
Tool Supported Development of Service-Based Systems∗

Martin Deubler, Johannes Grünbauer,
Gerhard Popp & Guido Wimmel

Institut für Informatik
Technische Universität München

Boltzmannstr. 3, 85748 Garching, Germany

{deubler, gruenbau, popp, wimmel}@in.tum.de

Christian Salzmann

BMW Car IT GmbH
Petuelring 116

80809 München, Germany

christian.salzmann@bmw-carit.de

Abstract

Service-based systems engineering is a recent paradigm
that has proven useful for the development of multifunc-
tional systems, whose functions may be used in different
contexts and have strong interrelations and dependencies
between each other. Integrated into a service-oriented de-
velopment process, we present an approach for tool sup-
ported design of services and execution scenarios describ-
ing their interaction, using the toolAUTOFOCUS. It in-
cludes the application of simulation, verification of typical
requirements for service-based systems using model check-
ing, and code generation. We report on our experience with
this approach by means of a case study from the automotive
domain, a fairly new field of application for service-based
systems engineering.

1. Introduction

In the automotive domain the types of applications are
not anymore limited to classical embedded systems, such as
airbag control software, but cover a broad range from mis-
sion critical embedded systems in the X-by-wire field to in-
fotainment and personalization in the MMI (Man Machine
Interface) area. The MMI is a central software system in the
car that manages the access of the user (driver) to the func-
tions of the car such as infotainment, phone and Internet
access, climate control and navigation system. In the 7 se-
ries of BMW, for example, the MMI system consists of a
set of about 270 functions that can be triggered by the user
and are distributed over about 40 electronic control units.

A fundamental difference of such a system in compari-
son to classical applications is in the interaction and depen-

∗ This work was supported by the Bavarian high-tech funding program
(High-Tech Offensive), within the project MEWADIS [1].

dencies of the functions. One function, such as the volume
control of the amplifier, can be triggered not via one sin-
gle user interface, but by a set of other functions, e.g. when
the navigation system informs the driver with a voice out-
put the software lowers the volume of the audio system for
the time of the voice information.

This type of system, which is characterized by multi-
ple function interactions, strong interrelations and depen-
dencies between functions, is called amultifunctional sys-
tem [7]. The functional aspect is more important than the
whole application, as one function may be used in differ-
ent contexts. Hence, we have to deal not only with the func-
tions themselves but also with their encapsulation, their de-
pendencies and their combination with other functions. The
unit of function with its encapsulation, dependencies and
combination is called aservice.

A service is not only a functional entity representing a
certain behavior. It is alsotheabstract modeling unit, which
is central for our development process. In a nutshell a ser-
vice comprises:

• a syntactic interface—types of messages that could be
exchanged with the service,

• a behavior—the service interface, a partial function re-
lating valid sequences of input messages to sets of se-
quences of output messages,

• a set of properties—self-description, quality of service
attributes, and

• dedicatedrelationshipsto other services.

Relationships to other services are illustrated in Fig.1.
For instance, serviceF3 is related to the servicesF1, F2

andF4 by r2, r3 andr5, respectively.
An application area of our approach is system integra-

tion. The state of the art in system integration is to specify
the logical architecture of a system independently from its
technical architecture (the deployment) by specifying func-
tional networks and their dependency. However, the depen-



F1

F2

F4

F3

r2

r4 r5

r1

r3

Figure 1. Service relationships

dency is exclusively based on communicational dependen-
cies: one functionf depends of a functiong if f gets input
signals that are output ofg. We see now that this notion of
dependency is not sufficient: does a functionf also depend
ong if the output signals ofg are only looped through func-
tion f? It seems clear that functional dependency, which
is the basis for many problems in the system integration,
should be based on a more formal definition that includes
behavior to express this dependency.

In this paper, we explain our approach by referring to an
industrial case study and follow the service-oriented devel-
opment method introduced in [7]. For the development of
multi-functional software systems that kind of development
process suits well: the system functionality is structured
[5]—the behavior of individual components is a secondary
objective. Right from the start the development process fo-
cuses on the relations between system functions and the in-
teractions of them. That way, unwanted feature interactions
can be prevented at an early stage. They often arise with
conventional development processes, since interactions are
considered only at a late stage. In our opinion the service-
oriented approach is also more intuitive to get from re-
quirements to the system design. It is easier than designing
a component architecture right from the requirements and
specifying the behavior of individual components. In par-
ticular, requirement specifications usually describe the ex-
pected system behavior (use case views, “how is the sys-
tem used?” [5]) and are expressed by activity flows and ex-
pected results of activities. The case study originates from
the automotive domain and has been carried out in cooper-
ation with the automobile manufacturer BMW.

Section 2 briefly explains the case study’s environment
and requirements. Section 3 illustrates the application of
the service-oriented development process. In particular,we
make use of an extended notation and modeling technique.
In Section 4 we describe the tool support for the process.
Section 5 gives the conclusion, a discussion and an outlook
to future work.

2. The case study

The central concept of our industrial case study is an
adaptive display control within an MMI application. The
purpose of the display control is to handle display requests
from other parts of the system. The actual information
displayed must be “context sensitive”, that is, it must be
adapted to the car’s current state. As an example, we con-
sider speed: at higher speeds, less information should be
displayed on the screens for safety reasons. Furthermore, if
there are important events (with a higher priority), like an
incoming telephone call, the display has to show the corre-
sponding information immediately. As an example, we con-
sider a display control connected to two different displays,
in interaction with software for a CD changer and a tele-
phone.

The first display under consideration is the graphical
Control Display (CDSP). It is used for displaying multi-
media information to the driver and the fellow passen-
ger. The second display is the Multi-Information Display
(MID). It is located below the tachometers and informs the
driver about mileage, alerts, etc. The MID is a monochrome
display which can show either two lines of plain text or a
symbol.

In our case study we specify an adaptive display service
which shows information on both displays dependent on the
priority of the information and the current speed of the car.
When a CD is played in the CD Changer at a low speed (less
or equal than 100 km/h), the track number and the full title
including the interpreter and the song title will be shown on
both displays. When the driver accelerates the car to a speed
greater than 100 km/h, for safety reasons only the track
number is shown in the MID. When a phone call comes
in, both displays show the information about the caller (in
this case, independently from the speed, but we may haz-
ard the safety consequences because we’re just dealing with
a model), and the driver may answer the telephone. After
hanging up, the CD information is shown again.

3. Description of the development process

In this section, we present a development process
for service-based systems. The basis for our develop-
ment process is a phase oriented development process
like the waterfall model [21] or object oriented devel-
opment methods such as the Unified Software Develop-
ment Process [13] or the Catalysis Approach [8], just
to name a few of them. We integrate services as a cen-
tral concept and guideline of the development. The pre-
sented process is model-based, i.e. the development is
driven by explicit models of both the development arti-
facts (product model) and of the process itself. The models
of the development artifacts have a predefined struc-



Inception

Service Identification

Use Case Modeling

Service Modeling

Component Design

Construction

Transition

S
e
rv

ic
e
 r

e
la

te
d
 p

h
a
s
e
s

Figure 2. Phases of the service oriented de-
velopment process

ture (which does not rule out textual parts), and the process
model describes how development proceeds in the differ-
ent phases, in terms of the product model. The process
is incremental in that it can be repeatedly applied to add
new functionality in small steps, which considerably re-
duces risk.

Fig.2 shows the phases of the service oriented process.
We give a short overview about them and explain the ser-
vice related ones in more detail in the following sections.

We assume that we have anInception Phase, in which
the project is born and both a project mission and the re-
quirements are elaborated. This is the starting point of our
process. The concept of service does not yet appear and thus
the Inception Phase is not affected by our approach. The re-
sults of this phase are documented in a project mission doc-
ument and in a requirements specification list.

After the Inception Phase, the sequences of actions at a
high abstraction level are modeled in theService Identifica-
tion Phase. In this phase a separation of the system takes
place. The service identification is covered in Section 3.1.
Results of this phase are activity diagrams modeling the run
of service functions.

A first elaboration of the services, which are identified
in the Service Identification Phase, is worked out in theUse
Case Modeling Phase. The flow of events of every service
function (as a subfunction of a service) is specified as well
as the input and output data, preconditions for the process-
ing, security requirements and service dependencies. The
Use Case Modeling Phase is discussed in detail in Sec-
tion 3.2. As a result, this phase leads to a use case model
with a structured textual specification of the use cases, se-

quence diagrams for one or more flows of events for a ser-
vice function, a textual description of the security require-
ments, and alogical service architecture.

The sequence diagrams from the Use Case Modeling
Phase make up a first version of the analysis model, which
will be worked out in theService Modeling Phase. The be-
havior of a service is specified formally in an abstract way
by relating its inputs and outputs, e.g. using state transition
diagrams. Execution scenarios are derived as compositions
of services (logical architecture), and the security require-
ments are concretized in terms of the formal model. The
service modeling is described in Section 4.

The next phase, theComponent Design Phase, ends the
service specific activities in the process. Here, the services
are mapped to system components. Thereby the logical ser-
vice architecture, which provides a functional view on the
system, i.e. the definition of services and service depen-
dencies, respectively, is transformed into a system architec-
ture. Until the Component Design Phase, no structural con-
straints are taken into account. Here, the services can be
mapped to one or even a number of component architec-
tures. However, designing components with respect to com-
posing services into components is not the focus of this pa-
per. For detailed investigations, see for instance [8, 22, 23].
The result of the component design is a set of components
with assigned services and a behavioral modeling of the
components.

Afterwards, the system development is commonly (e.g.
according to [15]) continued with theConstruction Phase
and theTransition Phase. These phases can be carried
out conventionally, as service-specific issues have been re-
solved previously by the above mentioned mapping.

3.1. Service identification

In this phase, requirements have to be divided and they
have to be arranged to actors, whereby actors can be repre-
sented by roles, systems or services.

In a first step, the requirements of the requirements spec-
ification list from the former phase are transformed to flows
of activities, which are sufficiently fine-grained such that
each activity can be carried out by one actor.

In a second step after this division, we have to arrange
these activities to their executing actors, i.e. the actor who
gets information from this activity or who sends informa-
tion to it. In the model, the actors are swim lanes within
an activity diagram, the nodes are the activities and the ar-
rows show their causal (and temporal) relationship.

Since we deal with service-based modeling we have to
extend the actor model. Conventionally, we have to deal
with two types of actors. The first actor type is the ab-
straction of a real person within a role, e.g. a driver role
as abstraction for a person who drives and operates a car.



The second actor type represents external systems interact-
ing with the system to be developed (e.g. via the different
automotive bus systems), which are not part of the system
to be developed. For service-based development, we add
a third actor type, aservice. The system to be developed
is not modeled by one actor but rather by a set of actors
of type service, i.e. small self-contained functional entities
responsible for a number of activities belonging together.
Since services interact both with the above mentioned two
actor types and with other services, we can treat service-
interactions in the same way as other actor-interactions.

In the context of service modeling, we call the activities
performed by actors of type serviceservice functions; oth-
erwise we call themactions(human actor) andsystem func-
tions (other interacting system), respectively. The needed
functionality of a service is given by all service functions
assigned to the corresponding service actor. In such a way
we build up a usability driven model of services and ser-
vice functions. For a better understanding, we annotate the
swim lanes with actor type symbols: an arrow symbol rep-
resents a service, a stickman stands for a human actor, and
a box symbol for other interacting systems.

ExampleAn example of an activity flow from our case
study is given in Fig.3, namely for the requirementDisplay.
We have to deal with the human actorDriver, the subsystem
actorAutomotiveand the service actorsCustomization Ser-
vice, Menu Service, CD-Changer Service, Telephone Ser-
vice and Display Service, all represented by swim lanes.
Service functions are e.g.show menu in CDSPor Stop CD.

3.2. Use case modeling

In the recent years, the concept ofUse Cases[14, 13, 2]
has become widely accepted within object oriented devel-
opment methods. The basic idea of this approach is that
both the domain objects as well as the user interaction of the
system are modeled within early development phases. The
use cases are more than a construct for capturing system
requirements: they drive the whole development process
and they provide major input when finding and specifying
classes, subsystems, interfaces and test cases (for more in-
formation cf. [13]). Furthermore, use cases are adequate for
an iterative development.

While uses cases have already been integrated into object
oriented development, they do not cover aspects of service-
based modeling. In this case, we have to deal with the fol-
lowing particularities:

There is no need for acommon domain model, which
has to be worked out e.g. in information systems during the
business modeling and has to be refined during the Use Case
Modeling Phase. Services only deal with a subset of system
objects, the ones we need for information storage within the
services and as input and output objects for the service.

Driver Automotive
System

Customization
Service

Menu
Service

Display
Service

CD-Changer
Service

Telephone
Service

opens
car

recognizes
driver ID

ignition
“on”

boot control
system

customization
of display

start
CD-Changer

via menu

show menu
in CDSP

play CD

show:
>, CD, Track,
Titel in MID

& CDSP,
CD-Ch-Panel

in CDSP

accelerates

v>100km/h:
show

numbers of
CD and Title

in MID

incoming
telephone

callclear CD info
from MID &

CDSP

stop CD

show caller
in MID &

CDSP
answer
phone

show
telephone

symbol and
duration of

call

finish call

clear symbol
and time,

show
CD infos

stop CD

Figure 3. Activity diagram for the requirement
“Display”

Furthermore, we considersecurity requirementswithin
this phase. In common systems, we describe use cases in a
structured textual way. Beside the actors a textual descrip-
tion covers the processing, variants illustrate peculiarities in
the processing, the types of input and output data are spec-
ified and often a precondition for the execution is given.
Here we add a security section where we describe possible
threat scenarios for every protection goal. Thereby we have
to check possible violations of the protection goals confi-
dentiality, authenticity, integrity, non-repudiation and avail-
ability. More information about security within the require-
ments phase is given in [3].

Finally, we identify the “involved services” that high-
light all concerned services. After that, we can refine the
use case and identify connections between the involved ser-
vices, as indicated in Fig.1. This leads to alogical service



Telephone
Service

CDChanger
Service

Custom.
Service

Display
Service

Menu
Service

configures

requests
requests

configures

requests

controls

Figure 4. Logical service architecture

architecture, which provides us a structured view on the
system functions and how they are related (cf. [4, 5]). At
first, the relations are not further specified. The most ab-
stract relation is the “interacts” relation. In later steps, the
logical service architecture is refined and the relations are
stated more precisely like “configures”, “ requests” or “ con-
trols” (see Fig.4). The logical service architecture replaces
in our approach common use case diagrams, because these
diagrams do not support the necessary refined relations.

In our service-based modeling, we make use of a struc-
tured textual description. For a complete service use
case model, we have to include every service func-
tion we have identified in the Service Identification Phase
(cf. Section 3.1) in such an extended use case. Note that
this is a partial description, since the activity flow dia-
gram shows just an exemplary run of the service. We
obtain a complete service description by merging all par-
tial use case descriptions.

In addition to the textual description, we build in the
Use Case Modeling Phase first analysis diagrams in form of
sequence diagrams. For each service function with its be-
longing textual description, we model the textually speci-
fied processing within a sequence diagram where we depict
the message flow between the different actors.

In the following, we sum up the steps which have to be
carried out for service functions to model them as use cases.
Note that we have no step for building an object model, be-
cause we do not have a domain model in service-based mod-
eling as mentioned above.

1. Elaborate structured use case descriptions.

2. Specify threats and protection goals and add them to
the textual use case descriptions.

3. Identify service relations and add them to the textual
use case descriptions and work out parts of a logical
service architecture.

4. Formalize the use case descriptions exemplarily in one
or more sequence diagrams.

ExampleTable 1 shows the use case description for the Dis-
play Service according to Fig.3. Fig.4 shows the logical ser-

Field Description

Use Case Display

Actors Menu Service, CD-Changer Service, Driver, Telephone
Service

Precondition Control system booted, ignitionOn

Processing After the control system boot, the display will be cus-
tomized from user and cartype settings and the dis-
play service shows the main menu. After an incoming
StartCDChangerrequest, the CD-Information will be
shown on the display. If the current speed is lower than
or equal to 100 km/h, detailed CD information will be
displayed. If the car drives faster, only little CD infor-
mation may be displayed.
An incoming telephone call interrupts the CD playing
and replaces the CD information with the telephone
number and the call duration. If the speed is greater than
100 km/h, only a telephone symbol will be displayed.
When the call is finished, the CD player goes on with
playing at the stored position and displays the CD
information.

Variants The CD information is not available and must be down-
loaded from the Internet and stored in the system.

Input Display requests from Menu Service, CD-Changer Ser-
vice, Telephone Service, Automotive System, Driver

Output Output messages and output strings for the display unit.

Protection
Goals

Confidentiality:No threats.
Authenticity:To ensure for internal communication. We
assume that no unauthorized sender may write on any
display.
Integrity: We assume that for the internal communica-
tion, integrity will be provided by the system.
Non-Repudiation:No threats.
Availability: No threats.

Involved
Services

Menu Service, CD-Changer Service, Telephone Ser-
vice, Customization Service

Table 1. Use case description for the partial
display service

vice architecture and Fig.5 the corresponding sequence dia-
gram for our use case.

4. Service modeling and tool support

In the Service Modeling Phase, we use the sequence dia-
grams and the textual use case descriptions developed in the
Use Case Modeling Phase as a basis to develop a more de-
tailed analysis model. The analysis model we employ is a
formally (i.e., mathematically precisely) defined model for
service architectures.

The analysis model of a service-based system consists
of a number of actors, which are of the three actor types de-
scribed above. For the development of service-based sys-
tems, we focus on the specifications of the service actors.
Human roles and external systems form their environment.

We specify the behavior of services as partial functions
from sequences of inputs to sets of sequences of outputs.
Partiality is characteristic for services in that only the ser-
vice relevant behavior is specified. The security require-



Driver Automotive
System

Customization
Service

Menu
Service

Display
Service

CD-Changer
Service

Telephone
Service

Telephone
Service

open car

ignition on

customize

show menu

start CD-Changer

display

accelerate

current speed

incoming tel-call

stop CD

answer phone

change display

change display

finish call

cont. play

customize

customize

Figure 5. Sequence diagram for use case

ments are concretized in terms of this model, as properties
in temporal logic.

4.1. Tool support with AUTOFOCUS

For modeling service architectures and behavior, we use
the tool AUTOFOCUS [12, 24]. AUTOFOCUS is a CASE
tool for graphically specifying distributed systems. It is
based on the formal method FOCUS[6], and its models have
a simple, formally defined semantics. AUTOFOCUS offers
standard, easy-to-use description techniques for an end-user
who does not necessarily need to be a formal methods ex-
pert, as well as state-of-the-art techniques for validation and
verification. Through various tool connections, it features
simulation, code generation, test sequence generation and
formal verification of the modelled systems.

Systems are specified in AUTOFOCUS using static and
dynamic views, which are conceptually similar to those
offered in UML-RT, a UML profile for component-based
communicating systems. In AUTOFOCUS, the behavior of
services, i.e. the above mentioned function from input se-
quences to sets of output sequences, is modelled in form of
extended finite automata. An example for a more abstract
specification using general relations between sequences of
inputs and outputs is described in [23] (in the formal method
FOCUS).

To specify systems, AUTOFOCUS offers the following
views:

• System Structure Diagrams (SSDs)are similar to
data flow resp. collaboration diagrams and describe the
structure and the interfaces of a system. In the SSD
view, a system consists of a number of communicat-
ing components resp. services, which have input and

output ports (denoted as empty and filled circles) to al-
low for receiving and sending messages of a particu-
lar data type. The ports can be connected via channels,
making it possible for the services to exchange data.
SSDs can be hierarchical, i.e. a service belonging to
an SSD can have a substructure that is defined by an
SSD itself. Besides, the services in an SSD can be as-
sociated with local variables.

• Data Type Definitions (DTDs)specify the data types
used in the model, with the functional language Quest
[20]. In addition to basic types as integer, user-defined
hierarchic data types are offered that are very similar to
those used in functional programming languages such
as Haskell [25].

• State Transition Diagrams (STDs) represent ex-
tended finite automata and are used to describe the
behavior of a service in an SSD. The automata con-
sist of a set of states (one of which is the initial state,
marked with a black dot) and a set of transitions be-
tween the states, where each transitiont is annotated
with

– pre(t), a boolean precondition (guard) on the in-
puts and local variables

– input patternsinp(t) = inp1?pat1; inp2?pat2; . . .,
specifying that values are to be read at the ports
inp

i
that should match the patternspat

i
(terms

in the functional language that specify val-
ues of data types and can include variables).
During the execution oft, variables in the pat-
terns are bound to the matching values.

– output expressionsoutp(t) of the form
out1!term1; out2!term2; . . .

– postconditionspost(t) of the form
lvar1 = term1; lvar2 = term2; . . .

In the concrete syntax of the STDs, the annotation
is written aspre(t) : inp(t) : outp(t) : post(t). Leav-
ing out components is interpreted astrue for precondi-
tions, and as an empty sequence in the other cases. A
transition is executable if the input patterns match the
values at the input ports and the precondition is true.
At each clock tick, one executable transition in each
service fires, outputs the values specified by the out-
put patterns and sets the local variables according to
the postcondition. The values at the output ports can
be read by the connected services in the next clock cy-
cle.

• Extended Event Traces (EETs)finally make it possi-
ble to describe exemplary system runs and test cases,
in a similar way as sequence diagrams (such as the one
depicted in Fig.5).



«s »
{<relationship>=...}

...

ervice

Figure 6. Service actor

We make extensive use of AUTOFOCUS in the ser-
vice modeling phase. Fig.6 shows the representation of
a serviceS. Services have an interface consisting of in-
put and output ports (as described above, denoted by empty
and filled circles) and communicate with the environment
via typed input and output channels connected to the ports.
The arrow symbol inside the grey border and the annota-
tion «service» (in the annotation bubble) identifies this
actor as a service. Besides, a service in AUTOFOCUS car-
ries as annotations the relationships to other services iden-
tified in the use case modeling phase, denoted in the form
{<relationship>=<related-services>}.
Furthermore, one can specify attributes, like quality of ser-
vice (QoS) properties. An interesting one is to specify
whether a service is adaptive or not. Other QoS-attributes
may be time constraints, e.g. that the service answers a re-
quest in a given amount of time. The latter can help
to guarantee that the Display Service changes the dis-
play quickly when the driver accelerates to a speed greater
than 100 km/h.

In AUTOFOCUSthe behavioral functions are specified in
an executable way, as STDs. AUTOFOCUS can be used to
model an actual execution scenario, given as a network of
actors (roles, systems and services) connected via channels.
These models provide a basis for consistency checks, be-
havioral verification of safety and security properties speci-
fied in temporal logic, test case generation, code generation,
and further development (Component Design Phase).

Fig.7 shows the system structure diagram (SSD) of the
execution scenario corresponding to the sequence diagram
in Fig.5.

We notice that most of the communication channels be-
tween the services and the system (automotive system) are
derived from the sequence diagram, which helps us to build
the SSD. The driver is not modeled explicitly and forms the
environment of the system. Inputs from the environment are
received via the Automotive System and the User Input Ser-
vice. The latter is an additional service we introduced dur-
ing the service modeling phase in order to distribute user
inputs to the respective services. Furthermore, there are two
channels leading to the environment. These channels rep-
resent the output to the physical displays, the MID and the
CDSP. For the simulation mode, AUTOFOCUS provides an

A

Telephone
Service

A

CDChanger
Service

A

Custom.
Service

A

Display
Service

D

User
Input

Service

A

Menu
Service

A

DispCDSP:TDisplayMsg

DispMID:TDisplayMsg

DriverToAut:TMessage

DriverToUI:TMessage

CallSignal:TSignal

HangupSignal:TSignal

Automotive
System

«s »
}

{controls=CDChangerService}
{requests=DisplayService

ervice

Figure 7. SSD of the “Display Scenario”

Figure 8. STD of the CDChanger service

interface where the user easily can interact with the mod-
eled system.

The A© inside the service boxes indicates that there is an
STD attached to the service, which specifies its behavior.
As an example, Fig.8 shows the behavior model (STD) of
the CDChanger Service. Furthermore, a service can be de-
composed into more than one STD, which is denoted by a
D© (as in the Display Service, Fig.7).

The annotations in Fig.7 also show that the telephone
service has a “requests” relationship to the display service
and a “controls” relationship to the CD changer service,
as specified in the logical service architecture (see Fig.4).
These annotations form the basis forconsistency checksfor
the execution scenario. A simple example is that a service
with a “requests” or “controls” relationship to another ser-
vice must at least have an output port that connects it to the
other service via a channel (which is fulfilled in our exam-
ple). We intend to extend the semantics of the annotations
to be the basis of model transformations, such as the inser-
tion of an appropriate protocol into the model.

4.2. Model checking with SMV

In this subsection, we describe how to verify a service
model with regard to safety and security properties. For
this purpose, AUTOFOCUS generates an input file for the



symbolic model checker SMV, which carries out the ac-
tual model checking process using symbolic model check-
ing based on Binary Decision Diagrams (BDDs) [16]. We
specify the required properties of the system using the tem-
poral logic CTL (Computation Tree Logic, see [10]). In ad-
dition, to facilitate the formulation of properties, AUTOFO-
CUS supports the definition of specification patterns (such
as those presented by Dwyer et al. in [9]) appropriate for
the specification domain that are automatically translatedto
standard CTL formulas.

The properties are translated to the SMV language as
well, and during the model checking process, SMV checks
if they are true with respect to the model. If SMV finds any
error in the system, a message sequence chart is generated
which helps to understand what went wrong and helps the
developer resp. service engineer to fix the problem.

At the modeled abstraction level, model checking per-
formance was not an issue as the computation time
is in the order of a few minutes per property. For ex-
ample, one of the required properties for the Display
Service is that the message “Incoming call” can only
be shown on the display if really an incoming call
took place before. In our formalism, this is specified by
precedes(is_Msg(CallSignal), DispMID == IncomingCall),
which could be shown to be true for the model. Here,
precedes(s, t) is a specification pattern translated to the
CTL formula¬E(¬s U t) meaning that there should be no
execution wheret is fulfilled at some state withouts be-
ing fulfilled at some earlier state. Another important prop-
erty is that the title of the played song is not shown
on the MID at a speed of 150 km/h. This is specified by
AG((AutomotiveSystem.current_speed == Speed150)⇒
(AX(AX(not(DispMID == CDInfoTrackTitle))))), mean-
ing that at all reachable states (AG) with current speed
Speed150, the display does not showCDInfoTrackTitle

two clock ticks later (AXAX). The reason for the de-
lay of two clock ticks is that this is the time that it takes the
display in the specification to react to a change of the cur-
rent speed. Again, this property could be verified to be
true.

4.3. Code generation

From AUTOFOCUS models, code can be generated by
the tool in various target languages such as Java, C or Ada.
We applied code generation to create a prototype of the user
interface for the considered service scenario. As a target lan-
guage, we used Java. Fig.9 shows the structure of the proto-
type. The actual graphical user interface (GUI) is designed
using the GUI building features of a Java IDE. The Java
code generated by AUTOFOCUS offers an API to set input
values, trigger execution steps and read output values. In ad-
dition, some glue code is necessary to translate inputs from

Figure 9. Structure of prototype

Figure 10. Prototype screenshot

the GUI to inputs to the generated Java code, display out-
puts from the generated Java code accordingly and perform
thread handling (triggering execution steps at fixed time in-
tervals). Automated generation of such glue code is under
consideration, but not yet supported by the tool.

A screen shot of the prototype is shown in Fig.10. The
user interface of the prototype consists of buttons corre-
sponding to actions that can be initiated by the driver (such
as “Start CD Changer”) or that can originate from the exter-
nal system (such as “Incoming Call”).

Such prototypes are particularly useful in the develop-
ment of multifunctional systems where functions influence
each other and can be triggered via several different parts
of the user interface: without knowledge of the design, the
user can examine the modeled behavior for different possi-
ble interactions and give feedback to the developer. During
the development of the prototype for the display scenario,
we found a number of undesired interactions (for example,
a completely empty display for one time tick during an in-
coming phone call) that could easily be prevented by cor-
recting the model.

Further applications of code generation include:

• Behavior monitoring, i.e. having the generated Java
code for a service run against an independently devel-
oped implementation and verifying if the input/output
behavior corresponds to the specification.



• Deployment of the generated code, i.e. using the gen-
erated code itself as part of the implementation.

For this purpose, AUTOFOCUS features the generation
of server code (listening on some TCP socket) from AU-
TOFOCUScomponents, which are tailored to the service in-
frastructure. In our case study, the service infrastructure is
an OSGi [19] platform, a Java framework supporting the de-
ployment of services. The services are mapped to a number
of so-called OSGi “bundles”. The Java code generated by
AUTOFOCUS is post-processed such that the AUTOFOCUS

services are registered as OSGi services and export their in-
terfaces (Java methods to read and write the ports and to
trigger the execution). The main application consists of glue
code importing the services and managing their communi-
cation. Using this approach we generated a version of the
prototype described above running on actual car hardware
and interfacing e.g. to the built-in CD changer.

5. Conclusion, discussion and future work

To manage the large number of mutually dependent
functionalities and the increasing complexity in current and
future systems (as in the automotive domain), we presented
the service paradigm and a model-based development ap-
proach based on the concept of services as the basic build-
ing blocks in the elaboration phase of development. We ab-
stract as long as possible from concrete component architec-
tures but instead focus on the system as a logical network of
units of function (the services) with abstract behavioral pat-
terns and relationships to other services.

We showed how to apply the concept of service in a
phase oriented development process, with focus on partic-
ular modeling techniques for the service related phases. In
order to use, manage and accept such a service paradigm
with its assigned modeling techniques in practice and the-
ory an adequate tool support is necessary. In this paper,
as an integrated part of the process, we applied the CASE
tool AUTOFOCUS for service modeling. Furthermore, AU-
TOFOCUS can be used in this context for the definition of
execution scenarios, simulation, code generation for pro-
totypes and for the verification of typical requirements of
service-based systems. Such a verification includes consis-
tency checks and the proof of security properties.

Service oriented modeling techniques are a fairly new
field of research. Some related work, focusing on features
and feature interaction, can be found in [28, 27]. AUTOFO-
CUShas been used for verifying distributed systems and se-
curity, e.g. in [11, 26]. There is a large number of modelling
languages for the development of systems consisting of dis-
tributed objects, such as the UML EDOC profile [18] and
the parts of it incorporated into UML 2.0 or various archi-
tecture description languages. For UML models, tool sup-
port can be offered based on the Model Driven Architecture

(MDA) [17]. The general concepts presented in this paper
— mainly, the use of a well-defined, formal concept of ser-
vices with specific properties (see Section 1) and its appli-
cation throughout the development — does not depend on
the use of AUTOFOCUS and its particular description tech-
niques. Its main prerequisites are an executable, extensible
component-based description technique with code genera-
tion and verification support. We chose AUTOFOCUSin par-
ticular because of the comprehensive code generation and
verification support and its sound formal basis.

In several student projects, we have executed and eval-
uated our development process and the AUTOFOCUS tool
support. Although the introduced process from Fig.2 seems
at first to be a strong waterfall process, a system can be cre-
ated incrementally. At the beginning only a few services for
a simple CD player were worked out in a student project.
In further iterations this CD player was extended to a CD
changer with CDDB access and furthermore to a config-
urable packet radio service.

During all these projects we made extensive use of the
tool AUTOFOCUS. An execution scenario conforming to
the logical service architecture was developed as a system
structure diagram and the behavior of the services in state
transition diagrams. In the construction phase, the func-
tional parts of the system were generated through the AU-
TOFOCUS code generator. In the constructions, only the
graphical parts and the glue code between user interface and
functionality had to be implemented manually. For our step-
wise development, this process was very appropriate, be-
cause early prototypes could be built of the CD player and
after extending the model, only few changes had to be done
on the glue and display code.

The service modeling phase and the construction phase
are well supported by the tool AUTOFOCUS. What is miss-
ing at the moment is support for the service identification
and for the use case modeling. For the former, an AUTO-
FOCUSextension for the modeling of activity diagrams will
be necessary. For the latter, tool support is a hard task, be-
cause the use case specifications are mostly done in a very
informal, textual way, where automation can not be applied.

Services, when based on formal behavior specification,
are a powerful concept for system integration. However,
formal methods are not convenient to handle and are slow-
ing the development process down. We therefore see the fu-
ture of our approach, especially the formal foundation and
the application of service composition [23] inside of tools.
Given a graphical specification technique as sketched out in
this paper, enriched with a formal foundation, we are able
to compose services to components in a far more precise
way and detect possible hazards like feature interaction with
tools.

At the moment, we plan to extend the presented service-
based approach by more fine-grained ways to define rela-



tionships between services leading to more comprehensive
logical service architecture models. We are working on tool
support for the modeling of a logical service architecture
as a step towards an integrated CASE tool supporting ser-
vice modeling. Therefore, we are analyzing the integration
of that kind of modeling technique into existing modeling
tools such as AUTOFOCUS.

In addition, we will look both at incorporating quality of
service attributes and modeling service contexts (such as the
current speed of the car) for context-adaptive services. We
also plan to develop a generic security model for service-
based systems in the automotive domain.

References

[1] MEWADIS website at http://www4.in.tum.de/
~mewadis. In German.

[2] R. Breu. Objektorientierter Softwareentwurf – Integration
mit UML. Springer-Verlag, 2001. In German.

[3] R. Breu, K. Burger, M. Hafner, J. Jürjens, G. Popp, G. Wim-
mel, and V. Lotz. Key Issues of a Formally Based Process
Model for Security Engineering. InProceedings of the 16th
International Conference on Software & Systems Engineer-
ing and their Applications (ICSSEA03), 2003.

[4] M. Broy. Modeling Services and Layered Architectures.
In H. König, M. Heiner, and A. Wolisz, editors,Formal
Techniques for Networked and Distributed Systems, volume
2767 ofLecture Notes in Computer Science, pages 48–61.
Springer-Verlag, 2003.

[5] M. Broy. Multi-view Modeling of Software Systems, 2003.
Keynote. FM2003 Satellite Workshop on Formal Aspects of
Component Software, 8–9 September, Pisa, Italy.

[6] M. Broy and K. Stølen.Specification and Development of
Interactive Systems:FOCUS on Streams, Interfaces and Re-
finement. Springer-Verlag, 2001.

[7] M. Deubler, J. Grünbauer, G. Popp, G. Wimmel, and C. Salz-
mann. Towards a Model-Based and Incremental Develop-
ment Process for Service-Based Systems. In M. H. Hamaza,
editor,Proceedings of the IASTED International Conference
on Software Engineering (IASTED SE 2004), pages 183–
188, Innsbruck, Austria, February, 17–19 2004.

[8] D. F. D’Souza and A. C. Wills.Objects, Components, and
Frameworks With UML: The Catalysis Approach. Addison
Wesley Publishing Company, 1998.

[9] M. Dwyer, G. Avrunin, and J. Corbett. Patterns in Prop-
erty Specifications for Finite-State Verification. InProc. 21st
International Conference on Software Engineering (ICSE),
1999.

[10] E. A. Emerson. Temporal and modal logic. In J. van
Leeuwen, editor,Handbook of Theoretical Computer Sci-
ence, volume B, chapter 16, pages 995–1072. Elsevier Sci-
ence Publishers, 1990.

[11] J. Grünbauer, H. Hollmann, J. Jürjens, and G. Wimmel.
Modelling and Verification of Layered Security Protocols: A
Bank Application. In S. Anderson, M. Felici, and B. Little-
wood, editors,The 22nd International Conference on Com-
puter Safety, Reliability and Security (SAFECOMP 2003),

volume 2788 oflncs, pages 116–131, Edinburgh, UK, Sep-
tember 23–26 2003. Springer-Verlag.

[12] F. Huber, S. Molterer, A. Rausch, B. Schätz, M. Sihling,
and O. Slotosch. Tool supported Specification and Simu-
lation of Distributed Systems. InInternational Symposium
on Software Engineering for Parallel and Distributed Sys-
tems, pages 155–164, 1998.

[13] I. Jacobson, G. Booch, and J. Rumbaugh.The Unified Soft-
ware Development Process. Addison Wesley Longman, Inc.,
1999.

[14] I. Jacobson, M. Christerson, P. Jonsson, and G. Övergaard.
Object-Oriented Software Engineering: A Use-Case Driven
Approach. Addison Wesley Longman, Inc., 1992.

[15] P. Kruchten.The Rational Unified Process: An Introduction,
Second Edition. Addison-Wesley, 2000.

[16] K. L. McMillan. Symbolic Model Checking. Kluwer Acad-
emic Publishers, Boston, 1993.

[17] OMG. MDA Specifications. Available athttp://www.
omg.org/mda/specs.htm.

[18] OMG. UML Profile for enterprise distributed Ob-
ject Computing (EDOC) v1.0, 2004. Available at
http://www.omg.org/technology/documents/
formal/edoc.htm.

[19] Open Services Gateway Inititative. OSGiTM Service Plat-
form Specification. Release 3, March 2003,http://www.
osgi.org.

[20] J. Philipps and O. Slotosch. The Quest for Correct Systems:
Model Checking of Diagrams and Datatypes. InAsia Pacific
Software Engineering Conference 1999, 1999.

[21] W. W. Royce. Managing the Development of Large Software
Systems. InProceedings of the Ninth International Confer-
ence on Software Engineering, pages 328–338. IEEE, 1987.

[22] C. Salzmann.Modellbasierter Entwurf spontaner Kompo-
nentensysteme. PhD thesis, TU München, 2002. In German.

[23] B. Schätz and C. Salzmann. Service-Based Systems Engi-
neering: Consistent Combination of Services. InProceed-
ings of ICFEM 2003, Fifth International Conference on For-
mal Engineering Methods. Springer-Verlag, 2003.

[24] O. Slotosch. Quest: Overview over the Project. In D. Hutter,
W. Stephan, P. Traverso, and M. Ullmann, editors,Applied
Formal Methods – FM-Trends 98, pages 346–350. Springer
LNCS 1641, 1998.

[25] S. Thompson.Haskell: The Craft of Functional Program-
ming. Addison-Wesley, 1999.

[26] G. Wimmel and J. Jürjens. Specification-based Test Gen-
eration for Security-Critical Systems Using Mutations. In
International Conference on Formal Engineering Methods
(ICFEM), volume 2495 ofLecture Notes in Computer Sci-
ence, pages 471–482, Shanghai, China, Oct. 22-25 2002.
Springer Verlag.

[27] P. Zave. Formal description of telecommunication services
in promela and z. In M. Broy and R. Steinbrüggen, editors,
Calculational System Design, Proceedings of the Nineteenth
International NATO Summer School, pages 395–420. IOS
Press, 1999.

[28] P. Zave.An Experiment in Feature Engineering, pages 353–
377. Programming Methodology. Springer-Verlag, 2003.


