
From Inheritance to Feature Interaction

Christian Prehofer
�

� Extended Abstract �

� An Approach to Modular Feature Composition

In this paper we introduce a new model for composing objects from individual features
in a fully �exible and modular way� Its main advantage is that di�erent objects can be
created just be selecting the desired features� In addition� there may be dependencies or
interactions between features� i�e� some feature must behave di�erently in the presence
of another one� We present a modular solution to such feature interactions by lifting
functions of one feature to the context of the other� This extends the idea of overwriting
methods in inheritance� but is modular�

We will introduce the model by comparing it to inheritance� although it is not our
goal to extend inheritance with all its ingredients from object�oriented programming
languages� Instead� we view inheritance as a mechanism to derive new modules from
old ones�

First we need to clarify the basic concept� a feature �or component�

� adds functionality to any object which provides

� some required other features and

� may add local state to the object �or extend the used domains� e�g� by error
cases�

Clearly� for providing the new functionality� the new feature can only use the func�
tionality of the required ones and the newly added state� Furthermore� lifting of other
features is needed� as shown below�

Compared to inheritance� new objects can be constructed just by telling which
features to use� Although inheritance can be used to solve such feature combinations�
all needed combinations have to be programmed explicitly� With additional feature
interactions� matters get even more involved�

�Fakult�at f�ur Informatik� Technische Universit�at M�unchen� ����� M�unchen� Germany�

prehofer�informatik�tu�muenchen�de

�

In the following� we show this by a small example modeling stacks with the following
features�

�Basic� Stack� providing for push and pop operations on an internal stack imple�
mented by a list�

Counter� which adds a local variable counting the number of elements in the stack�

Undo� adding an undo function� which restores the state before the last access to the
object�

Clearly� these features have dependencies� For instance� when adding the counter�
the functions push and pop must� in addition� increment or decrement the counter�
With classical inheritance� this is achieved by overwriting of methods and by possibly
calling the method of the superclass �e�g� via super�� In our setting� such dependencies
are described by a lifting from one feature to a new context� Thus� liftings depend on
two features� To compose several features� lifting have to be more general� For any
object having feature A� we can add feature B and lift the functions of A to the new
context� Then we have an object which provides both features�

Stack:

Counter:

Undo:

 push, pop

size, inc, dec

undo

Environment

Figure �� Composing Stack Features �Arrows denote lifting of functions�

In Figure �� we show the structure of feature composition and liftings� To the basic
stack� we 	rst add the counter� For this new object to support the stack feature� we
have to lift the functions push and pop� indicated by arrows� This gives a new object
with two features� consisting of the lower two boxes� Since there are interactions� we
must provide individual lifters for push and pop� Otherwise� one can use the default
ones for composing orthogonal� independent features�

With the undo component� we proceed similarly� Observe that the functions push
and pop are lifted again� There are few more subtle issues� as discussed in the following

section� For instance� the inc and dec functions are not lifted� which corresponds to
hiding�

The main advantage in our setting is that features can be con	gured �almost�
arbitrarily� For instance� we can omit the counter or provide an alternative counter with
di�erent implementation or additional functionality� Also for the undo�component�
di�erent versions are available� one with a one�step undo� one with many�step undo�
In addition to the ones shown above� there is also an error handling feature for stack
under�ow� based on a di�erent class of monads�

There is another interesting interaction between Undo and Counter� If a size request
is followed by undo� shall the state before size or the one before the last push�pop
request be restored� Such choices motivate a modular design� where not only the
components are decoupled� but also their interaction� Furthermore� if the Counter
is not used� we do not want to bother with this complication� In traditional object�
oriented programming� one could either build separate versions of Undo �e�g� one with
Counter and one without�� or a monolithic one considering all interactions� With
respect to �exibility and reusability� both alternatives are not satisfactory�

On the technical side� we implement our concepts by monads� inspired by techniques
developed in ��� In our model �functional� objects correspond to monads� which can
be viewed as particular abstract data types� The interesting point is that monads
compose nicely and we can build monad transformers� which transform an abstract
data type to another� This is used to add features to objects� For instance� the mainly
used monad transformers add �local� state �and extra functionality�� from which we
draw the analogy to inheritance� For the used classes of monads� generic introduction
of new components and composition concepts are provided�

� A Glimpse of the Implementation

To give a rough idea of the implementation �done in the functional language Gofer ����
we show the main code fragments�� Since this is just a 	rst prototype encoding of the
ideas� our concepts are provided by Gofer functions and type constructions� Further�
more� we use explicit state transformers in contrast to implicit state in imperative
languages� Although this is a bit clumsy in our 	rst implementation without any
syntactic sugar� it is essential for the desired �exibility and modularity�

Composing features is done by the type system of Gofer �� with type constructors
and type classes ��� Adding features is done by type constructors� Observe that type
classes do not correspond to classes in object�oriented programming� but determine if
a type has some feature� Thus a type can be in several type classes� somewhat similar
to multiple inheritance� �Note that we often do not distinguish between objects and
their type��

A type is in a type class �e�g� StackClass� CountClass� if it provides the corre�
sponding functions� Furthermore� we use the type constructors StackT� CounterT to

�Slightly shortened and polished� The full code is available by the author�

�

add features to a type� If m is the type of an object� �StackT m� adds the feature Stack
to it� In the following code� the 	rst type declaration for StackT declares that StackT
adds a local state� which is a polymorphic list over a type a� The second statement de�
clares that �StackT m� is in class StackClass and provides implementations for push
and pop�

type StackT � StateTransformer �List a�

instance StackClass �StackT m� where

push a � update � �stack �� �a�stack�a��

pop � update � �stack �� �tail stack� head a��

In the implementation� the added state can be modi	ed via the function update� which
applies its functional parameter to the internal state� �It thus constructs a state trans�
former�� For instance� to implement push� we use the function �stack �� �a�stack�a��
where �x �� denotes functional abstraction over x and a�stack appends the list stack
to the new element a� Note that the function must return a pair� here �a�stack�a��
where the 	rst element is the new state and the second the returned value �here the
return value of push�� For instance� pop returns the head of the list and removes the
	rst element from the stack by assigning tail stack to the local stack�

Next we show the Counter feature� whose functions are also implemented via state
transformers using the update function� Note that size leaves the counter i unchanged
and returns its value�

type CountT � StateTransformer Int

instance CountClass �CountT m� where

size � update ��i �� �i�i��

inc � update ��i �� �i�	�i��

dec � update ��i �� �i�	�i��

It remains to lift the the functionality of Stack to the context of a counter� The
following code states that if m has feature Stack� i�e� StackClass m� then �CountT m�

also has the Stack feature�

instance StackClass m �� StackClass �CountT m� where

push a � inc
bind
 lift �push a�

pop � dec
bind
 lift pop

In the code� we use a particular in	x operator bind� which composes state transformers
and roughly corresponds to the semicolon in imperative languages� The code for push
	rst calls the increment function of the Counter and then via lift �push a� the push
function of the inner object ��super class�� m� Roughly speaking� lift corresponds to
the function super as e�g� in Smalltalk and is� like update� provided in the system�

�

Alternatively� if there is no interaction� one would just write pop � lift pop�
which could also be made a default �as implicit in object�oriented programming�� With
the above code� an object of type CountT �StackT m� provides both features and
behaves as expected�

The implementation of the Undo feature is not shown here for lack of space� The
idea is is to save the local state of the object each time a function of the other features
is applied �e�g� push� pop�� The Undo feature involves several interesting new issues�

� The lifting of the functions of the other used features is schematic� Always save
the state 	rst and then call the function� In contrast to object�oriented program�
ming� this can be done once and for all by a particular lift function�

lift�undo f � save�state
bind
 �lift f�

lifts any function f to the Undo feature�

� Undo depends essentially on all �inner� features� since it has to know the internal
state of the composed object� Since we work in a typed environment� the type
of the state to be saved has to be known� This problem is solved by extra
functionality of state transformers� which allows to read and write the local state�

� As shown in Figure �� some functions of Counter are not lifted� corresponding to
hiding�

In the current implementation� we have six components� All can be added modu�
larly in many combinations and their interactions are decoupled and easy to maintain�

� Feature Interaction in Telecommunications

In the telecommunications and multimedia development� feature interaction problems
have led to a new research branch ��� focusing on such interaction problems� which
hinder the rapid creation of new services� The problem in feature interaction stems
from the abundance of features telephones �will� have� This was in fact the original
motivation for this work� For instance� consider the following con�ict occurring in
telephone connections� B forwards calls to his phone to C� C screens calls from A
�ICS� incoming call screening�� Should a call from A to B be connected to C� In this
example� there is a clear interaction between the components for Forwarding �FD� and
for ICS� which can be resolved in several ways� For many other examples we refer
to ���

We have implemented a set of features for this domain of connecting calls�

� ICS �incoming call screening�

� OCS �outgoing call screening�

�

� Forwarding of calls

� Error handling

In this application� there are similar feature interactions as in the last section� Already
with four features and several resolutions to the interactions� there are more than a
dozen di�erent con	gurations�

This application area also seems more suitable for this approach� Di�erent con�
	gurations and the addition of novel features must be handled� Furthermore� the
interactions mostly stem from extending the environment or from resource con�icts�

� Related Work

In the above� we already compared our approach with inheritance� In object�oriented
programming� there are several other concepts not addressed here� Some of them� such
as virtual methods with late binding� are also possible here� but others� like subtyping
and dynamic binding are not yet considered�

Other type theoretic approaches� e�g�
� �� ��� aim at modeling object�oriented
phenomena� but not at features� The essential di�erence is that we design in such a
way that we add a feature to any object which supports the required other features
and if lifters are provided�

Another motivation for this work is the current trend in commercial software� com�
ponentware� which is driven by the idea to compose small� reusable software compo�
nents to larger ones� In industrial applications� componentware is largely successful by
standardizing component platforms� architecture and interfaces� as e�g� demonstrated
by CORBA and SOM� Although the idea of simple plug�and�play with software compo�
nents is tempting� it is a bit simplistic� Even when syntactic interfaces are compatible�
a typical problem is that interaction or con�icts occur between individual components�
as shown here�

� Conclusions

The main goal of component�based or feature�based programming is to specify and
implement features of components and their interactions separately� Towards this
goal� have shown that feature composition can be fully modular� also with respect to
interactions� Clearly� the interactions are not deep algorithmic dependencies� but cover
many practical problems�

Not mentioned are the extra new capabilities of our model� For instance� we can
also used di�erent monads� called ErrorMonads� which add error cases �or any other
special cases� to objects� For instance� it is possible to lift functions over unde	ned
values and to provide �modular� error handling� Functions� such as raising errors� can
be lifted through features�

�

� Relation to the Workshop

We have presented a 	rst approach to a new� general concept of features� which goes
beyond inheritance� The modular structure of this approach allows to disassemble
and to pinpoint the problems of classical inheritance with overwriting of methods� For
instance� in each of the two case studies� we have implemented only four to six features�
but there is already an abundance of possible con	gurations and interactions� Only
with such a modular design� we can hope for �exible and reusable software� Thus this
approach addresses two main problems with inheritance�

� Inheritance breaks modularity by overwriting methods�

� Inheritance is too rigid and in�exible� since individual �sub�classes cannot be
�re�used without a detailed understanding of the class hierarchy�

Another� somewhat orthogonal� approach to the last problem is the idea of design
patterns ��� aiming at standardized class structures� This does however not address
the composition problems solved here�

References

�� Mart��n Abadi and Luca Cardelli� A theory of primitive objects� Second�order
systems� In European Symposium on Programming �ESOP�� Edinburgh� Scotland�
�����

� Mart��n Abadi and Luca Cardelli� A theory of primitive objects� Untyped and
	rst�order systems� In Theoretical Aspects of Computer Software �TACS�� Sendai�
Japan� �����

�� E�J� Cameron� N� Gri�eth� Y��J� Linand M�E� Nilson� W�K� Schnure� and
H� Velthuijsen� A feature interaction benchmark for in and beyond� In L� G�
Bouma and Hugo Velthuijsen� editors� Feature Interactions in Telecommunica�
tions Systems� pages ��
�� Amsterdam� ����� IOS Press�

�� E� Gamma� R� Helm� R� Johnson� and J� Vlissides� Design Patterns� Micro�
Architectures for Reusable Object�Oriented Design� AddisonWesley� Reading� MA�
�����

�� Mark P� Jones� Introduction to gofer
�
�� Technical report� Yale University�
September �����

�� Mark P� Jones� A system of constructor classes� overloading and implicit higher�
order polymorphism� Journal of Functional Programming� ����� January �����

�

�� S� Liang� P� Hudak� and M� Jones� Monad transformers and modular interpreters�
In ��nd ACM Symposium on Principles of Programming Languages� San Fran�
cisco� California� �����

�� Tobias Nipkow and Christian Prehofer� Type reconstruction for type classes� J�
Functional Programming� ��
��
���

�� ����� Short version appeared in POPL
����

�� Benjamin C� Pierce and David N� Turner� Simple type�theoretic foundations for
object�oriented programming� Journal of Functional Programming� ��
��
���
���
April ����� A preliminary version appeared in Principles of Programming Lan�
guages� ����� and as University of Edinburgh technical report ECS�LFCS��
�

��
under the title �Object�Oriented Programming Without Recursive Types��

��� P� Zave� Feature interactions and formal speci	cations in telecommunications�
IEEE Computer� XXVI���� August �����

�

