
that role.

component type ImpactSensor

description A sensor to detect an impact

plays (IS)

in service (UNLK-e)

component type MainControl

description The main controller of the CLS

plays (CONTROL)

in service (UNLK-1)(UNLK-2)…

…

Figure 9: CLS Component Type Definitions

Fig. 10 shows a potential deployment architecture for our CLS case study, defined in our
Service-ADL. As shown in the figure, the IS role is played by two different components,
meaning that it is replicated, due to its criticality, in order to improve reliability. Also
part of the architecture configuration is the mapping of role communication channels to
networks, in our case a “Wireless” network and a “CAN Bus”. Later in this paper, we
will use this deployment architecture to demonstrate how we can verify architectures for
distributed reactive systems. For more information about the architecture mapping and
architecture exploration, see [KMM06].

architecture CLS Architecture1

service repository CLS

description
Defines a deployment architecture for the CLS logical model

component types
(ImpactSensor)(MainControl) …

components
(ImpactSensor1:ImpactSensor)

(ImpactSensor2:ImpactSensor)

(Controller:MainControl) …

implements
(UNLK-e) (UNLK-1)(UNLK-2) …

configuration

SecuritySystem Plays: :SM:

Figure 10: CLS Deployment Architecture

Based on the service repository specification and the deployment architecture definition,
we can now simulate the model, verify and model check it, and generate code for proto-
typical implementations.

3 Integrated Tool Support

In order to demonstrate and experiment with service-based development, we have designed
and implemented several novel prototypical tools. Together they form an integrated tool
landscape or tool chain. The purpose of this tool chain is to illustrate and support the
complete development cycle, from the initial modeling phase to execution on real systems.

3.1 Tool Landscape Architecture

The tool landscape consists of a number of tools supporting interaction-based and service-
oriented development. Fig. 11 gives an overview of some of our tools and their dependen-
cies. We divide the tool landscape roughly by the stage in the overall development cycle:
Requirements Elicitation, Service Specification and Architecture Design, Implementation,
as well as Deployment and Verification. In the following sections, we will describe the
tools according to their location in the development stage; for a few of the tools we will
present more extensive descriptions.

GLUE

Architecture

Design

C4

C1 C2

C3

M2Aspects

Document

Generator

Component

Synthesizer

AspectJ

Compiler

Requirements

Elicitation
Implementation

Service Specification,

Architecture Design

Deployment

Verification

SODA

RT CORBA

Code Gen.

M2Code

AutoFocus,

Model Check

MSCCheck

triggersencapsules

Executable

Executable

Documents

Figure 11: Service-Oriented Tool Landscape

The overall dependencies are as follows: The SODA tool tracks requirements of service-
oriented systems and generates requirements and architecture documentation. M2Code
provides facilities for intuitive graphical service modeling with MSCs and HMSCs. M2Code
also contains a Component Synthesizer to generate state machines for all components par-
taking in the modeled services. The GLUE tool maps the component state machines to
more complicated target architectures, for instance with replicated component instances.
The component state machines are the basis for code generation of executable prototypes
(using RT CORBA CodeGen and M2Aspects) and verification by model checking (using
S2Promela, ServiceDebug and MSCCheck).

3.2 Tools for Requirements Elicitation

We support the process of Requirements Elicitation by means of two tools: the SODA tool
and M2Code.

Project Management & Planning

Requirements

Elicitation

Service

Specification

Architecture

Design
Implementation

Use Cases

Services

R2R1

request

msc service1
C4

C1
C2

C3

Component

Architecture

Component

Design

Work packages

Supporting

Resource allocation

Tasks

External

Internal

Mitigations

Strategy

Risks

People

Material

Financial

Knowledge

Resources

Deliverables

Releases

Artifacts

Results

s1

s2

typedef msg1 =

struct { byte* b1, … }

msg1

System

C
o
n
s
is
t
e
n
t
 c
r
o
s
s
-
r
e
fe
r
e
n
c
in
g

SODA

Figure 12: SODA Tool Overview

The SODA tool (Service-Oriented Design and Architecture Development) governs the de-
velopment process and provides project support. It has facilities for managing project
resources and tracking project progress. SODA embeds and triggers other tools and has
the capability of generating project relevant documentation and reports. SODA tool is a
platform for capturing and cross-referencing information about a system or software under
development (see Fig. 12 for a schematic overview). Information is structured according
to a changeable domain model and is stored as XML with associated data files. SODA
contains a generic XML editor that enables editing data documents based on arbitrary
XML schemas. We designed an XML schema that contains elements for service-oriented
development projects, such as “Use Case”, “Textual Requirement”, “Service”, “Compo-
nent” and many more. The schema designer can further structure and specify types and
attributes for each of these elements Based on the type of element or attribute, specific
data editors are invoked. SODA provides a powerful linking and cross-referencing facil-
ity that applies to all elements, as defined in the XML schema. SODA provides powerful
mechanisms for editing, linking and post-processing.

In our reference data model for service-oriented development projects, the system devel-
oper enters requirements as hierarchically structured use cases, which contain free form
text and embedded figures. Use cases are linked to structured textual requirements; both
use cases and requirements are additionally linked to the services of the system in devel-

opment. All the before mentioned object types and their cross-references are defined in
the underlying XML schema.

SODA has a plug-in architecture that enables consistency checks of the currently edited
data model. For instance, SODA can detect referencing errors (such as link cycles) and
missing references (such as a use case with no linked service). SODA also has powerful
plug-ins for generating LaTeX, PDF, HTML and other type documents from the model.
We use this to generate requirements and software architecture documents out of the data
model.

The second tool supporting requirements elicitation is M2Code. It is our service modeling
tool and will be described in detail in the next section. For requirements gathering we use
high level services - in form of HMSCs - without providing detailed service specifications
and interaction patterns.

We are currently developing the link between SODA and M2Code, so that services can be
edited directly and stored within SODA’s system data model.

3.3 Tools for Service Specification and Architecture Design

A central part of our tool landscape are the modeling and specification tools. M2Code
enables the system designer to specify functionalities as a complex interplay of logical
components (called Roles) exchanging messages. Each system functionality is modeled
separately from the others. Those functionalities are called “services” in our terminology.
Services can be structured hierarchically and referenced from other services. This enables
us to design service-oriented applications in a modular way, which results in reusable
service definitions. Simpler services are combined to form more complex ones providing
advanced functionalities by means of composition operators.

M2Code (see Fig. 7 for a screenshot) is the principal modeling tool of our tool set. It allows
modelers to specify system functions (services) using Message Sequence Charts (MSCs).
Additional information, such as real time constraints, logical to deployment mappings,
failure hypothesis, etc. can be specified using other tools to enrich the model specified by
M2Code.

The tool is implemented as a Microsoft Visio plug-in. This architecture allows us to lever-
age the powerful design and export capabilities of Visio and include interaction specifica-
tions in various types of documents. The plug-in provides graphical elements to represent
Message Sequence Charts, High Level Message Sequence Charts (HMSCs) and the vari-
ous operators we use. Fig. 7 for instance, depicts an MSC designed with M2Code. Apart
from the graphical capabilities that enable us to design specifications with MSCs and HM-
SCs, M2Code contains the Component Synthesizer to generate state machines and role
structure diagrams out of specifications.

We make use of role structures and state machines for the individual compo-
nents [KGSB99, AKMP05] in other tools for various purposes. The role structure cap-
tures the communication links between the roles participating in the specified services.

The generated state machines, one for each role, capture the local behavior of each par-
ticipant. They define how each node of a distributed system engages with its environment
to carry out the specified services. Role structures and state machines are exported to an
XML file.

To demonstrate the use of our tools in addressing the needs of the Automotive industry
we have used M2Code to model the CLS example described in Sect. 2. We advocate
an iterative refinement process that must be supported by powerful language constructs
and adequate tools to be effective. Fig. 8 exemplifies how M2Code supports iterative
service-oriented development: we use the PREEMPT operator to enrich an initial service
specification (defined in the referenced service CLS-1, see Fig. 5) with emergency unlock-
ing behavior (defined in the lower part of the graph). The parameter on the right part of
the PREEMPT box specifies that a message “Impact” can be sent by the role IS to the role
CONTROL at any moment. If the message is sent, the normal interaction defined by CLS-1
is interrupted and replaced by the one defined in the lower part of the PREEMPT box. In
the example if the “Impact” message is sent the car doors unlock.

This simple example shows how, with the right set of tools and languages, service-oriented
development can be supported even in application domains not supported by service-
oriented middleware. Once the two services are composed, M2Code will then take care of
synchronizing all roles participating in the interaction and ensure that the specified logical
behavior will be observed in the generated state machines.

M2Code can directly generate state-machines out of service-oriented specifications if
the target deployment architectures are simple and roles are mapped one-to-one to exe-
cutable components. In case of more complex architectures, we have designed the GLUE
tool [Rus06], which takes the service specifications of M2Code as an input, together with
the deployment architecture specification in Service-ADL (see Fig. 9 and 9). GLUE will
then generate MSCs for each component instance with unique message identifiers, for
further processing by a code generator etc.

3.4 Tools for Implementation

We have implemented two tools that take a service-oriented specification and generate
executable prototypical implementations out of it: RT CORBA CodeGen and M2Aspects.
RT CORBA CodeGen is a template-based code generator. Currently it targets mainly the
RT CORBA [Obj02] infrastructure. However, the flexible template-based architecture en-
ables easy ports to other infrastructures and middlewares. We utilize the code generator to
create prototypes of our architectures for simulation and validation. This includes runtime
verification of Quality of Service (QoS) properties [AKMP05]. In contrast to other simula-
tion tools we have at our disposal, for instance AutoFocus [Aut06], the RT CORBA based
runtime system we have implemented provides monitoring and validation mechanisms for
both logical flow and real-time properties.

The code generator itself is written in Java and uses an XML file generated by M2Code as
input. To bridge the gap between the abstract XML specification and the executable code,

we have developed a runtime library that uses the facilities provided by the RT CORBA
platform. Our runtime system was intentionally kept simple and straightforward by using
the Real-Time Event Service (RTES) messaging facility. The RTES provides the funda-
mental abstraction for asynchronous message passing, enabling each component to operate
independently. We have also made use of hooks the RTES provides to incorporate a real-
time scheduler. The Time Service provides a distributed, synchronized, global clock to all
components in the system. Mechanisms for globally synchronized clocks exist on many
embedded platforms and so the runtime system is easily portable. For instance, we could
have an implementation that targets a CAN (Controller Area Network) bus for embedded
applications and another targeting an enterprise service bus for large federated corporate
networks.

The code generator currently provides two templates, supporting two different execution
models: Synchronous and Asynchronous. Both generate C++ code for the RT CORBA
platform. The Synchronous execution model operates in a time-synchronous mode; mes-
sages are exchanged via one-place buffers between components. Each component waits
for inputs to arrive on all of its input buffers, then executes an enabled transition of its as-
sociated state machine, and finally writes to all of its output buffers; this scheme is further
described in [HSE97]. The Synchronous execution model is supported by the validation
and verification tool AutoFocus [Aut06]. This, however, results in “lock-step” executions
of the components that have to be coordinated by an abundance of control messages on
the communication medium.

To better cater to the reactive environment in the automotive domain we have developed
the Asynchronous execution template. It implements an execution model where, upon re-
ceipt of a message, each component immediately executes an enabled transition and sends
output on the appropriate ports. This model eliminates undesirable “waiting” as well as
network flooding by control messages. We have developed a set of tools providing valida-
tion and verification of systems developed using the asynchronous execution model: one
tool (S2Promela) is supporting formal verification and one (ServiceDebug) does testing.
A third tool (MSCCheck) is currently work in progress; it will allow us to perform formal
verification in a compositional fashion. The goal is to be able to verify also implementa-
tions and models that are too complex for the current tools.

Besides the RT CORBA CodeGen, we have developed M2Aspects to efficiently gener-
ate executable aspect-oriented implementations of service models [KMM06]. M2Aspects
translates services into aspects; the aspect-weaving capabilities of the AspectJ compiler
then create the executable implementation. We use multiple such prototypical implemen-
tations of the same service repository but with different target architectures for quick ar-
chitecture exploration and validation [KMM06].

3.5 Tools for Verification and Validation

We have different options for validating M2Code models. AutoFocus [Aut06] is a good
solution to address the synchronous model of execution. In the automotive domain, how-

ever, we usually prefer the asynchronous one. S2Promela, ServiceDebug and MSCCheck
are our solutions for the asynchronous domain. All these tools work on the XML files
generated by M2Code and provide different facilities to analyze the models.

ServiceDebug (Fig. 13) uses the code generation facilities described in the previous section
and steps through the execution of each component via an interactive graphical interface.
To support debugging of models, the tool shows a graphical representation of the state ma-
chines and their current states. The tool allows the user to choose the order each transition
is taken by all state machines and even to inject messages on behalf of some component.

Figure 13: ServiceDebug User Interface

Another approach to validation applies formal verification techniques. To this end we
have developed a prototypical tool able to translate the M2Code-generated component
state machines to a suitable input file for a model checker. In particular we have chosen
to generate a Promela source file that can be verified by the SPIN model checker [Hol03].
The tool is called S2Promela and is written in Java.

As described before, the service-oriented approach we apply is based on a rich ADL that
provides two different description levels: a logical one, where the interactions between
abstract roles are defined, and an implementation one, where logical entities are mapped
to physical nodes of the target system. Our S2Promela tool uses models obtained from
M2Code, by means of the XML interchange file, and additional information about the
mapping of the service model to a deployment architecture, to generate a Promela descrip-
tion of the system.

Promela allows us to easily model concurrent programs communicating by message pass-
ing. We use the language facilities (proctype and chan) to map elements from our model
to Promela constructs. In our translation each role is converted to a Promela proctype defi-
nition. The proctype parameters are chan variables representing the input/output channels

of the corresponding role. The translation of the state machine for each role is performed
according to the schema suggested in [Hol03]. Each state is encoded by a label in the
proctype and each transition by a guarded goto statement. Multiple enabled transitions are
non-deterministically selected by using if-statements.

Each proctype defines a template for the behavior of a role. To activate each role and
to allow it to perform a given function the proctype must be instantiated by means of
a run-statement in the initialization (init) process. The process of initialization allows
us to configure a system as required by the deployment model. In our CLS case study,
for instance, there are two physical components playing the role IS (Fig. 4). This will be
translated in two run-statements one for each instance of the role. Channels are instantiated
and mapped accordingly to the deployment architecture.

The resulting Promela can be used to verify properties with the SPIN model checker. The
properties to verify can be specified in all the ways accepted by SPIN. We have experi-
mented with two ways of specifying properties. The first, is using LTL formulas. SPIN
is able to convert those formulas to never claims which are included in the Promela file
to perform the verification. This strategy for specifying properties is more indicated to
specify constraints over the states of the automata generated by M2Code. For instance, we
could express that the CONTROL Role mapped to Controller component will eventually
reach state UNLD when one IS Role is in FINAL state. However, using LTL formulas
is difficult in this setup to verify constraints on the messages exchanged on the various
channels. For this reason we use another Promela construct: the trace/notrace command.
Using these commands it is easy to express the interaction pattern to verify.

In our CLS example we have verified the property that when an Impact message is sent by
an ImpactSensor, eventually an unlck ok message is sent by LockMotor. The encoding of
the property is:

notrace{ do ::IC10!Impact;
do

::IC10!Impact;
::LC1!lck_ok;

od
::LC1!lck_ok;
::LC1!unlck_ok; od }

The notrace statement raises an error during verification if the sequence of messages is
possible in any run. The fact that the verification did not return any error signifies that
there exists no trace where the Impact message is sent and an unlock ok does not follow.
The SPIN model checker has explored and stored more than 11 million states to prove the
correctness of our assertion and has used 1.7 gigabytes of RAM.

4 Experiences and Discussion

We have applied our service-oriented approach extensively to various projects, from the
automotive domain to sensor networks to enterprise integration architectures [KMMP06].

We have used M2Code extensively in developing these projects. With the exception of the
trigger operator, which is used for liveness specifications only, all of the operators men-
tioned above have been implemented. Our model-based approach also provides means to
specify cross-cutting QoS properties of interaction-based scenarios on all levels of granu-
larity, from an entire service down to a single interaction. In addition, it is a good platform
for further tool integrations. We have successfully used the RT CORBA CodeGen tool
to generate distributed prototypes and monitor real-time properties of case studies in the
automotive domain.

We have used our S2Promela and ServiceDebug tools to verify critical properties of real
time automotive domain projects. Because all tools make use of XML as the data exchange
format, we can readily chain the mentioned tools, creating a tool chain from interaction
definitions to code generation, runtime property monitoring, verification and model check-
ing. Our service-oriented process is well-suited for building fail safe real-time systems,
by concentrating on services as the main modeling elements. Failures are mostly cross-
cutting; separation of logical and deployment models in our service-oriented process gives
us the capability to lift failures from the deployment layer up to the logical layer, address-
ing them at the crosscutting service level. Building failure management into our process
and tool chain is currently in progress.

5 Related Work

Triggered by its success in the telecommunications domain [Par02, ITU06] the term ser-
vice has become quite prevalent in the literature, especially in the context of “web ser-
vices” [STK02]. So far, however, services have been used mainly as an implementation
concept, not as a first-class modeling entity. Consequently, existing definitions for the term
service capture only syntactic lists of operations upon which a client can call. These def-
initions are inadequate for a systematic treatment of services throughout the development
process. This is especially true also for the UML [OMG05] or SysML [Sys06], which
do not recognize services as separate modeling entities. In our approach, the interaction-
based service notion emerges as a cross-cutting modeling element regarding both system
structure and behavior. In particular, we have established a decoupling between services
(functions) as modeling elements and implementation infrastructures on top of which
services can be implemented. We use a generalized notion of a system service in our
interaction-based modeling approach. In [KNP04, KMM06] we present our service mod-
eling approach based on the modeling of role interactions. It is related to the role concept
introduced in [Pae97] and the activities of [KM96]. While our service concept is based
on interaction patterns, stressing the cross-cutting nature of services, the roles of [Pae97]
describe projections of such patterns onto individual components; to yield the overall pic-
ture the latter have to be recomposed into a global interaction specification. Activities
of [KM96] capture global interaction properties as we do in our service definition; in con-
trast to our approach, however, [KM96] views activities as classes and roles as extensions
to these classes.

The component-based development approach [Szy02] certainly has many advantages,
including support for encapsulation, modularity, defining a unit of deployment, fault-
containment, and many more. However, it falls short for cross-cutting aspects including
interaction patterns. In contrast, by establishing a decoupling between service modeling
and deployment of the resulting services on top of component architectures, we allow
for “late binding” between functionality and components. Services provide a level of ab-
straction higher than components because services hide the components that implement
them. This induces a choice regarding the architecture on top of which the services are
implemented.

Our approach allows for the system to be understood at the granularity of individual fea-
tures instead of components. The ability to gracefully deal with faults, both predictable
and unpredictable, is an important property of embedded systems. Although we have not
elaborated on this topic here, our approach allows for a better understanding of failures
that emerge from the interplay of multiple components; the component-based approach
accounts for faults localized to individual components.

Our approach is related to the Model-Driven Architecture (MDA) [OMG03] and
architecture-centric software development (ACD) [OMG05]; similar to MDA and ACD
we also separate the software architecture into abstract and concrete models. In contrast to
MDA and ACD, however, we consider services and their defining interaction patterns as
first-class modeling elements of both the abstract and the concrete models. Furthermore,
we do not apply a transformation from abstract to concrete model. Our work is related to
the work of Batory et al [SB98]; we also identify collaborations as important elements of
system design and reuse. Our approach in particular makes use of MSCs as notation and
is independent from any programming language constructs.

Architecture and tool support are the key instruments to address the complexity of real-
time distributed systems. In [GH06], for instance, a framework is presented that allows
replay of distributed real-time system based on architecture models. Our RT-CORBA
CodeGen tool leverages similar model information to generate code for monitors that run
in parallel to the system and inform the developer of unsatisfied deadlines.

Many graphical tools supporting software modeling have been researched and imple-
mented. In [LMB+01], for instance, the Generic Modeling Environment (GME) is pre-
sented, a tool aiming to support many modeling paradigms thanks to meta-model based
configurations. M2Code, on the other hand, focuses on extended MSCs and HMSCs –
features not currently supported by GME.

A tool suite particularly targeted for service engineering is the jABC environment [MS06]
with its predecessor METAFrame [SM99]. Both offer behavior-oriented development, in-
cremental formalization, and library-based consistency checking. The tool suite supports
a service engineering development process and a modeling theory [MS06]. Synthesis is
applied to generate executable prototypes which are abstracted in views, modified and ver-
ified until the behavior satisfies the requirements. The service notion we advocate in this
paper generalizes the plugin-based service notion of jABC; in fact, as explained in the con-
text of our Service-ADL, our approach to service-orientation brings forward cross-cutting

interaction aspects as elements of the logical architecture so that they can be implemented
on a wide variety of deployment architectures.

6 Conclusions and Outlook

The high complexity of developing distributed, reactive systems in the embedded domain
and other application domains requires effective development methodologies that mitigate
these complexities. Complexities are often caused by the high degree of interactions in
these systems. Model-based approaches promise to provide a solution to these challenges.

In this paper we have described a model-based approach to developing distributed, embed-
ded systems. Our approach puts the concept of service in the focus of interest. Services
are the first class elements that guide the development process from requirements analysis
to deployment and execution of the realized system.

Tool support is essential to show the efficacy of a development approach and to increase
the efficiency of its application in practical use. We have described how our methodology
can be supported by means of tools. Our tool landscape contains tools for requirements
analysis, service specification and architecture design, implementation and deployment
and verification. The tools are connected in form of a tool chain. We have shown how
our tool chain enables a software engineer to specify the basic reactive behavior of our
case study example, the Central Locking System (CLS) and generate a distributed system
prototype out of the specification model on top of a chosen deployment infrastructure and
architecture configuration.

Future work will include a higher degree of integration between the tools and a seamless
support of all model elements and operators through all phases of the development cycle.

7 Acknowledgments

Our work was partially supported by the UC Discovery Grant and the Industry-University
Cooperative Research Program, as well as by funds from the California Institute for
Telecommunications and Information Technology (Calit2). Further funds were provided
by the Deutsche Forschungsgemeinschaft (DFG) within the project InServe. We are grate-
ful to the anonymous reviewers for insightful comments.

References

[AKMP05] Jaswinder Ahluwalia, Ingolf Krüger, Michael Meisinger, and Walter Phillips. Model-
Based Run-Time Monitoring of End-to-End Deadlines. In Proceedings of the Conference
on Embedded Systems Software (EMSOFT), 2005.

[Aut06] AutoFocus. Website, 2006. http://autofocus.informatik.tu-muenchen.
de/index-e.html.

[BKM06a] Manfred Broy, Ingolf Heiko Krüger, and Michael Meisinger, editors. Automotive Soft-
ware - Connected Services in Mobile Networks. Proceedings of the Automotive Software
Workshop San Diego 2004. Lecture Notes in Computer Science, Volume 4147, Springer,
New York, 2006.

[BKM06b] Manfred Broy, Ingolf Heiko Krüger, and Michael Meisinger, editors. Pre-Proceedings
of the Automotive Software Workshop San Diego 2006. UCSD, 2006. http://aswsd.
ucsd.edu/2006.

[Bro05] Manfred Broy. The Impact of Models in Software Development. In Lecture Notes in
Computer Science, Volume 2605, pages 396–406. Springer Verlag, 2005.

[Eva03] Eric Evans. Domain Driven Design. Addison-Wesley, 2003.
[GH06] Holger Giese and Stefan Henkler. Architecture-driven platform independent determinis-

tic replay for distributed hard real-time systems. In ROSATEA ’06: Proceedings of the
ISSTA 2006 workshop on Role of software architecture for testing and analysis, pages
28–38, New York, NY, USA, 2006. ACM Press.

[Hol03] G.J. Holzmann. The Spin Model Checker: Primer and Reference Manual. Addison
Wesley, 2003.

[HSE97] Franz Huber, Bernhard Schätz, and Geralf Einert. Consistent Graphical Specification of
Distributed Systems. In FME’97, volume 1313 of LNCS, pages 122–141, 1997.

[IT96] ITU-TS. Recommendation Z.120: Message Sequence Chart (MSC). Geneva, 1996.
[ITU06] ITU. Sancho Definitions Database. Website, 2006. http://www.itu.int/

sancho.
[KGSB99] Ingolf Krüger, Radu Grosu, Peter Scholz, and Manfred Broy. From MSCs to Statecharts.

In Franz J. Rammig, editor, Distributed and Parallel Embedded Systems, pages 61–71.
Kluwer Academic Publishers, 1999.

[KM96] B.B. Kristensen and D.C.M. May. Activities: Abstractions for Collective Behavior. In
ECOOP’96, volume 1098 of LNCS, pages 472–501. Springer Verlag, 1996.

[KM04] Ingolf Heiko Krüger and Reena Mathew. Systematic Development and Exploration of
Service-Oriented Software Architectures. In Proceedings of the 4th Working IEEE/IFIP
Conference on Software Architecture (WICSA), pages 177–187. IEEE, 2004.

[KMLS05] Ingolf H. Krüger, Reena Mathew, Stefan Leue, and Tarja Systä. Component Synthesis
from Service Specifications. In Scenarios: Models, Transformations and Tools, volume
3466 of LNCS, pages 255–277. Springer Verlag, 2005.

[KMM06] Ingolf Krüger, Reena Mathew, and Michael Meisinger. Efficient Exploration of Service-
Oriented Architectures using Aspects. In Proceedings of the 28th International Confer-
ence on Software Engineering (ICSE), 2006.

[KMMP06] Ingolf Krüger, Michael Meisinger, Massimiliano Menarini, and Stephen Pasco. Rapid
Systems of Systems Integration - Combining an Architecture-Centric Approach with En-
terprise Service Bus Infrastructure. In Proceedings of the 2006 IEEE International Con-
ference on Information Reuse and Integration (IRI), pages 51–56. IEEE, 2006.

[KNP04] Ingolf Krüger, Edward C. Nelson, and Venkatesh Prasad. Service-based Software Devel-
opment for Automotive Applications. In CONVERGENCE 2004, 2004.

[Krü00] Ingolf Krüger. Distributed System Design with Message Sequence Charts. PhD thesis,
Technische Universität München, 2000.

[Krü03] Ingolf Heiko Krüger. Capturing Overlapping, Triggered, and Preemptive Collaborations
Using MSCs. In Mauro Pezzè, editor, FASE 2003, volume 2621 of LNCS, pages 387–
402. Springer Verlag, 2003.

[LMB+01] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett, C. Thomason, G. Nordstrom,
J. Sprinkle, and P. Volgyesi. The Generic Modeling Environment. Workshop on Intelli-
gent Signal Processing, Budapest, Hungary, May, 17, 2001.

[Mat04] Reena Mathew. Systematic Definition, Implementation and Evaluation of Service-
Oriented Software. Master’s thesis, University of California, San Diego, 2004.

[MS06] Tiziana Margaria and Bernhard Steffen. Service Engineering: Linking Business and IT.
Computer, 39(10):45–55, 2006.

[NP03] Edward C Nelson and K V Prasaad. Automotive Infotronics: An emerging domain for
Service-Based Architecture. In I. H. Krüger, B. Schätz, M. Broy, and H. Hussmann,
editors, SBSE’03 Service-Based Software Engineering, Proceedings of the FM2003
Workshop, Technical Report TUM-I0315, pages 3–14. Technische Universität München,
2003.

[Obj02] Object Management Group: Real-time CORBA specification, 2002. http://www.
omg.org/technology/documents/index.htm.

[OMG03] OMG (Object Management Group). Model Driven Architecture (MDA). MDA Guide
1.0.1, omg/03-06-01, 2003. http://www.omg.org/mda.

[OMG05] OMG (Object Management Group). UML, Version 2.0. OMG Specification formal/05-
07-04 (superstructure) and formal/05-07-05 (infrastructure), 2005.

[Pae97] Barbara Paech. A Framework for Interaction Description with Roles. Technical Report
TUM-I9731, Technische Universität München, 1997.

[Par02] Parlay 3.0, 2002. http://www.parlay.org/en/specifications/.

[Rus06] Yenny Rusli. Methodological Translation of Service-Oriented to Component-Oriented
Specification. Master’s thesis, University of California, San Diego, 2006.

[SB98] Yannis Smaragdakis and Don Batory. Implementing Layered Designs with Mixin Layers.
In Proceedings of ECOOP 1998, volume 1445 of LNCS, pages 550–570. Springer Verlag,
1998.

[SM99] Bernhard Steffen and Tiziana Margaria. METAFrame in Practice: Design of Intelligent
Network Services. LNCS, 1710:390–415, 1999.

[STK02] James Snell, Doug Tidwell, and Pavel Kulchenko. Programming Web Services with
SOAP. O’Reilly, 2002.

[Sys06] Systems Modeling Language (SysML), 2006. http://www.sysml.org/.

[Szy02] Clemens Szyperski. Component Software - Beyond Object-Oriented Programming.
Addison-Wesley, 2002.

[TRH+04] David Trowbridge, Ulrich Roxburgh, Gregor Hohpe, Dragos Manolescu, and E.G. Nad-
han. Integration Patterns. Patterns & Practices. Microsoft Press, 2004.

[Zav01] Pamela Zave. Feature-Oriented Description, Formal Methods, and DFC. In Proceedings
of the FIREworks Workshop on Language Constructs for Describing Features, pages
11–26. Springer-Verlag, 2001.

