
Concise and Consistent Naming

Florian Deißenböck and Markus Pizka∗

Institut für Informatik, Technische Universität München
Boltzmannstr. 3, D-85748 Garching b. München, Germany

{deissenb|pizka}@in.tum.de

Abstract

Approximately 70% of the source code of a software sys-
tem consists of identifiers. Hence, the names chosen as
identifiers are of paramount importance for the readabil-
ity of computer programs and therewith their comprehen-
sibility. However, virtually every programming language
allows programmers to use almost arbitrary sequences of
characters as identifiers which far too often results in more
or less meaningless or even misleading naming. Coding
style guides address this problem but are usually limited to
general and hard to enforce rules like “identifiers should
be self-describing”. This paper renders adequate identifier
naming far more precisely. A formal model, based on bi-
jective mappings between concepts and names, provides a
solid foundation for the definition of precise rules for con-
cise and consistent naming. The enforcement of these rules
is supported by a tool that incrementally builds and main-
tains a complete identifier dictionary while the system is
being developed. The identifier dictionary explains the lan-
guage used in the software system, aids in consistent nam-
ing, and improves productivity of programmers by propos-
ing suitable names depending on the current context.

1. Naming and Comprehension

“The limits of my language mean the limits of my
world.” — Ludwig Wittgenstein (1889 – 1951)

The names of the identifiers used in a computer program re-
semble the common language of the development team. Re-
ferring to philosopher Wittgenstein1 this language reflects
the limits of the common understanding of software sys-
tems. Different names used for the same concept or even

∗Part of this work was sponsored by the German Federal Min-
istry for Education and Research (BMBF) as part of the project VSEK
(www.software-kompetenz.de).

1http://www.philosophypages.com/ph/witt.htm

identical names used for different concepts reflect misun-
derstandings and foster further misconceptions. Meaning-
less identifier names as in class ABZ are either hints to
or a frequent source of a lack of understanding.

We argue that the improvement of identifier naming is
a promising opportunity to significantly facilitate program
comprehension and as a consequence increase the produc-
tivity and quality during software maintenance [16] and
evolution [13]. As we will show below, significant improve-
ments can be achieved with moderate costs.

1.1. Evidence

Table 1. Token analysis for Eclipse 3.0M7

Type # % characters %
Keyword 967,665 0.11 4,650,273 0.13
Delimiter 4,096,112 0.467 4,096,112 0.115
Operator 531,444 0.061 669,932 0.019
Identifier 2,873,232 0.328 25,646,263 0.717
Literal 301,081 0.034 708,308 0.020
Total 8,769,534 1.0 35,770,888 1.0

One does not have to deeply dig into philosophy to un-
derstand the importance of identifier naming for program
comprehension. Table 1 shows the results of a lexical analy-
sis of the extensive Eclipse2 (version 3.0M7) Java code base
with a total of 2 MLOC3. Counting all source level tokens
and differentiating according to the type of the token, e. g.
keyword or identifier, reveals that 33% of all tokens are
identifiers. Since each identifier token consists in average of
8,9 characters, identifiers account for more than two thirds
or 72% of the source code in terms of characters. With-
out further analysis of the complex processes involved in
program comprehension it becomes evident that identifiers
make up for the bulk of information that a future reader or
maintainer of the program has to understand. Though pro-
gram comprehension is not limited to program reading it

2http://www.eclipse.org
3million lines of code

Proceedings of the 13th International Workshop on Program Comprehension (IWPC’05)
1092-8138/05 $ 20.00 IEEE

is to expect that the naming of identifiers has a enormous
impact on the comprehensibility of a software system.

Another evidence for the strong influence of identifier
naming on the comprehension process is one of the strate-
gies commonly applied by code obfuscators: In order to
protect the code they substitute the identifiers by meaning-
less character sequences (Identifier Scrambling)[14]. This
sole transformation is sufficient to make comprehension a
cumbersome task.

function mr mr 1(mr, mr 1)
if Null(mr) or Null(mr 1) then

exit function
end if
mr mr 1 = (mr - mr 1)

end function

Figure 1. Unwanted obfuscation

Unfortunately, the naming of identifiers in real-world
software systems comes often close to obfuscation. Figure
1 shows an example taken from a commercial software sys-
tem. Though the function itself is not complicated its name
does not give any clue what the purpose of the function is.
Note that an inline comment describing the function could
only provide a marginal improvement because it would not
improve the comprehensibility of functions using mr mr 1.
Lousy naming in one place spoils comprehension in numer-
ous other places.

1.2. Reasons for Poor Naming

Amongst others, there are three important reasons for the
inappropriate naming of identifiers encountered in numer-
ous code bases:

1. Identifiers can be arbitrarily chosen by developers and
elude automated analysis.

2. Developers have only limited knowledge about the
names already used somewhere in the system.

3. Identifiers are subject to decay during system evolu-
tion. The concepts they refer to are altered or aban-
doned without properly adapting the names. One rea-
son for this is the lack of tool support for globally re-
naming sets of identifiers referring to the same con-
cept.

Due to 3 naming deficiencies can not solely be explained
as a result of neglect by careless programmers. It is indeed
practically impossible to preserve globally consistent nam-
ing during long-term maintenance and evolution without
additional tools. In contrast to a rather simple rename refac-
toring all identifiers names referring to the changed concept
must be found and renamed consistently.

1.3. Proposed Solution

The importance of identifier names is neither new nor
surprising. At the same time, it is amazing that there is
hardly any work that directly deals with identifiers. While
forward engineering methods generally tend to ignore long
term maintainability issues, re-engineering methods seem
to have accepted that identifiers are a weak source of infor-
mation. Of course, naming conventions are part of countless
coding styles [1], [11]. The trouble is, they usually focus on
syntactical aspects, e. g.4:

• packages: lowercase

• classes: CapitalizedWithInternalWordsToo

When it comes to the actually important aspects of nam-
ing, that is the semantics of the names, there is usually little
guidance5:

Names should be meaningful in the appli-
cation domain, not the implementation domain.
This makes your code clearer to a reader . . .

Clearly, only requiring “meaningful”, “descriptive”, or
“self-documenting” names is insufficient. First, a name not
only needs to be meaningful but reflect the correct mean-
ing. Second, the “correct” meaning and name of a concept
is naturally highly debatable.

The improvement proposed in this paper aims at filling
this gap by rendering the term “meaningful” more precisely.
Based on a formal analysis of the properties of identifiers,
names, concepts and code and their interrelationships we
derive rules for consistent and concise naming of identifiers
and provide a concept as well as a tool that helps to enforce
the aforementioned attributes of identifiers throughout the
system’s lifetime.

It is to emphasize that this approach concentrates on
comprehensibility rather than analyzability. Clearly, “cor-
rect” naming of identifiers can not be checked automati-
cally since it is a semantic property. But like other in-
herently manual but highly successful quality management
techniques like reviews and inspections [10] point out, the
inability of complete automation is no argument against a
method providing a significant improvement. We follow
this route by providing a semi-automatic solution to the
naming problem that relies on both manual work and tool-
support.

Outline Section 2 discusses related work in the fields of
program comprehension and psychology as well as the use

4http://gee.cs.oswego.edu/dl/html/
javaCodingStd.html

5http://www.jetcafe.org/∼jim/c-style.html

2

Proceedings of the 13th International Workshop on Program Comprehension (IWPC’05)
1092-8138/05 $ 20.00 IEEE

of dictionaries in different contexts. In section 3 we pin-
point the problems that usually affect the naming of identi-
fiers based on a formal model of concepts and name spaces
and relate these findings to practical experiences in section
4. Section 5 explains our solution to the naming problem
on a conceptual level before and outlines the implementa-
tion of the concept and the features as well as the resulting
tool. Finally, section 6 summarizes our findings and gives a
glimpse on future work.

2. Related Work

Program Comprehension Usually, the impact of identi-
fier naming on real-life maintenance activities remains un-
derestimated. Typically, naming rules do not go much fur-
ther than code formatting guidelines [15] or aren’t treated at
all even in the context of code formatting and documenting
[5]. In [20], Sneed states that in many systems, “procedures
and data are named arbitrarily”.

But, some work discusses the role of identifiers for pro-
gram comprehension in greater detail. For example, Big-
gerstaff regards them as hints for the construction of mental
representations [7]. In [4] it is stated that “being able to
rely on the names of software artifacts to detect different
implementations of the same concept would be very use-
ful”. The naming convention proposed to achieve reliable
naming requires amongst others that two software artifacts
with the same name should implement the same concept.
We broadly agree with these findings but extend them with
more precise formal criteria and appropriate tool support.

Raijlich and Wilde [17] mention identifier-based con-
cept recognition as one possible strategy for concept loca-
tion. Concept location is the problem of finding already
known concepts in source code which is frequently neces-
sary in maintenance tasks. They state that concept recog-
nition based on identifier names is the most intuitive strat-
egy but argue that it’s too fragile due to the dependence on
naming skills of the original programmers and loss of mean-
ing during software evolution. They assume that developers
only apply more complex strategies like the dynamic search
[24] method or control and data flow analysis [8] if sim-
pler strategies fail. Shneiderman [19] found that the more
complex programs are the more comprehension is aided by
meaningful names.

Psychology Research on the cognitive processes of lan-
guage and text understanding also shows that it is the se-
mantics inherent to words that determine the comprehen-
sion process besides syntactic rules. There is clear evidence
that the semantic contents of words is processed even be-
fore the syntactical structure of the sentence is taken into ac-
count [3]. Experiments about comprehension processes for
ambiguous sentences caused by the presence of homonyms

show that readers encountering homonyms are slowed down
by the process of mentally activating the different possible
meanings of words [3].

Further hints to the importance of naming can be found
in psychology, especially in the “Broken Windows” theory
[25]. This theory is based on an experiment carried out by
Zimbardo and is known to affect software product quality
[12]. It stems from the field of crime prevention and proved
that a car that already has one window smashed is far more
prone to be vandalized than an intact car. It’s relevancy for
the field of software engineering has long been recognized
but is very rarely considered during evolution of long-lived
systems. Concerning identifier naming it tells us that there
is a high risk of rapid decay once the quality of naming has
started to deteriorate.

Weinberg’s work on “egoless programming” [23] can
easily be extended to the problem of identifier naming since
the central objective of egoless programming is “making the
program clear and understandable to the person or people
who would ultimately have to read it”.

Dictionaries The use of dictionaries as a means to estab-
lish a common understanding of terms has already proved
its benefits in some software related fields. Literature on
software project management recommends the usage of a
project glossary or dictionary that contains all a descrip-
tion of all terms used in a project. This glossary serves as
reference for project participants over the entire project life
cycle. An example is the Volere Requirements Specification
Method [18] that suggests to use such a dictionary and fur-
thermore advices to “Select names carefully to avoid giving
a different, unintended meaning”.

In database systems it is common practice to maintain a
Data Dictionary or Data Directory [2]. Data dictionaries
serve a similar purpose as project glossaries but a more pre-
cisely defined in terms of their content and usage. A data
dictionary contains the names of all attributes of all tables
used in a particular system. For each attribute it stores its
data type, a specification of the domain, and a prose de-
scription of its meaning. This information serves database
managers, programmers, and even users as a valuable foun-
dation for a common understanding of the system.

3. Naming Troubles

Having motivated the importance of names and dis-
cussed the extensive work on names and dictionaries we
now want to come to a more precise definition of “good”
naming practices. We therefore perform a detailed and for-
mal analysis of the properties of names and naming trou-
bles.

3

Proceedings of the 13th International Workshop on Program Comprehension (IWPC’05)
1092-8138/05 $ 20.00 IEEE

3.1. Conciseness by Example

Technically, identifiers are merely syntactic entities act-
ing as aliases for memory addresses where variables,
method or classes are stored. But, since the introduction
of symbolic names identifiers additionally have to fulfill a
far more important purpose that is giving the reader of the
program a clue to the concept behind these addresses, i. e.
its meaning.

Here, a concept doesn’t necessarily have to be a concept
of the application domain like an account number. It could
as well be a technical concept like a stack or sorting algo-
rithm or a part thereof [17].

A reader of a program tries to map the identifiers read to
the concepts they may refer to. The more meaningful, i. e.
concise, the names are, the more easily can these mapping
be established; compare stack.push() with s.p().

The function shown in figure 2 illustrates the importance
of conciseness. The name p doesn’t provide any hint to the
concept implemented. Because of this, understanding what
p actually does is extremely difficult although the function
body itself is elegant (taken from an undergraduate exam).
Note that general identifiers like p increase the comprehen-
sion effort in two ways. First, they don’t assist the developer
in finding reasonable boundaries for the mental models he
or she is building. Second, they do not allow to determine
at the black box level whether the entity at hand is relevant
for a given task or not. The reader is forced to also read and
understand the details before being able to judge about its
relevancy.

fct p = (seq m s) seq seq m :
p1 (<>, <>, s)

fct p1 = (seq m t, seq m l, seq m r) seq seq m:
if r == <> then <>
elif (rest(r) == <>) ∧ (l == <>) then <t ◦ <first(r)>>

else p1(t ◦ <first(r)>, <>, l ◦ rest(r)) ◦\
p1(t, l ◦ <first(r)>, rest(r))

fi
fi

Figure 2. Function p

Now, changing the name of this function to the descrip-
tive term transformation, would already satisfy the re-
quirements of most coding conventions although it is still
not concise. Surely, the term transformation is help-
ful since it restricts the possible meanings significantly, e. g.
a reader would be able to quickly exclude the possibility
of console output. However, transformation is still
a very general term with too many possible meanings. As
such it is not concise enough.

Calling the function permutation makes it easy to
understand its functionality. “Permutation” restricts the

kind of “transformation” implemented in this function. The
name is now concise enough to quickly guide the developer
to the concept. Now, the reader is left with the rather simple
task to check whether or how the function body implements
the permutation. This task is trivial compared to having to
find the concept without any intuition. The key to it is the
conciseness of the identifier.

3.2. Formal Model

Surely, there are countless other examples for weak nam-
ing practices and just as many explanations for their pros
and cons. To come to well-founded naming rules we now
take the observations exemplified above one step further and
develop a formal definition of concise and consistent nam-
ing.

3.2.1. Named Concepts. Let C denote the set of all con-
cepts relevant within a certain scope. The scope is deter-
mined by a particular computer program, an application do-
main, or an organization. A concept is a unit with an asso-
ciated meaning in terms of properties or behavior. Example
concepts at a technical level are a single linked list, a stack
but also application level concepts such as an abstract bank
account.

C inherently evolves over time. It would be unrealistic
to assume that every concept needed was known in advance
and no unneeded concepts were in C from the start. As we
will show later on, a complete concept space C with all pos-
sibly needed concepts would not even be desirable because
it would dramatically lengthen the names of the identifiers.

In addition to the concept space C we model all possible
names as a set denoted by N and regard the assignment of
names to concepts as a formal relation R ⊆ N × C.

While C determines the expressiveness of a language, N
and R together with a given set of grammar rules define the
syntactic representation of its words. Clearly, to maximize
comprehensibility of words in this language, i. e. the under-
standing of behavior formulated in the language, one has to
chose N and R so that the language becomes as simple and
intuitive to understand as possible.

3.2.2. Rule 1: Consistency. The first step towards the
postulated simplicity is to enforce a proper relation R be-
tween names and concepts.

There are two different kind of inconsistencies that are
also known from natural languages: homonyms and syn-
onyms. Homonyms are words with more than one meaning,
or more precise:

Definition (Homonym) A name n ∈ N is called a
homonym iff |Cn| > 1 where Cn = {c ∈ C : (n, c) ∈ R}.

4

Proceedings of the 13th International Workshop on Program Comprehension (IWPC’05)
1092-8138/05 $ 20.00 IEEE

Homonyms are common in natural languages. An exam-
ple is the word “book” which can refer to the concept of a
book that can be read but also to “book” a flight, and various
other concepts. Homonyms occur frequently in computer
programs, too. An example is the usage of the identifier
name file for file handles and filenames alike.

In computer programs, homonyms pose an obstacle for
program comprehension since the developer has to take all
elements of the set Cn into account when spotting an iden-
tifier named n. In real life reverse engineering activities
homonyms become even more complicated due to fact that
the size and elements of Cn are unknown before all possible
meanings denoted with n are found. Figure 3a illustrates a
relation R with the homonym n1 that refers to concepts c1

and c2.
Another core naming problem besides homonyms are

synonyms, i. e. different words with the same meaning.
Correspondingly we define:

Definition (Synonym) Names s, n ∈ N are synonyms iff

Cs ∩ Cn �= ∅.

While synonyms provide for diversity and elegant formula-
tions in poetry they cause tough problems in computer pro-
grams. A typical example for a synonym is the usage of the
different identifier names accountNumber and number
for the concept of an account number.

In the absence of homonyms the damage of synonyms
is limited since independently from the existence of a syn-
onym an identifier name always clearly hints to a single con-
cept. However, synonyms unnecessarily increase the do-
main of N and the relation R and therefore raise the learn-
ing effort of the language used. Figure 3b shows a relation
with the synonyms n1, n2 both referring to concept c1.

In presence of homonyms, synonyms have a very neg-
ative impact strongly increasing the comprehension effort
because for each identifier named n the developer has to
consider all concepts in

Mn =
⋃

e∈Sn

Ce

where Sn is the set of all names synonym to n (including
itself). Figure 3c illustrates this problem: On encountering
name n1 which is synonym to n2 the reader must take con-
cepts c1 and c2 into account.

Obviously, the mixture of synonyms and homonyms,
which is commonly found in source codes, maximizes con-
fusion and aggravates comprehension efforts enormously.

Note, that synonyms also aggravate the process of find-
ing locations of a certain concept in a computer program
because it is not sufficient to find the modules, classes,
methods, or variables with a suitable identifier name but all

of these elements with all possible synonymous identifica-
tions.

To avoid these troubles we define consistent naming as
follows (see fig. 3d):

Definition (Consistency) A naming system C, N , and R
is consistent iff R ⊆ N×C is a bijective mapping. We then
define

n : C → N

n(c) = unique name of concept c.

Figure 3. Synonyms and Homonyms

3.2.3. Rule 2: Conciseness. To substantiate conciseness
we introduce the partial order � for the set of concepts C
that orders concepts according to the level of abstraction.

For example, it holds that

permutation � transformation

because the concept of a transformation is a generalization
of permutation; every permutation is also a transformation.

Let the set P contain program elements, such as mod-
ules, classes, methods, and variables, that are identified as
units via an symbolic name and let i be the mapping of pro-
gram elements to their identifiers.

i : P → N

i(p) = identifier of p.

Let furthermore [c] denote the semantics in the sense of
“meaning” of concept c ∈ C. Accordingly [p] denotes the
semantics of program element p.

We define conciseness in two steps to capture the com-
mon problem of identifiers that are either counter intuitive
or not concise enough.

First, we require correct identification:

5

Proceedings of the 13th International Workshop on Program Comprehension (IWPC’05)
1092-8138/05 $ 20.00 IEEE

Definition (Correctness) Let p ∈ P be a program element
and c ∈ C the concept it implements, so that [p] = [c]. The
identifier i(p) for the program element p is correct iff the
following holds true:

i(p) ∈ {n(c′) : c′ ∈ C ∧ c′ 	 c}
This means that the identifier of a program element p that
manifests concept c must correspond to the name of c or a
generalization of c. This rule ensures that identifier names
aren’t completely meaningless or wrong. So the identifier
p for the example function in section 3.1 violates the cor-
rectness rule because p is neither the name of the concept
“permutation” nor of a generalization of it. Likewise an in-
correct identifier like load for this piece of code would be
disqualified.

But, correctness alone still qualifies
transformation as a valid identifier since it cor-
responds to the name of a generalization of the concept
“permutation” though it is of limited help for a reader of
the program. This problem is very common: identifiers are
somehow correct but not concise enough. To avoid weak
identification practices we add the following conciseness
requirement:

Definition (Conciseness) Let p ∈ P be a program element
and c ∈ C the concept it implements so that [p] = [c]. The
identifier i(p) for the program element p is concise iff the
following holds true:

i(p) = n(c)

This definition requires an identifier to have exactly the
same name as the concept it stands for. It therefore allows
the only valid name of permutation for the example
function.

We now see that identifier naming is completely
determined by the characteristics of the set of concepts
C. Including all possibly known concepts in set C
would require highly sophisticated identifiers such as
completePermutationByCascadedRecursion.
And even this identifier could violate the conciseness
criteria if there were more detailed permutation concepts
in the concept space that fit the semantics of the program.
Hence, besides respecting the above stated rules, the key
to keep comprehensibility and detailing of identifiers in
balance is to control the content of the concept space C!

4. Experiences

The results of this formal model allow us to precisely
explain the identification shortcomings frequently encoun-
tered in source code. We illustrate this by discussing expe-
riences made during the development and re-engineering of
a sample software project and add results from analyses of
Open Source Software Systems.

4.1. Sample Project CloneDetective

The goal of this project was to develop a fast and struc-
tured software clone detector [22, 6] tool called CloneDe-
tective. Due to rapidly evolving requirements CloneDetec-
tive underwent various modifications. The development and
modification was carried out by the 2 graduate and 10 un-
dergraduate students over a period of one year (graduates)
respectively 3 months (undergraduates).

Both, the initial development and the later modifications,
were performed without the naming concepts introduced in
this paper. Because of this, the observations discussed be-
low are unbiased from certain expectations but reflect typi-
cal naming troubles that are circumvented with the naming
rules of section 3.2.

4.1.1. Shortcomings During Initial Development. One
goal of an enhancement was to make CloneDetective’s out-
put more comprehensive by adding information about the
position of a clone. Previously, this information was ac-
quired during clone analysis but not stored or presented to
the user.

Relevant for this enhancement were especially the
two concepts “absolute position” in terms of the com-
plete code base analyzed and a “file-relative position”.
Unfortunately and probably not uncommon, an analysis
of the source code exposed eight (!) different identi-
fiers for these two concepts: x, pos, apos, abspos,
relpos, absolutePosition, relativePosition
and position.

This arbitrary and misleading naming proved to highly
increase the comprehension effort since the students imple-
menting the new feature could never be sure which kind of
position was meant at a particular location and had to go
through intensive debugging sessions to fulfill their actual
maintenance task of enriching CloneDetective’s output.

Though everyone knew, that this naming was trouble-
some, there was no solid argument what the correct nam-
ing would have to be. Now, with the formal model intro-
duced above it is possible to give a detailed explanation of
the problems experienced.

The relevant concepts are c1 = “absolute position”,
c2 = “relative position” and the implied more general con-
cept c3 = “position”. The concepts are ordered in the fol-
lowing way.

• c1 � c3 (“position” is more abstract than “absolute
position”)

• c2 � c3 (“position” is more abstract than “relative po-
sition”)

Now it becomes evident, that the naming of identifiers in
the CloneDetective contains the synonyms apos, abspos,

6

Proceedings of the 13th International Workshop on Program Comprehension (IWPC’05)
1092-8138/05 $ 20.00 IEEE

absolutePosition for concept c3 and relpos,
relativePosition for c2. This clearly violates the
consistency rule. R is obviously not bijective with these
identifier names. In fact, it is not even a mapping.

In addition to this synonym defect, identifier x violates
the correctness rule because it does not match any concept
name. And the identifiers named position violate the
conciseness rule. Identifying a variable storing an absolute
or relative position a “position” is correct but not concise.
The reader cannot know whether an absolute or relative po-
sition is meant; which in fact proved to be relevant during
program analysis and modification.

4.1.2. Decay. Subsequent extensions of the CloneDetec-
tive delivered an instructive example for the threat of code
decay [9] during evolution with respect to identifier naming.

In the beginning a simple line-based detection mecha-
nism was used for clone detection which was later on ex-
tended to a more flexible unit-based analysis with units of
varying granularity. Before this enhancement, the identi-
fier line was both correct and concise. But switching to
a unit-based process demanded identifiers referencing the
more abstract unit concept (“line” � “unit”). So, by aban-
doning the line-based concept the existing identifier line
not only lost its conciseness but also became incorrect be-
cause the line-based concept was removed from the set of
concepts C.

Even month after this change one could find identifiers
named line in almost all modules of the program. Firstly
this didn’t really pose a serious problem because the iden-
tifiers line and unit just became synonyms. But, by ac-
cepting this situation inconsistent naming was acquiesced.

Noticeable problems arose when the line-based detection
was re-introduced as an optional component. We now had
concise identifiers unit that properly referenced the unit
concept and line identifiers that also concisely referenced
the line concept. But additionally there were now identifiers
named line for program elements implementing the unit
concept! Thus, the identifier line was always correct, but
became a homonym with severe consequences.

Ignoring this problem for a couple of weeks finally gave
rise to the effects of the ”‘Broken Windows”’ theory (see
2). Students working on the program were not able to com-
prehend its original meaning in many places. They gener-
ally considered it at mess and started using arbitrary names
for both concepts in pretty much every module of the pro-
gram. As a result further work on the program got more
and more complicated and error-prone. The re-engineering
effort needed to clean up this mess was extensive and is still
not completed although the program is fairly small (13,000
LOC).

4.2. Naming in Open Source Software

Section 1 presented the result of an analysis showing,
that approximately 70% of all characters of Eclipse’s code
base are identifiers. To gather further insights about identi-
fier naming issues we studied the number of different iden-
tifiers. In the case of Eclipse 3.0M7 this yields the aston-
ishing figure of 94,829 different identifiers which is around
the same number of words as in Oxford Advanced Learner’s
Dictionary. Naturally this high number stems mostly from
usage of compound identifiers like getCounter. The fact
that identifiers in Java are commonly written in CamelCase
[1] allows the application of a simple heuristic breaking the
compounds in distinctive words. Breaking the compounds
and counting only different words still resulted in 7,233 dif-
ferent words. Considering the fact that speakers of Eng-
lish as second language need a vocabulary size of around
5,000 words to understand academic texts [21] this figure
still seems suspiciously high.

One explanation for this large number is the fre-
quent occurrence of synonyms. In fact a manual in-
spection of the alphabetically ordered list of all iden-
tifiers in Eclipse revealed that almost all identifiers
are grouped in blocks with very similar names like:
frag, fragement, fragment, fragmentation,
fragmented, fragmentname, fragments, frags.

A token analysis of the source code of Sun’s JDK 1.4.2
(1.3 MLOC) shown in figure 2 demonstrates that the high
percentage of identifiers in Eclipse (fig. 1) is no exception
but rather the rule. Again identifiers account for about 30%
of tokens or almost 70% of the code in terms of characters.
The JDK features 42,869 different identifiers that are com-
pounds of 6,426 different words. Taking JDK’s smaller size
overall into concern this number appears even higher than
the one of Eclipse. Manual inspection of the list of identi-
fiers again reveals a plethora of seemingly synonym words.

Table 2. Token analysis for Sun JDK 1.4.2

Type # % characters %
Keywords 417,274 0.118 2,013,750 0.155
Delimiters 1,609,445 0.457 1,609,445 0.124
Operators 248,619 0.071 314,363 0.024
Identifiers 1,083,508 0.307 8,668,782 0.668
Literals 166,708 0.047 362,468 0.028
Total 3,525,554 1.0 12,968,808 1.0

Repeating the same analysis for Tomcat 5.0.30
(317 kLOC) confirmed the previous results. As table 3 in-
dicates, identifiers again accounted for about 30% of tokens
or almost 70% of the code in terms of characters. Tom-
cat’s source code has 11,656 different identifiers composed
from 2,587 words. Our assumption about synonyms is again
backed by the results of the manual inspection of identifiers.

7

Proceedings of the 13th International Workshop on Program Comprehension (IWPC’05)
1092-8138/05 $ 20.00 IEEE

Table 3. Token analysis for Tomcat 5.0.30

Type # % characters %
Keywords 105,903 0.109 517,425 0.147
Delimiters 458,113 0.47 458,113 0.13
Operators 59,575 0.061 72,169 0.02
Identifiers 303,687 0.312 2,384,250 0.676
Literals 47,498 0.049 96,207 0.027
Total 974,776 1.0 3,528,164 1.0

Based on this results it should be evident that identifier
naming is a severe problem in real life software systems.
All of the shortcomings experienced and found can be both
explained and avoided by means of the formal naming rules
defined in 3.2.

5. Tool Support: The Identifier Dictionary

Explanations and rules are useful but not enough to ef-
fectively improve Software Engineering practices in gen-
eral and naming practices in particular. Without any further
support the controlling of identifier conciseness and consis-
tency would certainly be a tedious and unreliable task.

A promising and time-saving approach to put these for-
mal considerations into effect is to setup and maintain a
tool-supported Identifier Dictionary (IDD) with each soft-
ware system. The concept of the IDD is inspired and works
similar to a Data Dictionary. Basically, it is a database that
stores information about all identifiers such as their name,
the type of the object being identified and a comprehensive
description.

At first glance it seems that an IDD would introduce
enormous overhead. In reality all of development, main-
tenance and quality assurance can benefit from a carefully
designed and implemented IDD.

• Development: Developers can use the IDD to search
for already existing identifiers before creating new
ones. This reduces the risk of creating synonyms and
helps to choose identifier names that follow existing
naming patterns.

• Maintenance: The IDD assists comprehension
processes by enabling simple and fast lookups of
meanings (or at least description) of identifiers. It also
helps to locate concepts by providing a list of all rele-
vant concepts and corresponding identifier names. So
maintainers are able to browse or search for particular
concepts and then locate the corresponding identifiers
in the source code.

• Quality assurance: The IDD allows to review im-
portant aspects of identifiers with moderate effort. It

supports conciseness checks by comparing identifier
names with their description. Consistency can be re-
viewed by manual inspections of the identifier list and
the associated descriptions and types. Further options
are offered by automatically tracking changes in the
IDD. For example, a maintenance task resulting in
dozens of new identifiers is definitely suspicious and
a candidate for manual inspection.

5.1. Requirements

Naturally the manual creation and maintenance of an
IDD for a large system must be considered unrealistic.
Elaborated tool support is necessary. Basic requirements
for an appropriate tool are:

• The core functionality of the IDD tool is the storage of
all identifiers in a repository. The tool should further-
more be capable of collecting all identifiers and their
type automatically from the source code. Users must
be able to enter descriptions of the identifiers and to
browse or search the dictionary.

• To maximize developer’s comfort the tool should be
seamlessly integrated in an Integrated Development
Environment (IDE) and thereby allow access to the
dictionary without switching between the IDE and
other applications.

• The tool should enable the developer to browse source
code in a identifier-guided fashion. For example, de-
velopers should be able to look up a particular iden-
tifier in the source code, ask the tool for a list of all
occurrences of the identifier, and navigate to selected
occurrences.

• The tool should reduce naming deficiencies and im-
prove productivity by providing an advanced auto-
completion feature for identifiers.

• The tool has to provide global rename refactorings;
e. g. a consistent renaming of all identifiers called
line to unit in the entire program. Currently IDEs
only support renaming of single identifiers within the
scope they’re defined but not all identifiers with a cer-
tain name.

• The tool must provide easy access to the dictionary for
quality assurance. This could be a database interface
or an export feature that creates readable HTML rep-
resentation of the dictionary.

5.2. Implementation

According to these requirements, we implemented an
IDD tool as a Plug-In for the Eclipse Java Development

8

Proceedings of the 13th International Workshop on Program Comprehension (IWPC’05)
1092-8138/05 $ 20.00 IEEE

Platform6. Eclipse was selected as a basis for the IDD tool
because it allows seamless integration of the IDD into the
existing IDE and provides broad functionality that helped to
keep the development effort low.

Eclipse uses the notion of “projects” to structure the de-
velopment of software systems consisting of a variety of ar-
tifacts. The IDD Plug-In can be enabled or disabled for par-
ticular projects. Once the IDD support is turned on an iden-
tifier collector is installed. This collector is coupled with
Eclipse’s build process and collects all identifiers while the
program is being compiled. It performs an analysis of the
abstract syntax tree of each source file to also automatically
determine the types associated with the identifiers found.
Analysis is done in an incremental fashion so only previ-
ously changed source code will be analyzed. Identifier de-
scriptions are either kept in an XML file or a database for
team-wide usage.

For instant access to the identifiers and their descriptions
the IDD Plug-In contributes a new view to the Eclipse work-
bench displaying a sorted list of all identifiers in a table
(fig. 4).

Figure 4. Identifier Dictionary View (left)

All identifiers are listed with their name, type, a prose
description, and the number of declarations of identifiers
with the same name. Via context menu entries it is possible
to open a dialog and edit the description of an identifier. On
selecting an identifier the right part of the identifier view
(fig. 5) displays two lists of occurrences of the identifier
with details on the various declarations of identifiers with
the selected name and references to them. The icon in the
left-most column indicates the type of declaration like local
variable, field or method. The other columns specify the ex-
act location of occurrence of the identifier. Double-clicking
on an occurrence opens an editor window an sets the cursor
to the specified location.

During the collection process identifiers may become
annotated with warnings indicating potential consistency
problems. These are shown with warning icons in the IDD
view (fig. 4). Currently the IDD features two basic warn-

6http://www.eclipse.org/jdt

Figure 5. Identifier Dictionary View (right)

ings: If two identifiers with identical name but different type
are found the identifiers are annotated to give a hint to a
consistency violations. A typical example is the usage of
the identifier file for objects of the class File and for
a String for the name of the file. The latter one should
rather be called filename. Another annotation is used if
an identifier is declared but never referenced. This allows
an easy detection of superfluous identifiers. Most develop-
ment environments already have built-in functionality for
this kind of analysis but normally limit it to local variables
and private class members. The IDD’s detection of unrefer-
enced identifiers works for all kinds of identifiers including
methods regardless of their visibility.

Further assistance for developers is provided by hover
popups that offer access to the IDD while editing source
code. Placing the mouse cursor over an identifier automati-
cally retrieves the description stored for this identifier from
the IDD and displays it at the current position. By using this
feature the developer can query the IDD without leaving the
editor and switching to another view.

Modern development environments provide extensive
auto-completion features for keywords, previously declared
variables, typical programming constructs (e. g. switch-
statements), and the selection of methods from a given ob-
ject. They fail to provide auto-completion for identifier
names that are not declared in the scope of the current edit-
ing location. Hence, it is not possible to complete a variable
declaration statement that starts with int abso.... The
IDD offers the possibility to extend the auto-completion
feature for all statements using or declaring identifiers.
Given that identifier absolutePosition is stored in
the IDD the developer can request auto-completion after
typing int abso... and it will be completed to int
absolutePosition. If more than one match is found
the IDD provides a list of identifiers from which the devel-
oper can choose. The matching also takes the type of the
identifier (e. g. int) into account.

The IDD plug-in features a refactoring called global re-
name that supports consistent global renaming of all iden-

9

Proceedings of the 13th International Workshop on Program Comprehension (IWPC’05)
1092-8138/05 $ 20.00 IEEE

tifiers with a certain name. The implementation is built on
Eclipse’s refactoring capabilities and supports renaming of
all kind of identifiers including local variables, fields, types
and methods. The global renaming feature provides a de-
tailed preview of all proposed changes to the source code
and fully automated validity checking. So the developer
does not have to carry out extensive manual renamings that
would result in incorrect code to preserve consistency and
conciseness of identifier naming while evolving the system.

Quality assurance may directly query the database the
dictionary is stored in. Additionally the IDD can be ex-
ported as an HTML file. This file provides a clear and easy
to read format of the IDD content.

6. Conclusion

While a rich ambiguous language is a quality attribute
in poetry, synonyms and homonyms as well as meaning-
less names are a heavy burden for program comprehension.
Proper naming of identifiers is of paramount importance for
program readability. We explained what proper naming ac-
tually means with the help of a formal model and gave var-
ious examples. The resulting consistency and conciseness
rules are easy to communicate and allow unbiased check-
ing. The enforcement of this rules is supported with a tool
that implements a globally consistent identifier dictionary
(IDD). The tool not only reduces the effort needed to com-
ply with the naming rules but also provides support for stan-
dard tasks such as determining identifier names in declara-
tions.

The identifier dictionary can’t constitute the sole rem-
edy for the problem of imprecise and inconsistent naming
of identifiers. There also has to be a continuous process
to establish and maintain a common understanding of valid
terms as well as their meanings among the participants of
a software project. So far, there are no direct experiences
with the IDD and such a process though there are numerous
hints to its benefits from various fields and probably every
developer with significant experience will agree that identi-
fier naming is crucial for the readability of code. However
we are now highly interested in answering the question how
readable code actually can be. It would be interesting to see
how “comprehensible” a mid to large scale code base can
actually get by strictly complying to our naming rules, con-
sequently using an IDD, and also respecting further code
formatting rules. In addition to this our future work will
investigate the composition of identifier names. Many real
life identifiers are not atomic but composed out of different
words. However, there are hardly any well-founded rules
for the correct composition of names though there is an
obvious difference between a futureWorkStack and a
workStackFuture.

References

[1] Code conventions for the Java programming language.
Technical report, Sun Microsystems, Santa Clara, CA, 1999.

[2] F. W. Allen, M. E. S. Loomis, and M. V. Mannino. The
integrated dictionary/directory system. ACM Comput. Surv.,
14(2):245–286, 1982.

[3] J. R. Anderson. Cognitive Psychology and its implications.
W. H. Freeman and Co., New Jersey, 1995.

[4] N. Anquetil and T. Lethbridge. Assessing the relevance of
identifier names in a legacy software system. In CASCON
’98, page 4. IBM Press, 1998.

[5] M. Arab. Enhancing program comprehension: formatting
and documenting. SIGPLAN Not., 27(2):37–46, 1992.

[6] I. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier.
Clone detection using abstract syntax trees. 1998.

[7] T. J. Biggerstaff, B. G. Mitbander, and D. Webster. The
concept assignment problem in program understanding. In
ICSE ’93. IEEE CS Press, 1993.

[8] K. Chen and V. Rajlich. Case study of feature location using
dependence graph. In IWPC ’00, page 241. IEEE CS, 2000.

[9] S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron, and
A. Mockus. Does code decay? Assessing the evidence from
change management data. IEEE Transactions on Software
Engineering, 27(1):1–12, Jan. 2001.

[10] M. E. Fagan. Design and code inspections to reduce errors
in program development. IBM Systems Journal, 15(3):182–
211, 1976.

[11] M. Henricson and E. Nyquist. Programming in C++: Rules
and recommendations. Technical report, Ellemtel Telecom-
munication Systems Laboratories, 1992.

[12] A. Hunt and D. Thomas. The pragmatic programmer: From
journeyman to master. 1999.

[13] M. Lehman. Software evolution threat and challenge. Pro-
fessorial and Jubilee Lecture, Oct. 2003. 9th international
Stevens Award, hosted by ICSM 2003.

[14] D. Low. Protecting Java code via code obfuscation. Cross-
roads, 4(3):21–23, 1998.

[15] P. W. Oman and C. R. Cook. Typographic style is more than
cosmetic. ACM Communications, 33(5), 1990.

[16] T. M. Pigoski. Practical Software Maintenance. Wiley
Computer Publishing, 1996.

[17] V. Rajlich and N. Wilde. The role of concepts in program
comprehension. In IWPC ’02, page 271. IEEE CS, 2002.

[18] J. Robertson and S. Robertson. Volere template v10.1. Re-
quirements specification template, Atlantic Systems Guild,
2004.

[19] B. Shneiderman. Software psychology. Winthrop Publishers,
Inc., 1980.

[20] H. M. Sneed. Object-oriented cobol recycling. In WCRE
’96, page 169. IEEE Computer Society, 1996.

[21] E. Tschirner. Breadth of vocabulary and advanced english
study: An empirical investigation. Electronic Journal of
Foreign Language Teaching, 1(1):27–39, 2004.

[22] F. van Rysselberghe and S. Demeyer. Evaluating clone de-
tection techniques. In ELISA 03, pages 25–36, 2003.

[23] G. M. Weinberg. The psychology of computer programming.
Van Nostrand Reinhold Co., 1971.

[24] N. Wilde and M. C. Scully. Software reconnaissance: map-
ping program features to code. Journal of Software Mainte-
nance, 7(1):49–62, 1995.

[25] J. Q. Wilson and G. L. Kelling. Broken windows. The At-
lantic Monthly, 249(3), 1982.

10

Proceedings of the 13th International Workshop on Program Comprehension (IWPC’05)
1092-8138/05 $ 20.00 IEEE

