

Modeling Crosscutting Services with UML Sequence
Diagrams

Martin Deubler, Michael Meisinger,
Sabine Rittmann

Technische Universität München
Boltzmannstr. 3

85748 München, Germany

{deubler, meisinge,
rittmann}@in.tum.de

Ingolf Krüger

Department of Computer Science
University of California, San Diego

La Jolla, CA 92093-0114, USA

ikrueger@cs.ucsd.edu

Abstract. Current software systems increasingly consist of distributed interact-
ing components. The use of web services and similar middleware technologies
strongly fosters such architectures. The complexity resulting from a high de-
gree of interaction between distributed components – that we face with web
service orchestration for example – poses severe problems. A promising ap-
proach to handle this intricacy is service-oriented development; in particular
with a domain-unspecific service notion based on interaction patterns. Here, a
service is defined by the interplay of distributed system entities, which can be
modeled using UML Sequence Diagrams. However, we often face functionality
that affects or is spanned across the behavior of other services; a similar con-
cept to aspects in Aspect-Oriented Programming. In the service-oriented world,
such aspects form crosscutting services. In this paper we show how to model
those; we introduce aspect-oriented modeling techniques for UML Sequence
Diagrams and show their usefulness by means of a running example.

1 Introduction

Today’s software systems get increasingly complex. Complexity is observed in all
software application domains: In business information systems, technical and admin-
istrative systems, as well as in embedded systems such as in avionics, automotive and
telecommunications. Often, major sources of the complexity are interactions between
system components. Current software architectures increasingly use distributed com-
ponents as for instance seen when using web services [11] and service-oriented archi-
tectures [7].

Traditionally, system design focuses on the components that structure the system
physically or logically. Components are modeled and implemented in their entirety
and mostly independent from each other; they are integrated in subsequent steps. In
situations as we face them today with large distributed systems composed of a multi-
tude of interacting components, significant portions of the components’ functionality
are determined by handling these interactions appropriately. Specifying separate

components correctly and completely is a very difficult task. Additionally, when it
comes to expressing system-wide concerns like certain Quality-of-Service properties
such as end-to-end timing deadlines, component oriented models fall short.

More appropriate for the development of interaction intensive distributed systems
are therefore approaches which put interaction modeling in the center of concern.
Viewing systems entirely and explicitly modeling the interactions between the com-
ponents that constitute the system addresses the before mentioned issues with arbi-
trary and exceptional interaction combinations and overarching system aspects. In in-
teraction centric system specifications, the components are described by the
interactions they have to provide; a black-box view that hides internal component
complexity. Considering the different functions, features, or services that the system
offers provides a straightforward structuring of such interaction models. For today’s
large multi-functional distributed systems, such approaches provide the necessary
flexibility in decoupling the separate functions while still modeling systems in their
entirety.

We strongly propose service-oriented software development approaches that place
the different functions or services of a system in the center of interest – as for in-
stance introduced by [14] or in [13]. We combine this with an interaction-centric de-
velopment approach and specify the system services in terms of the interactions be-
tween the components involved [21]. We in particular use interaction-centric
description techniques such as UML Sequence Diagrams or Message Sequence
Charts [19], [22].

Problem Statement. When specifying a system in terms of services, it is often desir-
able to specify certain aspects of behavior contributing to or overlapping several ex-
isting services. We view such behavior again as services of the system, namely as
crosscutting services or aspects. Examples for such crosscutting services are authen-
tication, logging and synchronization. It is highly desirable to specify these crosscut-
ting services separately in order to ensure a better comprehensibility, reusability,
traceability and evolvability of the software models.

We achieve this by specifying each spread concern within one single unit, called
aspect. These aspects – or crosscutting services – can then be modified independently
from the rest of the system specification. These concepts are directly based on aspect-
oriented programming and modeling techniques [18], [35].

Currently, UML sequence diagrams do not provide such aspect-oriented modeling
techniques and are therefore not fully suited for systematic service-based software
development. If a system needs to be specified precisely and without redundancy,
more powerful notations and description techniques are required.

Contribution. In this paper, we address the mentioned problem by introducing an
extension of UML Sequence Diagrams motivated by the ideas of aspect-orientation.
We model a system based on interaction-based services using UML Sequence Dia-
grams. We extend the UML 2.0 Sequence Diagram Notation to enable the modeling
of crosscutting behavior that is spread over the basic system interactions (services).
Our approach is independent of a specific domain. We use a running example to ex-

plain and evaluate our notation. A more extensive version of this material can be
found in [33].

In this paper, we initially assume a control-flow oriented, RPC-style (remote pro-
cedure call) communications paradigm for the execution of system services. This is a
very common communication scenario that can be often observed for instance when
using web services. We have shown in [19], [21] that our service-oriented approach
also generalizes for asynchronous communication.

Outline. The remainder of the paper is structured as follows. In Section 2 we intro-
duce our service notion and the sequence diagram based description techniques we
use. Section 3 introduces our modeling approach and explains the extensions to the
UML we propose. Section 4 discusses our approach in the context of related work. In
Section 5, we present a conclusion and give an outlook on further steps.

2 Service-Oriented Development

In this section we briefly introduce our notion of service and service-oriented devel-
opment. We specify services in terms of interaction patterns between system compo-
nents and model those using UML Sequence Diagrams. Our UML extensions for
specifying service aspects on top of existing system services are based thereon.

2.1 Services and Service Notion

We define a service as follows:
“A service is defined by the interaction among entities involved in establishing a

particular functionality.”
A service therefore is a piece of behavior or functionality which is provided by the

collaborative inter-working of system entities. Hereby, an entity is an abstract, logi-
cal, structural part of the system. Depending on the level of detail it can stand for a
component, module, package, or class. The interaction is described by interaction
patterns that capture the message exchange between the system entities involved in
establishing the service. As a consequence of the definition above, a service – and
therefore functionality – can be spread across several entities or components. Note
that in this paper we use the terms entity and component equivalently. Analogously,
we speak of functionality or behavior when referring to a service.

Consider for instance the central locking system of a modern luxury car. It pro-
vides the service of unlocking the car remotely by pressing on the open button of the
remote key. On doing so, the doors are unlocked, the alarm device and the anti-theft
device are disabled, the exterior lights flash, the interior lights are turned on, the
driver’s seat is positioned, etc. As we can see, the remote unlocking service is pro-
vided by the collaborative work between the entities remote key, the door locks, the
security devices, the exterior lights, the interior lights and the motor managing the
driver’s seat. They communicate with each other using messages.

In addition to capturing interactions between system entities, we also specify local
actions of entities – for instance a computation of a certain result in reaction to the re-
ceipt of a message, to be sent to another entity. Note that a simple form of a service
might not involve an interaction of multiple entities; services can be provided by just
one entity. For instance, consider the service of adjusting the front seats individually
by moving them forth and back.

Because our interaction-based service definition is founded only on the abstract in-
teraction relationship between entities, we profit from the following advantages:

� Our service notion can be used independently from a specific domain. A single
methodology and supporting tool set can be applied in many different contexts.

� Our service notion can be used throughout the overall development process – from
requirements elicitation to implementation. Services are first class modeling ele-
ments that drive the entire process and that can be traced from requirements to im-
plementation.

� Our service notion goes beyond notions that define services by a callable list of
procedures only. This is often seen when defining web services or network proto-
col stack service access points (SAPs). Our service notion instead enables elabo-
rate behavioral specifications containing quality-of-service attributes.

2.2 Service Specification with UML Sequence Diagrams

In this section we show how services can be modeled by means of UML sequence
diagrams. These and similar graphical notations and languages such as Message Se-
quence Charts and variants are well-suited ways of modeling interactions, by which
our services are specified.

The Unified Modeling Language (UML) [42] has become the de-facto standard for
modeling systems. The version 2.0 of the UML enhances the possibility of modeling
complex and hierarchical interactions. It provides flexible and powerful constructs
and operators to express conditions, parallel execution, repetition and hierarchy. We
use UML Sequence Diagrams, to specify our services.

Figure 1 shows the simplified specification of a service of an automotive central
locking system. The service is responsible for locking the trunk and all four doors.
After pressing the central lock button (which is located inside the car), messages are
sent to the trunk lock and the door locks, respectively. The figure shows the applica-
tion of operators within the sequence diagram to express more complex interactions.
In the example, locking the trunk happens in parallel (par) to locking the door. By
design choice, all doors are locked in sequence. We could also have applied another
parallel operator here. The service is established by the inter-working of the compo-
nents CenterLockButton, TrunkLock and the four doors locks which communicate
with each other by exchanging messages. The interaction between these system enti-
ties is captured in the interaction pattern that makes up the service.

We interpret the sequence diagram that is assigned to the service universally. This
means, once the service is executed, the specified pattern of interactions must occur.
In case of alternatives, the respective operator (alt) must be applied. Besides sequen-
tial and parallel composition of messages and alternatives, there are also loops, op-

tional interactions and references to other interaction diagrams that can be expressed.
More complex services can be composed by the use of interaction overview dia-
grams.

DoorLock4
DoorLock3

DoorLock2
TrunkLockCenterLockButton DoorLock1

lock()

lockTrunk()

lockDoor
lockDoor
lockDoor()

lockDoor()

par

Figure 1: LockDoorsService

Note that with the UML 2.0 [42], sequence diagrams have converged much closer
to the ITU standard of MSCs which have the advantage to be precisely defined; there
is work existing that associates formal semantics to MSCs as well as distinct exten-
sions that make MSCs even more suitable to service-based development approaches
[19], [20], [22]. In this work, we focus on UML 2.0 Sequence Diagrams, because
UML is more popular than MSCs in the context of modeling object-oriented systems,
web services and synchronously communicating systems. Besides, there are many
similarities and notational elements are directly transferable.

In this section we presented the notion of service we use as basis of our work.
Methodological work around this notion of service can be found in [23], [33]. A for-
malization of services and service-oriented software architectures based on the
mathematical model of streams can be found in [9].

3 Modeling Crosscutting Services with Aspects

Well structured software is usually divided into modules with certain responsibilities.
This is in accordance with the separation of concerns principle simplifying reusability
and a better maintenance of design and implementation. However, some behavior
crosscuts these so-called primary modules as it affects several modular entities. In ob-
ject-oriented programming, the units of modularity for example are classes; a cross-
cutting concern is spanned across several classes. If the implementation of such a
concern is scattered and tangled up with the core functionality, it is difficult to reason
about, implement and change. This problem is called the tyranny of the dominant de-
composition [39].

Aspect-oriented programming (AOP, cf. [1], [8]) is an implementation level tech-
nology that allows to isolate pieces of behavior into single units – called aspects; it al-
lows to specify at which locations in the code the aspects should later be inserted.

This ensures the encapsulation of cross-cutting behavior, such as logging or synchro-
nization and therefore results in a better comprehensibility, reusability, traceability
and evolvability of the code.

Aspect-oriented modeling (AOM) is a consequence of aspect-oriented program-
ming; it raises the ideas of separation of concerns to the level of software models. To
date, most of the work on aspect-orientation has concentrated on the implementation
level. How aspects can be modeled appropriately is still not investigated sufficiently.
This is particularly true in the area of service-oriented modeling where we face the
before mentioned problems. However, in order be able to create more powerful, more
elaborate system models, it is inevitable to also model crosscutting services. There-
fore it is necessary to have a way to apply aspect-orientation in models.

In the following we explain what aspects are in the service-oriented world; we list
the goals and principles that are relevant when modeling aspects. In Section 3.3 we
introduce our approach to model crosscutting services using an extended Sequence
Diagram notation.

3.1 Crosscutting Services

The notion of aspect has emerged during the last years (cf. [3], [4], [5]). E.g. in [27]
an informal definition for the term aspect is given. The author describes an aspect as a
“crosscutting concern”. Here, a concern is a “property of interest to a stakeholder”
and crosscutting means “intertwining, interdependent, interacting, [or] overlapping”.

In component-based software development approaches, the modular entities are
components (or classes, packages, etc. depending on the level of examination). A
crosscutting concern therefore is overlapping or affecting several components. In our
service-oriented point of view, services are by definition overlapping several compo-
nents. Therefore, each service would be an aspect, which renders the above definition
of crosscutting concerns impractical. Instead, in the service-oriented world, the basic
building blocks are services. Consequently, an aspect – or crosscutting service – is a
service that is spanned across or that influences the behavior of other services.

It shows that our definition of crosscutting concerns in the context of service-
oriented development follows a similar idea as aspects in a component-oriented ap-
proach. We allow specification of modular pieces of behavior and separate crosscut-
ting concerns in aspects. However, our approach retains all before mentioned advan-
tages and benefits from interaction based modeling.

In the following we distinguish between crosscutting and crosscut behavior.
Crosscutting behavior is the functionality that is spread over several services. It af-
fects behavior of existing services which in turn are the crosscut functionality.

3.2 Principles and Goals for Modeling Crosscutting Services

Introducing a notation for modeling of crosscutting services should comply with the
following principles and goals:

� Model crosscutting services like basic services with additional characteristics: A
crosscutting service is a service that affects the behavior of other services. There-
fore, it is suggestive to model crosscutting behavior similar to basic services: with
Sequence Diagrams. However, we have to take additional care of the special char-
acteristics that make up the nature of service aspects.

� Cleanly modularize crosscutting services: In order to enable reuse and a better
maintenance of design (and later: implementation) we have to cleanly modularize
the crosscutting service. Each aspect needs to be located within one model.

� Leave crosscut service untouched: An aspect might affect several services. How-
ever, if a crosscut service should be reused in another system or configuration
without the crosscutting service, it will not be influenced by the crosscutting ser-
vice anymore. Therefore, the specification of the crosscut service must remain in-
dependent and unchanged by the aspect. The dependency is unidirectional: the
crosscutting service depends on the execution context of the crosscut service.

� Attend to clear illustration of crosscutting relationships: Crosscutting relationships
can be very complex. For example, if several services are affected by several other
services or aspects that are crosscut by aspects in turn. A modeling technique to
capture/specify aspects must illustrate these complex dependencies concisely.

Additionally, a good modeling approach should provide both a coarse-grained (more
abstract) and a fine-grained (more concrete) view on crosscutting relationships. In the
next section we will introduce a modeling approach that is in accordance with the
listed principles. However, we will not show how aspects can be incorporated in
structural diagrams such as UML Class Diagrams; the focus of our work lies on the
behavioral part.

3.3 Modeling Crosscutting Services with Sequence Diagrams

Crosscutting services differ from basic services as explained before. We need to spec-
ify additional characteristics when modeling aspects. Plain sequence diagrams do not
provide enough flexibility and expressiveness. Consequently, we have to introduce
additional modeling elements that provide the required expressiveness. In the follow-
ing we will introduce our modeling elements step by step by means of an example.

Modeling Join Points
In contrast to basic services, crosscutting services model when the crosscutting be-

havior takes place in reference to the behavior of affected services. We have to spec-
ify the points in the system execution where an aspect starts, affects and ends.

In order to define the places where two concerns crosscut one another, we intro-
duce elementary join points. We adapt AspectJ [2] nomenclature here. Nonetheless,
the concept used permits the use of various AOP flavors. We do not show how our
modeling concepts can be translated into AspectJ as they are independent of a par-
ticular programming language. Join points mark well-defined, single points in the
execution flow at which two concern models are (inter)connected with each other.
Join points correspond to messages and local activities of sequence diagrams.

GUI Connection

useTelephone()

displayTelephoneMenu()
enterTelephoneNr(n)

dial()
connect()

displayStatus()
hangUp()

disconnect()

displayStatus()

Figure 2: UseTelephoneService

In particular, we specify when a crosscutting concern should be executed. We face
the following possibilities: Before, After, Around or Instead of a certain action. Ac-
tions can be local activities or message send or receive events. We introduce graphi-
cal elements to specify when an aspect is invoked – namely before, after, wrapping
and overriding join points. In the following we will explain them with the aid of ex-
amples: Figure 2 shows a simple telephone service which can be found for instance in
a modern luxury car. When the telephone menu is selected via the car’s user interface
(MMI), the user can enter a phone number, and connect to this number. The system
establishes the connection and displays the call status until the user hangs up. The
system disconnects the call and updates the status display.

Now assume that the telephone costs should be charged to individual users. This
can be done by enabling an AccountService. An account has to be chosen before the
actual TelephoneMenu can be used. How can this be realized? One possibility would
be to insert the new behavior – the choice of a specific account prior to the use of the
telephone – directly in the UseTelephoneService. However, it is better to modularize
the account service in a separate module as it can be enabled and disabled.

Before Join Points. We have to model the point in the execution flow where the
behavior is affected. For our example, we choose to insert the new behavior when the
telephone service is called, but before it is actually performed. Figure 3 shows the in-
troduction of the before join point symbol. The message useTelephone() is divided by
an axis starting from a before join point (a circled “B”). The semantics is that the
message useTelephone() is not delivered to the axis GUI. Instead, the crosscutting
behavior is performed: The current display settings are saved (saveSettings()) and an
account menu is shown (displayAccountMenu()). After an account has been chosen
(chooseAccount()), the display is reset to the saved settings (resetDisplay()). The very
last, unlabeled arrow indicates that the control flow is given back to the before join
point. This means that the afore interrupted message useTelephone() is now actually
delivered to the GUI. That is the point in the execution where the crosscutting behav-
ior ends and the crosscut behavior is continued.

GUI Account

useTelephone()
B

saveSettings()

displayAccount()

displayAccountMenu()chooseAccount(a)
account(a)

account:= a;

resetDisplay()

Figure 3: AccountService

BillingHandler
connect()

B

startTimer()

start()

disconnect()

A

stopTimer()

stop()

Calculate()

Connection

Figure 4: BillingService

After and Wrapping Join Points. The BillingService (see Figure 4) shows the mod-
eling elements for after and wrapping join points. This service has two parts:
(1) When a connection is requested (connect()), a timer is started, and (2) When the
connection is closed (disconnect()), the timer is stopped. Then, some calculation is
performed.

In the first part we again make use of a before join point. In the second part we in-
troduce an after join point having the following semantics: After the message discon-
nect() is sent to Connection, the message stopTimer() is sent. When the timer is
stopped, the control flow is returned to the after join point. The behavior being cross-
cut continues its execution.

In the above example we introduced not only before and after join points. In fact
we specified a wrapping aspect which has defined start and end points, respectively.
The issue of modeling overriding join points is currently being investigated. Affect-
ing local activities can be obtained similarly to messages.

Combination of Join Points – Point Cuts
Of course, we also could have modeled the crosscutting behavior as part of the

UseTelephone service. However, we cleanly isolated the aspect in a separate model.
The advantage is evident if we also introduce an internet service (cf. Figure 5).

Applying the account service also to the internet service is now simple by adding a
combination of join points (point cuts in AspectJ nomenclature) to the aspect specifi-
cation. Figure 6 shows how the account service is specified so that it is applicable to
either the telephone or the internet service. The alt-box defines a logical combination
of join points – to be more precise: the logical “OR” between two before join points.
Either before the message useTelephone() or before the message useInternet() is sent
to the GUI, the behavior is interrupted.

Another possibility for the specification of point cuts (combinations of join points)
is the use of parallel-boxes, etc. The concept of point cuts allows us to model the
logical combination of several points in order to specify more complex points in the
program execution. Point cuts pick out certain join points in the program flow and
values at those points. Investigating this in more detail is one of our next goals.

Connection
useInternet()

displayInternetMenu()
connect()

displayStatus()

endInternetSession() disconnect()

displayStatus()

enterURL()

enter()

loop

…….

GUI

Figure 5: UseInternetService

GUI Account

useTelephone()

B

saveSettings()

displayAccount()

displayAccountMenu()
chooseAccount(a)

account(a)

account:= a;

resetDisplay()

useInternet()

alt

Figure 6: AccountService w. Join Point

Modeling of Execution Context
To provide aspect services with higher flexibility and expressiveness, we expose

the execution context of the affected services in point cuts. The aspect thus can make
use of it. In the sequence diagrams, we add OCL-style notes to the arrows. Figure 7
shows a report service that reports how much an account has to be charged for. For
this purpose, the sum (which are the costs of the internet or telephone session) and the
account (which is to be charged for) are available to the reporting service. They can
be seen as parameters being provided to the report service.

ReporterA

{context: sum, account}

Billing

Calculate()

Figure 7: Report Service

Name-Based and Property-Based Specification
In the examples above, we explicitly specified concrete message and activity

names when determining the crosscut behavior. We call this name-based crosscut-
ting. Sometimes, crosscutting behavior affects many other services. In this case it
would mean much effort to specify all places where the aspect makes an appearance.
A more powerful way to specify the location of join points within sequence diagrams
is property-based crosscutting. For example we can use wildcards to specify a group
of messages, activities or even axes. Instead of using the alternative-box in Figure 6,

we could just write use*(). A property-based crosscutting service can be seen as a
template which is instantiated by each message fulfilling the property. Another possi-
bility is to use parameterized messages. Then a set of possible messages substituting
the parameters would be specified.

GUIB

() =: a(*)

println("In Method:" + a.name);

Figure 8: Trace Service

This mechanism is especially useful if some crosscutting behavior affects many
services at different points. Let us assume that we want to trace the execution of a
program for example. To that end, we define an aspect that prints the name of each
method call. In Figure 8 the method name of each method (having an arbitrary num-
ber of arguments) called to GUI is printed before the method is actually executed.

4 Discussion and Related Work

In this section, we put the service notion and our introduced aspect-oriented descrip-
tion techniques that we have presented in the preceding sections into perspective; in
particular, we discuss our approach in relation to others known from the literature.

As noted in [40], the term service is used in a variety of meanings, and on various
levels of abstraction in the Software Engineering community. The notion and model
of service we use in this document captures the interplay of multiple components col-
laborating to achieve a particular function or feature of the system under considera-
tion. This encompasses the various “traditional” notions of service used in the tele-
communications [41] and business information systems domains, but also the
emerging uses of the term service in the context of “web services” [11], and service-
oriented architectures (SOAs) [7].

In the telecommunications domain, the notion of feature is well established and re-
searched – as pointed out in [41]. Features can be defined as “reusable, self-contained
services” [30]; they encapsulate individual pieces of functionality of limited scope,
typically used to structure the interfaces or internals of components. Feature-oriented
software design and development [31] makes use of features as principal modeling
elements. According to [17] features are units of “observable behavior”, and “re-
quirements modules” serving as “units of incrementation as systems evolve.”

On the other hand, web services [11], [34] at first glance define simple call/reply
relationships between the consumer and the provider of the web service. At closer in-
spection, however, it becomes apparent that web services and their supporting archi-
tectures are more loosely-coupled than traditional layered architectures. In particular,
web-services typically emerge from the interplay of multiple components – a call
upon one web service, in general, results in calls upon multiple other (web) services
provided by other components or applications. A web service thus acts as an orches-

trator for the collaboration of the components implementing the functionality “be-
hind” the service. This view of services as orchestrators of collaboration is becoming
increasingly popular [28], [14]; it transcends the realm of web services – where it is
prominently recognized, for instance, by the business process execution language for
web services (BPEL4WS) and takes root also in the domain of complex embedded
systems as found in the automotive [6] and avionics domains [32].

We have demonstrated the use of UML Sequence Diagrams as graphical descrip-
tion techniques for services. Because Sequence Diagrams capture interaction behav-
iors that cut across multiple components, we view services and their graphical repre-
sentations in the form of UML Sequence Diagrams as modeling aspects in analogy to
the implementation aspects captured by aspect-oriented programming languages such
as AspectJ [18], [2]. In fact, we have shown in [21] that services can be translated
immediately into corresponding AspectJ programs; the weaving mechanism of As-
pectJ can then be exploited to integrate the services defined as Sequence Diagrams
into a correct set of component implementation.

Unfortunately, the modeling of aspects is not supported by MSCs or UML se-
quence diagrams. Although work on including aspect-oriented concepts in the UML
has recently been published (cf. [8], [9], [10], [35], [12] and [36]), no elaborate nota-
tional elements exist in order to model aspect-orientation adequately. Furthermore,
the cited work mainly introduces concepts for class diagrams. Therefore, we give
some first ideas on how the modeling of cross-cutting services by means of interac-
tion diagrams can be done.

Recent work has been published that relates aspect-orientation to requirements en-
gineering and design phases, and modeling, cf. [1], [26], [43], [36], [37]. Our service
notion can be seen as precisely formulated requirements specified as sequence dia-
grams. We put our focus in particular on the architecture definition and design phase.
The work in [1] mainly sees aspects as crosscutting non-functional requirements or in
particular quality attributes [26], while we show how to model crosscutting functional
behavior (services) in a similar way to basic services, using cautiously extended se-
quence diagrams. Similar to [43], we see aspects as interaction patterns. However, we
focus on service executions with RPC-style communication semantics which are of-
ten used for web service combinations; we also introduce explicit notations to model
before, after, around and instead join points within sequence diagrams. In this way we
differ from [36] that uses standard UML concepts to represent basic and crosscutting
behavior, which we consider too limiting and less intuitive for our purposes. The
work in [37] focuses on structural concerns in aspect-oriented design with UML and
aspect information interchange using XML, while we focus on behavior models and
put the notion of service in the center of concern.

Our approach is related to Model-Driven Architecture (MDA) [25], Model-
Integrated Computing [38], aspect-oriented modeling (AOM) [15] and architecture-
centric software development (ACD) [42]; similar to MDA and ACD we also sepa-
rate the software architecture into abstract and concrete models, as for instance shown
in [21]. In contrast to the cited model-driven development approaches, however, we
consider services and their defining interaction patterns as first-class modeling ele-
ments of all our models throughout the different development phases.

In Section 3.2 we mentioned the importance of having both a coarse-grained (more
abstract) and a fine-grained (more concrete) view on crosscutting relationships. In
this paper we only showed the detailed view of the intertwined relationships. The
other case can for instance be achieved by introducing additional stereotypes for
UML Use Case Diagrams (cf. [33] for more information).

5 Summary and Outlook

In this paper we have shown the significance of an interaction-oriented development
approach to address the always increasing complexity of current software systems.
Because significant sources of software complexity stem from the interactions among
interacting components, an interaction-based model targets the problem at its source.
We explained service-oriented development as an approach to specify and develop
systems in terms of services as first class modeling elements. Services are defined in
terms of interaction patterns between components that participate in the service. Ser-
vices as such realize crosscutting behavior that spans multiple components.

In analogy to the introduction of aspect-oriented technologies for component or
object-oriented software development approaches, we showed its usefulness also for
service-oriented development. Retaining all advantages of system specifications using
services, we provide means to separate specific pieces of behavior that affect multiple
services into aspects. Aspects again are services: crosscutting services. We introduced
a notation as an extension to UML 2.0 Sequence Diagrams to model services and ser-
vices that cross-cut services using aspect-oriented techniques.

We have explained our notation using a running example that is representative for
many different domains, including telecommunications, automotive and web service
based applications. It is representative for similar situations such as the composition
of systems out of interacting web services. We showed that our approach is well suit-
able to model the traditional RPC-style interactions that occur when composing a sys-
tem out of a number of separate services.

In the future, further investigations have to be done in how to specify non-
functional crosscutting concerns, such as performance or timing constraints. Also, we
want to investigate how to identify and resolve contradictory aspect specifications. To
prove the value and efficacy of our approach, we plan to apply it to case studies of
significant size within the automotive domain as well as in the web services area.

In our work, we concentrate on the behavioral part of aspects. The structural
part – for instance how aspects can be modeled in class diagrams – is not focus of our
work. However, the relation between behavioral and structural modeling of aspects
has to be investigated in the future, too.

Acknowlegements

Our work was partially supported by the Deutsche Forschungsgemeinschaft (DFG)
within the project InServe and by the Bavarian high-tech funding program (High-

Tech Offensive) within the project MEWADIS. Further funds were provided by the
UC Discovery Grant and the Industry-University Cooperative Research Program, as
well as by the California Institute for Telecommunications and Information Technol-
ogy (Calit2). We are grateful to the anonymous reviewers for insightful comments.

References

[1] J. Araujo, A. Moreira, I. Brito, A. Rashid: Aspect-oriented requirements with UML. In
Proceedings of the Workshop on Aspect-oriented Modeling with UML, UML 2002, Dres-
den, Germany, October 2002.

[2] AspectJ Team: The AspectJ Programming Guide. Available at http://eclipse.org/aspectj/.
[3] Aspect-Oriented Software Development. Proceedings of the 1st international conference

on Aspect-oriented software development. ACM Press, 2002.
[4] Aspect-Oriented Software Development. Proceedings of the 2nd international conference

on Aspect-oriented software development. ACM Press, 2003.
[5] Aspect-Oriented Software Development. Proceedings of the 3rd international conference

on Aspect-oriented software development. ACM Press, 2004.
[6] Automotive Open System Architecture, www.autosar.org
[7] L. Baresi, R. Heckel, S. Thone, D. Varro: Modeling and validation of service-oriented ar-

chitectures: Application vs. style. In Proc. of ESEC/FSE, 2003.
[8] M. Basch, A. Sanchez: Incorporating aspects into the UML. In Proceedings of the Interna-

tional Conference on Aspect-Oriented Software Development, March 2003.
[9] M. Broy, I. Krüger, M. Meisinger: Services and service-oriented software architectures –

methodological foundations. To appear.
[10] S. Clarke , R.J.Walker. Composition patterns: An approach to designing reusable aspects.

In Proceedings of the 23rd International Conference on Software Engineering, pp. 5–14,
May 2001.

[11] A. Colin: Why web services? The Web Services Industry Portal, February 2002. Avail-
able at http://www.webservices.org/index.php/article/articleprint/75/-1/61/.

[12] C.A. Constantinides. A case study on making the transition from functional to fine-
grained decomposition. In Proc. of ECOOP 2003 Workshop on Analysis of Aspect-
Oriented Software (AAOS 03), July 2003.

[13] M. Deubler, J. Grünbauer, G. Popp, G. Wimmel, C. Salzmann. Tool Supported Develop-
ment of Service Based Systems. In 11th Asia-Pacific Software Engineering Conference
(APSEC 2004), IEEE Computer Society, Korea, 2004.

[14] E. Evans: Domain-Driven Design: Tackling Complexity in the Heart of Software. Addi-
son-Wesley, 2003.

[15] G. Georg, R. France, and I. Ray: Composing Aspect Models. The 4th AOSD Modeling
With UML Workshop, 2003.

[16] C. Ghezzi, M. Jazayeri, R. France. Fundamentals of Software Engineering. Prentice Hall,
1991.

[17] P. Gibson, D. Méry: Formal Modelling of Services for Getting a Better Understanding of
the Feature Interaction Problem. In Bjorner, Broy, Zamulin (eds): Perspectives of System
Informatics, Lecture Notes in Computer Science. Volume 1755, Springer, 2000.

[18] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W. Griswold: An overview of
AspectJ. In Proceedings of the 15th European Conference on Object-Oriented Program-
ming ECOOP 2001, LNCS vol. 2072, pp. 327–353, Springer, June 2001.

[19] I. Krüger. Specifying services with UML and UML-RT. In Electronic Notes in Theoreti-
cal Computer Science, volume 65 (7). Elsevier Science B. V., 2002.

[20] I. Krüger: Service specification with MSCs and roles. In Proceedings of IASTED Interna-
tional Conference on Software Engineering, Innsbruck, 2004.

[21] I. Krüger, R. Mathew: Systematic development and exploration of service-oriented soft-
ware architectures. In Proceedings of the 4th Working IEEE/IFIP Conference on Software
Architecture (WICSA 2004), 2004.

[22] I. Krüger: Towards precise service specification with UML and UML-RT. In Proceedings
of the Workshop at UML, Critical Systems Development with UML (CSDUML), 2002.

[23] R. Mathew: Systematic definition, implementation and evaluation of service-oriented
software architectures. Master Thesis at University of San Diego, California, 2004.

[24] Message Sequence Chart (MSC 96), ITU-T. Recommendation Z.120. ITU-T, 1996.
[25] Model Driven Architecture. Object Management Group. Available at

http://www.omg.org/mda/, 2003.
[26] A. Moreira, J. Araujo, and I. Brito: Crosscutting Quality Attributes for Requirements En-

gineering. Software Engineering and Knowledge Engineering Conference (SEKE), 2002.
[27] B. Nuseibeh: Crosscutting Requirements. AOSD 2004, The Open University, UK, 2004.
[28] C. Peltz: Web Services Orchestration and Choreography. IEEE Computer 36(10): pp. 46-

52, 2003.
[29] D.S. Platt, K. Ballinger: Introducing Microsoft .NET. Microsoft Press, 2001.
[30] C. Prehofer: Plug-and-Play Composition of Features and Feature Interactions with State-

chart Diagrams. In Proc. of the Seventh International Workshop on Feature Interactions in
Telecommunications and Software Systems, Ottawa, 2003.

[31] C. Prehofer: Feature Oriented Programming: A fresh look at objects, In Proceedings of
ECOOP 1997, Springer LNCS 1241, 1997.

[32] Realtime CORBA Joint Revised Submission, Object Management Group, OMG Docu-
ment orbos/99-02-12 ed., March 1999.

[33] S. Rittmann: Exploring Service-Oriented Software Development for Automotive Systems.
Diplomarbeit, Technische Universität München, 2004.

[34] J. Snell, D. Tidwell, P. Kulchenko: Programming Web Services with SOAP. O’Reilly,
2002.

[35] G. Sousa, S. Soares, P. Borba, J. Castro: Separation of crosscutting concerns from re-
quirements to design: Adapting an use case driven approach. In Proc. of Early Aspects
2004: Aspect-Oriented Requirements Engineering and Architecture Design. Workshop at
AOSD 2004, March 2004.

[36] D. Stein, S. Hanenberg, R. Unland: Designing aspect-oriented crosscutting in UML. In
Proceedings of Aspect-Oriented Modeling with UML. As part of the 1st International
Conference on Aspect-Oriented Software Development, April 2002.

[37] J. Suzuki, and Y. Yamamoto: Extending UML with Aspects: Aspect Support in the De-
sign Phase. AOP Workshop at ECOOP’99, Lisbon, Portugal, 1999.

[38] J. Sztipanovits, and G. Karsai: Model-Integrated Computing. IEEE Computer, Apr. 1997,
pp. 110-112.

[39] P. Tarr, H. Ossher, W. Harrison, and S.M. Sutton: N degrees of separation: Multi-
dimensional separation of concerns. In Proceedings of the 21st International Conference
on Software Engineering, May 1999.

[40] D. Trowbridge, U. Roxburgh, G. Hohpe, D. Manolescu, E.G. Nadhan: Integration Pat-
terns. Patterns & Practices. Available at www.microsoft.com, 2004.

[41] K. J. Turner: Relating Services and Features in the Intelligent Network. In Proc. of the 4th
International Conference on Telecommunications, pp. 235-243, Zagreb, June 1997

[42] UML 2.0. Object Management Group. Available at http://www.omg.org/uml.
[43] J. Whittle, and J. Araujo: Scenario Modeling with Aspects. IEE Proceedings - Software,

Special Issue on Early Aspects: Aspect-Oriented Requirements Engineering and Architec-
ture Design, August 2004.

