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1. Introduction

Ever since formal system design became a major research direction some 20 years
ago, it has been common to write specifications in an assumption/commitment
form. The assumption characterizes the essential properties of the environment
in which the specified program, from now on referred to as the agent, is supposed
to run, while the commitment is a requirement which must be fulfilled by the
agent whenever it is executed in an environment which satisfies the assumption.

For example, in Hoare-logic [Hoa69] the post-condition characterizes the
states in which the agent is allowed to terminate when executed in an initial
state which satisfies the pre-condition. Thus, the pre-condition makes an as-
sumption about the environment, while the post-condition states a commitment
which must be fulfilled by the agent.

In general, the popularity of the assumption/commitment paradigm is due
to the fact that an agent is normally not supposed to work in an arbitrary
environment, in which case specifications and agent designs can be simplified by
“restricting” the environment in terms of assumptions.

There are many different techniques for writing assumption/commitment
specifications. Roughly speaking, they can be split into two main categories:
those which require an ezplicit assumption/commitment form, and those which
are content with an implicit assumption/commitment form.

In the first category, the assumption is clearly separated from the commit-
ment. A specification can be thought of as a pair [A,C], where A is the as-
sumption about the environment, and C' is the commitment to the agent. The
pre/post specifications of Hoare-logic belong to this category, so does Jones’
rely /guarantee method [Jon83|, the Misra/Chandy technique [MC81] for hier-
archical decomposition of networks, and a number of other contributions like
[Pnu85], [Sta85], [Pan90], [AL90], [Ste91], [PTI1].

In the second category, specifications still make assumptions about the en-
vironment and state commitments to the agent, but the assumptions and the
commitments are mixed together and stated more implicitly. Examples of such
methods are [BKP84], [CM8S].

The motivation for insisting on an explicit assumption/commitment form
varies from approach to approach. In some methods like [Jon83] and [MC81]
this structure is mainly employed to ensure compositionality ([AR85], [Zwi89])
of the design rules, namely that the specification of an agent always can be
verified on the basis of the specifications of its subagents, without knowledge of
the interior construction of those subagents. For example, in the Owicki/Gries
method [OGT76] environment assumptions can only be made about the initial
state, and as a consequence the rule for parallel composition is not compositional.

In other methods, with a richer assertion language, an explicit assump-
tion/commitment form is not needed in order to ensure compositionality. Nev-
ertheless, an explicit assumption/commitment form is still favored by many re-
searchers. Abadi/Lamport [AL90], for example, argue as below!:

e “Why write a specification of the form [A, C] when we can simply write C?
The answer lies in the practical matter of what the specification looks like.
If we eliminate the explicit environment assumption, then that assumption
appears implicitly in the properties C' describing the system. Instead of C

1 In the quotation [A,C], A and C have been substituted for E = M, E and M, respectively.
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describing only the behavior of the system when the environment behaves
correctly, C' must also allow arbitrary behavior when the environment behaves
incorrectly. Eliminating A makes C' too complicated, and it is not a practical
alternative to writing specifications in the form [A, C].”

The objective of this paper is to investigate the assumption/commitment
paradigm in the context of (possibly) nondeterministic Kahn-networks [Kah74],
[KM77], [Kel78]. Agents are modeled as sets of stream processing functions as ex-
plained in [Kel78], [Bro89], [BDD*93]. They communicate via unbounded FIFO
channels. We distinguish between two types of explicit assumption/commitment
specifications, namely simple and general specifications. A simple specification
can be used to specify any deterministic agent, while any nondeterministic agent
can be specified by a general specification. Refinement rules are formulated and
proved sound and (semantic) relative complete.

The basic notation and the semantic model are introduced in Section 2.
In Section 3 agents and networks of agents are defined. Section 4 introduces
simple specifications and the corresponding refinement calculus. What we call
symmetric specifications is discussed and rejected in Section 5, while general
specifications and their refinement rules are the topics of Section 6. Section 7 gives
a brief summary and relates our approach to other proposals known from the
literature. Finally, there is an appendix containing soundness and completeness
proofs.

2. Basic Concepts and Notation

Let N denote the set of positive natural numbers, and let B denote the set
{true, false}. A stream is a finite or infinite sequence of data. It models the
history of a communication channel, i.e. it represents the sequence of messages
sent along the channel. () stands for the empty stream, and {d1, d>, . . ., d,,) stands
for a finite stream whose first element is d;, and whose n’th and last element
is d,,. Given a set of data D, D* denotes the set of all finite streams generated
from D; D> denotes the set of all infinite streams generated from D, and D%
denotes D* U D*°,

This notation is overloaded to tuples of data sets in a straightforward way:
() denotes any empty stream tuple; moreover, if T' = (Dy, Ds, ..., D,,) then T*
denotes (D} x Dy x ... x D¥), T denotes (D{° x D$° x ... x D), and T
denotes (DY x Dy x ...x D¥).

There are a number of standard operators on streams and stream tuples. If
deD,reD¥ s,teT¥ ACD,and jis a natural number then:

e s~t denotes the pointwise concatenation of s and ¢, i.e. the j'th component
of s~t is equal to the result of prefixing the j’th component ¢; of ¢ with the
J'th component s; of s if s; is finite, and is equal to s; otherwise;

e s [ t denotes that s is a prefix of ¢, i.e. Ip € T¥. s~ p = t;

e A©r denotes the projection of r on A, data not occurring in A are deleted,
e.g. {0,1} © (0,1,2,0,4) =(0,1,0);

e #r denotes the length of 7, i.e. the number of elements in r if r € D*, and
oo otherwise;

e 7|; denotes the prefix of r consisting of its j first elements if j < #r;
e 7; denotes the j’th element of r if 1 < j < #vr;
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e dom(r) denotes the set of indices corresponding to r, i.e. dom(r) = {51 <
J<#rks

e rng(r) denotes the set of elements in r, i.e. rng(r) = {r;|j € dom(r)}.

A chain ¢ is an infinite sequence of stream tuples ¢, ¢Co,... such that for
all 7 € N, é; C ¢41. For any chain ¢, U¢ denotes its least upper bound. Since
streams may be infinite such least upper bounds always exist. Ch(X), where X
is a set of streams, denotes the set of all chains over X. Variables denoting chains
are always decorated with a ~ to distinguish them from other variables.

Predicates will be expressed in first order predicate logic. As usual, = binds
weaker than A, V, = which again bind weaker that all other function symbols.
P[¢] denotes the result of substituting ¢ for all occurrences of the variable a in
P. Predicates are sometimes classified as safety and liveness predicates. These
concepts are defined as in [AS85].

P is admissible iff for all chains ¢, (Vj € N. P(¢;)) = P(U¢). An admissible
predicate holds for the least upper bound of a chain ¢ if it holds for all members
of ¢. All safety predicates are admissible. However, there are admissible predi-
cates which are not safety predicates. For example #i mod 2 = 0V #¢ = oo is an
admissible predicate, but not a safety predicate. adm(P) holds iff P is admissi-
ble. There are well-known techniques for proving that a predicate is admissible
[Man74].

A function f € I¥ — O¥, where I¥, 0% are stream tuples, is called a stream
processing function iff it is prefix monotonic:

Vs,t € I. s Ct= f(s) C f(¢t),
and prefix continuous:
Vé e Ch(I¥).f(ué) = L{f(¢&)|j € N}.

More informally, that a function is prefix monotonic basically means that
if it is given more input then the output already produced cannot be changed,
i.e. the output may at most be increased. Moreover, prefix continuity implies
that the function’s behavior for infinite inputs is completely determined by its
behavior for finite inputs. The set of all stream processing functions in I¥ — O%
is denoted by I¥ 5 O“.

3. Agents

An agent F : I¥ — O% receives messages through a finite number of input chan-
nels of type I and sends messages through a finite number of output channels
of type O“.

The denotation of an agent F, written [ F' |, is a set of type correct stream
processing functions. Hence, from the declaration above it follows that [ F' | C
v 5 0~

Agents can be nondeterministic. This is reflected by the fact that sets of
functions are used as denotations. Any function f € [ F' ] represents a possible
behavior of F'. The agent may “choose” freely among these functions. Obviously,
if there is no choice, the agent is deterministic. Hence, we call F' deterministic if
its denotation is a unary set and nondeterministic, otherwise.
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Fig. 1. Sequential and Parallel Composition.

Given two agents F} : [¥ — X* and Fy : X¥ — O¥, then F} o F; is of type
I¥ — O% and represents the sequential composition of F1 and F5. Its denotation
is

[FoB]Y{(fichlic[Rlrfel ]}

where f; o f5(7) «f f2(f1(3)). Figure 1 shows the situation. Each arrow stands
for a finite number of channels. In contrast to e.g. CSP-programs or sequential
programs, F; need not terminate before F, starts to compute. Instead F; and
F, work in a pipelined manner.

Given two agents Fy : [ — O and F» : R¥ — S¥, then F} || F; is of type
IY x R¥ — O x S“ and represents the parallel composition of F| and Fs. Its
denotation is

def

[BEIER]={AlfIAelR]INe] ]},

where f1 || f2(i,r) o (f1(), f2(r)). Parallel composition is also shown in Figure

1. F} and F, are simply put side by side and work independently without any
mutual communication.

Let F : I¥ xY¥ — OY x Y¥ be an agent, where Y is a data set (and
not a tuple). Then the last input channel of F' has the same type as the last
output channel, and they can be connected as depicted in Figure 2. This is
called feedback. The resulting construct u F' is of type I¥ — O¥ x Y, and its
denotation is

[nF 1 urlfel FI},

where 1 f(7) o (o,y) iff

o f(i,y) = (0,y),
e Vo' € O¥.Vy' € Y¥. f(i,y') = (o',y') = (0,y) C (0, ¥').

(0,y) is called the least fizpoint of f with respect to i. The continuity of stream
processing functions ensures that there is a least fixpoint.

Let Fi : I x XY — O xY% and F, : Y¥ x RY — X" x S“ be agents,
where X and Y are data sets. They can then be connected as in Figure 2. This
is called mutual feedback. The resulting construct F} @ F3 is of type I¥ x R¥ —
O¥ xY¥ x X% x §%, and its denotation is
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Fig. 2. Feedback and Mutual Feedback.

[FoR]|E{fiohliclRIrfhelR]},

where f; @ fa(i,7) = (0,9,z,s) iff
)

b f1(17x) = (0-,?/ )
hd f2(y77’) = (CC,S),
o Vo' € O¥. V' € X¥.Vy' e Y¥.Vs' € Sv.

f1i,2") = (Y ) A fa(y's 1) = (2, 8") = (0,y,2,5) E (o', 2", ).

It is easy to generalize the y and ® operators to enable feedback of stream tuples.
The rules presented below remain valid (see [SDW93]).

The denotation of any network generated from some given basic agents using
the operators o, ||, 4 and ® is a set of stream processing functions, and if all
constituents of a network are deterministic agents, the denotation of the network
is a singleton set. This is a well-known result, which dates back to [Kah74]. It
makes it possible to replace an agent by a network of simpler agents that has
the same denotation. This is the key concept that enables modular top-down
development.

In this paper we distinguish between agents which are syntactic entities and
their semantic representation as sets of stream processing functions. The four
operators o, ||, 4 and @ can be thought of as constructs in a programming lan-
guage. Thus, given some notation for characterizing the basic agents of a network,
i.e. the “atomic” building blocks, networks can be represented in a program-like
notation (see [Ded92]).

However, since we are concerned with agents which are embedded in envi-
ronments, a basic agent is not always a program. It may also be a specification
representing some sort of physical device, like, for instance, an unreliable wire
connecting two computers, or even a human being working in front of a terminal.
Of course, such agents do not always correspond to computable functions, and
it is not the task of the program designer to develop such agents. However, in a
program design it is often useful to be able to specify agents of this type.

4. Simple Specifications

In our approach an agent communicates with its environment via unbounded
FIFO channels. Hence, at least in the case of deterministic agents, it seems
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natural to define the environment assumption as a predicate on the history of
the input channels, i.e. on the input streams, and the commitment as a predicate
on the history of the input and output channels, i.e. as a relation between the
input and output streams. The result is what we call a simple specification.

More formally, a simple specification is a pair of predicates [A,C], where
Ae€el¥ - Band C € I¥ x O¥ — B. Its denotation [ [A,C] ] is the set of all
type correct stream processing functions which satisfies the specification. More
formally:

def

[[A,C]]E {felv S 0°|VieI“ A®G) = C(i, £(i)}.

In other words, the denotation is the set of all type correct stream processing
functions f such that whenever the input ¢ of f fulfills the assumption A, the
output f(7) is related to 7 in accordance with the commitment C.

Example 1. One Element Buffer:
As a first example, consider the task of specifying a buffer capable of storing
exactly one data element. The environment may either send a data element to
be stored or a request for the data element currently stored. The environment
is assumed to be such that no data element is sent when the buffer is full, and
no request is sent when the buffer is empty. The buffer, on the other hand,
is required to store any received data element and to output the stored data
element and become empty after receiving a request.

Let D be the set of data, and let ? represent a request, then it is enough to
require the buffer to satisfy the specification RB, where

Arp(i) € vi
CRB (i, O) déf

e (DU V' Ci= #{7OF < #DOV < #{7}Oi' + 1,
0 C D©i A #o0 = #{7}©:.

The assumption states that no request is sent to an empty buffer (first inequal-
ity), and that no data element is sent to a full buffer (second inequality). The
commitment requires that the buffer transmits data elements in the order they
are received (first conjunct), and moreover that the buffer always eventually
responds to a request (second conjunct). O

The operators o, ||, © and ® can be used to compose specifications, and
also specifications and agents in a straightforward way. By a mized specification
we mean an agent, a simple specification or any network built from agents and
simple specifications using the four composition operators. Since simple speci-
fications denote sets of stream processing functions, the denotation of a mixed
specification is defined in exactly the same way as for networks of agents.

During program development it is important that the specifications which
are to be implemented remain implementable, i.e. that they remain fulfillable
by computer programs. From a practical point of view, it is generally accepted
that it does not make much sense to formally check the implementability of a
specification. The reason is that to prove implementability it is often necessary
to construct a program which fulfills the specification, and that is of course the
goal of the whole program design exercise.

A weaker and more easily provable constraint is what we call feasibility.
A simple specification [A,C] is feasible iff its denotation is nonempty, i.e. iff

[[A,CT]#0.
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Feasibility corresponds to what is called feasibility in [Mor88], satisfiability
in VDM [Jon90] and realizability in [AL90]. A non-feasible specification is in-
consistent and can therefore not be fulfilled by any agent. On the other hand,
there are stream processing functions that cannot be expressed in any algorith-
mic language. Thus, that a specification is feasible does not guarantee that it is
implementable. See [Bro94] for a detailed discussion of feasibility and techniques
for proving that a specification is feasible.

Example 2. Non-Feasible Specification:
An example of a non-feasible specification is [A, C] where

A(r) © true,
C(r,s) def #r =00 & #s < o00.

To see that this specification is not feasible, assume the opposite. This means it
is satisfied by at least one stream processing function f. f is continuous which
implies that for any strictly increasing chain 7 we have:

Fr) =0{f(#;)]j € N}.

Since 7 is strictly increasing, it follows for all j > 1, #7; < oo, and therefore also
#f(7j) = co. Hence:

#f(UF) =#U{f(7)]j € N} = oo.
On the other hand, since 7 is strictly increasing we have #(U#) = oo which
implies #f(UF) < oo. This is a contradiction. Thus the specification is not
feasible. O

A simple specification [As, C5] is said to refine a simple specification [41, C1],
written [A,C1] ~ [Ag, Cy], iff the denotation of the former is contained in or
equal to the denotation of the latter, i.e. iff [ [42,C2] ] C [ [41,C41] ]

This relation can again be generalized to mixed specifications. Given a re-
quirement specification [A,C], the goal of a system design is to construct an
agent F' such that [A,C] ~ F holds. The refinement relation ~ is reflexive,
transitive and a congruence with respect to the composition operators. Hence,
~+ admits compositional system development: once a specification is decomposed
into a network of subspecifications, each of these subspecifications can be further
refined in isolation.

We will now present the refinement rules for simple specifications. The first
refinement rule states that a specification’s assumption can be weakened and its
commitment can be strengthened:

Rule 1:

Al = A2

AT NCy = C)
[A1701] ~ [A2702]

To see that Rule 1 is sound, observe that if f is a stream processing function
such that f € [ [A2,C2] ], then since the first premise implies that the new
assumption A, is weaker than the old assumption A;, and the second premise



Specification and Refinement 9
implies that the new commitment Cs is stronger than the old commitment C
for any input which satisfies A, it is clear that f € [ [41,C4] |

That ~» is transitive and a congruence with respect to the composition op-
erators can of course also be stated as refinement rules:

Rule 2:

Specy ~ Specs Rule 3:

Specy ~ Specs Specy ~ Specy

Speci ~ Specs Spec ~ Spec(Speca[Specy)

Specy, Specs and Specs denote mixed specifications. In Rule 3 Spec(Specy/Spec)
denotes some mixed specification which can be obtained from the mixed speci-
fication Spec by substituting Specs for one occurrence of Spec;.

Since stream processing functions are monotonic and continuous it is not
necessary to state monotonicity and continuity constraints explicitly in the spec-
ifications. For example, in Example 1 it is not possible to deduce that an im-
plementation must behave continuously from the predicate Crp alone. However,
when reasoning formally about specifications, it is often necessary to state these
implicit constraints explicitly, and for this purpose the following rule is useful:

Rule 4 : 4 .
CoA(Ve Ue=in(VjeN AL ])=3p Up=0AVjeN.CfL 2 ]) = Cy
[Avcl] ~ [AvCZ]

¢,p are chains. The soundness of Rule 4 follows from the continuity of stream
processing functions. Rule 4 is a so-called adaptation rule. There are of course a
number of other adaptation rules that may be helpful. For example, Rule 4 only
states that a correct implementation must behave continuously with respect to
any prefix of the input i. It does not state explicitly that the behavior also must
be continuous for any further input, i.e. extension of 7. This implicit constraint
can of course also be captured in terms of an adaptation rule. However since
Rule 4 is the only adaptation rule needed below, all other adaptation rules are
left out.

Given that the input/output variables are named in accordance with Figure 1
on Page 5, then the rule for sequential composition can be formulated as follows:

Rule 5 :

A:>A1

ANCL = Ay

ANCLANCy = C

[A, CT~ [A1, C1] 0 [As, O]

This rule states that in any environment, a specification can be replaced by
the sequential composition of two component specifications provided the three
premises hold.

Observe that all stream variables occurring in a premise are local with respect
to that premise. This means that Rule 5 is a short-hand for the following rule:
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Vie Iv. A(i) = A1(d)

VieIv.Ve € XY A(i) A Cy(i,2) = Ax(x)

Vie I¥.Yoe OY.Vr e X¥. A(i) A Cy(i,z) A Ca(z,0) = C(i,0)
[A,C] ~ [Alvcl] o [A2702]

Throughout this paper, all free variables occurring in the premises of refinement
rules are universally quantified in this way.

To prove soundness it is necessary to show that for any pair of stream pro-
cessing functions f; and f5 in the denotations of the first and second component
specification, respectively, their sequential composition satisfies the overall spec-
ification. To see that this is the case, firstly observe that the assumption A is
at least as restrictive as A;, the assumption of f;. Since f; satisfies [4;, C],
this ensures that whenever A(i) holds, fi’s output x is such that C; (i, z). Now,
the second premise implies that any such x also meets the assumption A, of fs.
Since fy satisfies [As, Cs], it follows that the output o of f5 is such that Cy(z,0).
Thus we have shown that Ci(i,z) A Ca(x,0) characterizes the overall effect of
f1 0 fo when the overall input stream satisfies A, in which case the desired result
follows from premise three.

If the input and output variables are named in accordance with Figure 1 on
Page 5, i.e. the input variables are disjoint from the output variables, and the
variables of the left-hand side component are disjoint from the variables of the
right-hand side component, the parallel rule

Rule 6 :

A:>A1/\A2

ANCLANCy = C

[A,C] ~ [Alvcl] ” [A2702]

is almost trivial. Since the overall assumption A implies the component assump-
tions A; and As, and moreover the component commitments C; and Cs, to-
gether with the overall assumption imply the overall commitment C, the overall
specification can be replaced by the parallel composition of the two component
specifications.

Also in the case of the feedback rule the variable lists are implicitly given —
this time with respect to Figure 2 on Page 6. This means that the component
specification [Ay,C4] has (i,z)/(o,y) as input/output variables, and that the
overall specification [A, C] has (7)/(o,y) as input/output variables.

Rule 7 :

A= adm(Ax.Ay)
A/\Al[g] /\Cl[g] =C
A/\A1 ANCi = Al[g]
[A,CT~ pu[Ay, C1]

The rule is based on the stepwise computation of the feedback streams formally
characterized by Kleene’s theorem [Kle52], i.e. the generation of the so-called
Kleene chain. Initially the feedback streams are empty. Then the agent starts to
work consuming input and producing output in a stepwise manner. Output on
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the feedback channels becomes input again, triggering the agent to produce ad-
ditional output. This process goes on until a “stable situation” is reached (which
implies that it may go on forever). Formally a “stable situation” corresponds to
the least fixpoint of the recursive equation in the feedback definition on Page 5.

The feedback rule has a close similarity to the while-rule of Hoare logic. A;
can be thought of as the invariant. The invariant holds initially (second premise),
and is maintained by each computation step (fourth premise), in which case it
also holds after infinitely many computation steps (first premise). The conclusion
is then a consequence of premise three.

The mutual feedback rule may be formulated in a similar way:

Rule 8:

A = adm(Ax. A1) V adm(Ay.As)
A/\Al/\cl/\A2/\Cz =C
ANAINCL = Ay

AN A2 ANCy = Al

[A, C] ~> [E"f‘ A1 y Cl] ® [ElZ Az, 02]

In accordance with Figure 2 on Page 6, the component specifications have re-
spectively (i,z)/(o,y) and (y,7)/(z, s) as input/output variables, and the overall
specification has (i,7)/(0,y, x, s) as input/output variables. In some sense, this
rule can be seen as a “generalization” of Rule 7. Due to the continuity con-
straint on stream processing functions, it is enough if one of the agents “kicks
off”. This means that we may use A; V As as invariant instead of A; A As. It
follows from premises four and five that if one of the component assumptions
holds for one element of the Kleene-chain, then the other component assump-
tion holds for the next element of the Kleene-chain. Since the second premise
implies that at least one of the component assumptions holds for the first ele-
ment of the Kleene-chain it follows that that both components assumptions holds
for infinitely many elements of the Kleene-chain. The first premise then implies
that one of the component assumptions holds for the least upper bound of the
Kleene-chain, in which case premises four and five imply that both component
assumptions hold for the least upper bound of the Kleene-chain. The conclusion
is then a consequence of premise three.

Note, that without the existential quantifiers occurring in the component
specifications, the rule becomes too weak. The problem is that the input received
on x may depend upon the value of r, and that the input received on y may
depend upon the value of 7. In the above rule these dependencies can be expressed
due to the fact that » may occur in A; and ¢ may occur in As.

Example 3. Summation Agent:

The task is to design an agent which for each natural number received on its
input channel, outputs the sum of all numbers received up to that point in time.
The environment is assumed always eventually to send a new number. In other
words, we want to design an agent which refines the specification SUM, where

Asum(r) L4y = oo,

Csum(r, 0) %o =0 AYjE€N.oj =30 1.
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Fig. 3. Network Refining SUM.

SUM can be refined by a network (REG ® ADD) o STR as depicted in Figure
3. ADD is supposed to describe an agent which, given two input streams of
natural numbers, generates an output stream where each element is the sum of
the corresponding elements of the input streams, e.g. the n’th element of the
output stream is equal to the sum of n’th elements of the two input streams.
REG, on the other hand, is required to specify an agent which outputs its input
stream prefixed with 0. Thus an agent characterized by REG can be thought
of as a register which stores the last number received on its input channel. Its
initial value is 0. This means that if Asypm(r) holds then

= (S )~ (S ) (S

where x is the right-hand side output stream of (REG @ ADD). Hence, it is
enough to require STR to characterize an agent which outputs its second input
stream. More formally:

[ArEG, CrEG],
[AapD, CaDD),
[AsTr, CsTR],

where
Agrga(®) = true,
def
Crea(z,y) =y = (0)~w,
def

Aapp(y,r) = #r = o0,
Capp(y, 7, ) def #x = #y AVj € dom(zx).z; =1, + y;,

def
ASTR(y,LU) = true,

def
Cstr(y,,0) =o0o=ux.
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The rules introduced above can be used to formally prove that this decomposition
is correct. Let

A/(’I“) déf ASUM (1”)7

C’(’f‘, Y, CE) déf CSUM(rv l‘)
Since

Asum = A',
C' = Agstr,
C' A Cstr = Csuwm,

it follows from Rule 5 that
[Asum, Csum] ~ [A',C"] o [AsTR, CsTR]- (*)
Moreover, since it is straightforward to prove that

A" = adm(Aggc) V adm(Ay.Aapp),

A" = Agrga[{] vV Aapp )],

A" A Arga A Crec A Aapp A Capp = O,
A" AN Aapp A Capp = Area,

A" A Area A Crec = AapD,

it follows from Rule 8 that
[A",C"] ~ [Arga, Crec] @ [AapD, CaDD)-
This, (x) and Rules 2 and 3 imply

[Asum, Csum] ~ ([ArEc, CriEc] @ [AaDD, CaDD]) © [AsTR, CsTR]-

Thus, the proposed decomposition is valid. Further refinements of the three com-
ponent specifications ADD, REG and STR may now be carried out in isolation.
O

In the example above we needed the agent STR because ® does not hide the
feedback channel y. It is of course straightforward to define an operator & which
only differs from ® in that the feedback channel represented by y is hidden. Rule
8 is also valid for @ if C is restricted from having occurrences of y. On other
occasions operators, where only the feedback channel represented by x is hidden,
or where both feedback channels are hidden, are needed. Instead of introducing
operators and rules for each of these situations we overload and use @ for all
four. It will always be clear from the context which version is intended.

Example 4. Recording the Maximum:
In Example 3 the verification was straightforward. Using the overloaded ® in-
troduced above, we will now look at a variation of Example 3, which is more
complicated in the sense that it is necessary to strengthen the component as-
sumptions with two invariants in order to use Rule 8.

The task is to develop an agent with one input channel r and one output
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channel z, which for any natural number received on r outputs the maximum
natural number received so far along x. More formally an agent which satisfies

[Amax, Cmax],
where

Anax(r) = true,
Cvax(r, ) st = #r A Vj € dom(z).z; = max(rng(r|;))-

This specification can be decomposed into two component specifications, REG
and COMP, as shown in Figure 4.

T Yy o
REG COMP
T

Fig. 4. Network Refining MAX.

As before, REG specifies a register which stores the last number received on z.
Its initial value is still 0. However, the register is fragile in the sense that it is
guaranteed to behave correctly only if the input stream is nondecreasing;:

Arga(z) def Vj € dom(z).j # #x = z; < w41,
Crea(z,y) € y = (0)~a.

COMP, on the other hand, compares any natural number received on r with
the corresponding number received on y. The maximum of these two numbers is
chosen and output along z.

def
Acomp(y,) = true,
def . .
Ccomp (y,m,7) = o = min{#y, #r} AVj € dom(z).x; = max{y;,r;}.
The first conjunct restricts any correct implementation to output exactly one
message along the output channel for each pair of messages it receives on its two

input channels. The second makes sure that the maximum is chosen.
To prove that this decomposition is correct, it must be shown that

[Amax, Cymax] ~ [Area, Crec] @ [Acomp, Ccomp]. (%)

Unfortunately, it is not possible to use Rule 8 directly. This because
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Amax A Acomp A Ccomp = Area

does not hold. What is missing is the relationship between r and y. We will
therefore strengthen the the component assumptions with two invariants:

Iggg(z,7) = Vj € dom(z).z; = max(rng(r|;)) A #x < #r,

Ioowp (y,r) € Vj € dom(y).y; = max(me(rlj-1) U {0}) Ay < #r + 1.
Since Rule 1 implies that

[Ar.Irec, Crec) ~ [Area, CrEC),
[Icomp, Ccomp] ~ [Acomp, Coompl,

it follows from Rules 2 and 3 that (%) holds if it can be shown that

[Amax, Cymax] ~ [IrIrea, Crec] @ [Icomp, Ccomp]-
According to Rule 8 the latter holds if we can prove that

adm(Ax.Igrg) V adm(Ay.Icomp),

IrEG [@] V Icomp [Z{>]7

Irea A Crea A Icomp A Coomp = Omax,
Irea A Crec = Icowmp,

Icomp A Ccomp = Irec.

Since Irgg and Icomp are safety predicates with respect to z and y, respectively,
it is clear that the first premise holds. The second premise is trivial. To prove
premises three, four and five is also straightforward. O

The example above gives a general strategy for decomposition modulo ®:
strengthen the component assumptions with appropriately chosen invariants and
then prove that the premises of Rule 8 hold. This closely resembles a decompo-
sition modulo the while-construct in Hoare-logic. When conducting a decompo-
sition modulo p a similar strategy is often needed. The only difference is that in
the case of @ it is necessary to formulate two invariants, while one invariant is
enough in the case of p. These invariant strategies can of course be embedded
in the actual refinement rules. Rules 7 and 8 could then be applied directly, i.e.
without first using Rules 1,2 and 3 to strengthen the assumptions. From a formal
point of view these two alternatives are equivalent — it is just a matter of taste.
However, a practitioner would perhaps prefer to have the invariants explicitly in
the rules.

Theorem 1. The refinement rules for simple specifications are sound.

Informal soundness proofs have been given above. More detailed proofs for Rules
7 and 8 can be found in the appendix.

In the examples above a predicate calculus related assertion language has
been employed for writing specifications. However, in this paper no assertion
language has been formally defined, nor have we formulated any assertion logic
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for discharging the premises of our rules; we have just implicitly assumed the ex-
istence of these things. This will continue. We are just mentioning these concepts
here because they play a role in the discussion below.

The logic introduced in this chapter is (semantic) relative complete in the
following sense:

Theorem 2. If F'is a deterministic agent built from basic deterministic agents
using the operators for sequential composition, parallel composition, feedback
and mutual feedback, and [A,C] ~ F, then F' can be deduced from [A, C] using
Rules 1-3 and 5-8, given that

e such a deduction can always be carried out for a basic deterministic agent?,
e any valid formula in the assertion logic is provable,
e any predicate we need can be expressed in the assertion language.

See the appendix for a detailed proof. Note that under the same expressiveness
assumption as above, for any deterministic agent F', there is a simple specifica-
tion Spec such that [ F'] = [ Spec]. Let [ F'] = {f} then [true, f(i) = o] is
semantically equivalent to F'.

5. Symmetric Specifications

In Section 4 it is explained what it means for an agent F', either deterministic or
nondeterministic, to fulfill a simple specification [A, C]. Thus, simple specifica-
tions can quite naturally be used to specify nondeterministic agents, too. How-
ever, they are not expressive enough, i.e. not every nondeterministic agent can
be specified by a simple specification. One problem is that for certain nondeter-
ministic agents, the assumption cannot be formulated without some knowledge
about the output. To understand the point, consider a modified version of the
one element buffer:

Example 5. One Element Unreliable Buffer:

Basically the buffer should exhibit the same behavior as the one element buffer
described in Example 1. In addition we now assume that it is unreliable in
the sense that data communicated by the environment can be rejected. Special
messages are issued to inform the environment about the outcome, namely fail
if a data element is rejected and ok if it is accepted. Again the environment is
assumed to send a request only if the buffer is full and a data element only if the
buffer is empty. It follows from this description that the environment has to take
the buffer’s output into account in order to make sure that the messages it sends
to the buffer are consistent with the buffer’s input assumption. The example is
worked out formally on page 19. O

At a first glance it seems that the weakness of simple specifications can be
fixed by allowing assumptions to depend upon the output, too, i.e. by allowing
specifications like [4, C], with A,C € I¥ x O¥ — B, and

2 Remember (see Section 3, Page 6) we have not given any notation (programming constructs)
for expressing basic agents — thus we have to assume that there are some relative complete
rules with respect to the chosen notation
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[[A,Cl]={f€I* = 0“|Vie I*.AG, f(i)) = C(i, f(i)}

We call such specifications symmetric since A and C' are now treated symmet-
rically with respect to the input/output streams. Unfortunately, we may then
write strange specifications like

[#i# 0o AN = Ffo,i=0] (%)

which is not only satisfied by the identity agent, but also for example by any
agent which for all inputs falsifies the assumption?.

Another argument against symmetric specifications is that in order to for-
mulate sufficiently strong assumptions, what is needed is not really information
about the agents output, but information about the nondeterministic choices
taken by the agent, i.e. only information about some aspects of the output.

A third and more serious problem is that symmetric specifications are insuf-
ficiently expressive. Consider the following example (taken from [Bro92]):

Example 6. :
Let f1, f2, f3, f4 € {1}* = {1}* be such that

f1(0) = f2(() = (1),

fi((1)) = fa({1)) = (1, 1),

f3(0) = f1(() = (),

f2((1)) = f3((1)) = (1),

y=(L1)~r= fi(y) = f2(y) = f3(y) = faly) = (1,1).

Assume that Fy and F, are agents such that [ Fy | = {f1,fs} and [ F> ] =
{f2, f«}. Then F; and F, determine exactly the same input/output relation.
Thus for any symmetric specification Spec, Spec ~ Fy iff Spec ~» F5. In other
words, there is no symmetric specification which distinguishes Fj from Fy.

Nevertheless, semantically the difference between F} and Fj is not insignifi-
cant, because the two agents have different behaviors with respect to the feed-
back operator. To see this, firstly observe that ufi = (1,1), pfo = (1) and
wfz = fa={). Thus pu Fy may either output (1,1) or (), while p F> may either
output (1) or (). O

The expressiveness problem described above is basically the Brock/Ackermann
[BA81] anomaly. Due to the lack of expressiveness it can be shown that for
symmetric specifications no deduction system can be found that is semantically
complete for nondeterministic agents in the sense explained on Page 15. Given a
specification Spec and an agent F', and assume we know that Spec ~ u F holds.
A deduction system is compositional iff the specification of an agent can always
be verified on the basis of the specifications of its subagents, without knowl-
edge of the interior construction of those subagents [Zwi89]. This means that in
a complete and compositional deduction system there must be a specification

3 Tt can be argued that the simple specification [false, P] suffers from exactly the same problem.
However, there is a slight difference. [false, P] is satisfied by any agent. The same does not hold
for (x). As argued in [Bro94], if any assumption A of a symmetric specification is required to
satisfy 3i. A(7, f(i)) for any type-correct stream processing function f, and any assumption A
of a simple specification is required to satisfy 3i. A(¢), then this difference disappears.
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Specy, such that Spec ~» p Spec; and Spec; ~» F' are provable. For symmetric
specifications no such deduction system can be found. To prove this fact we may
use the agents F1, F» defined in Example 6, where

[ nFy | =A{pfi,nfsy = {11, A0} [ efe ] ={nfanfa} = {A(1), A0}

Note that pFy, pF5 have no input channels. Let [A,C] with A,C € {1}* — B be
defined by

A(o) & true, Clo)Eo=(11)vo=().

Obviously, [A4,C] ~ pFy is valid. Now, if there is a complete compositional
deduction system then there must be a symmetric specification [A;,C;] such
that

[A,C] o ,LL[Al,Cl], (*) [Al,C’l] ~ Fl- (**)

However, because F; and F» have exactly the same input/output behavior, there
is no symmetric specification that distinguishes F; from F5. Thus, it follows from
(%) that [A;,C1] ~ Fs, as well as p[A;,Ci] ~ uFs. From this, (), and the
transitivity of ~» we can conclude [A, C] ~ uFs, which does not hold.

6. General Specifications

As shown in the previous section, the problem with symmetric specifications is
that they are not sufficiently expressive. Roughly speaking, we need a specifica-
tion concept capable of distinguishing F; from F,. Since as shown in Section 4,
any deterministic agent can be uniquely characterized by a simple specification,
we define a general specification as a set of simple specifications:

{[An, Ch] | H(R)}.

H is a predicate characterizing a set of indices, and for each index h, [Ax, Ch]
is a simple specification — from now on called a simple descendant of the above
general specification.

More formally, and in a slightly simpler notation, a general specification is of
the form

[A,ClH,

where Ac [*xT —-B,Cel“xT x0% —B,and HeT — B. T is the type
of the indices and H, the hypothesis predicate, is a predicate on this type. Its
denotation

def

[1A,Cla 1= LT [An, Cul 11 H(R)},

with A, (i) € A(i, h) and Cu(i,0) & C(i, h,0), is the union of the denotations

of the corresponding simple specifications. This definition is equivalent to:
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[[A,Cly 1% {fel® =0 |3neT.

H(h) A (Vi € I¢. A(i, h) = C(i, h, f(i)))}

Any index h can be thought of as a hypothesis about the agents internal behavior.
It is interesting to note the close relationship between hypotheses and what are
called oracles in [Kel78] and prophecy variables in [AL88]. To see how these
hypotheses can be used, let us go back to the unreliable buffer of Example 5.

Example 7. One Element Unreliable Buffer, continued:

As in Example 1, let D be the set of data, and let ? represent a request. ok, fazl
are additional output messages. The buffer outputs fail if a data element is
rejected and ok if a data element is accepted. Let {0k, fail}°° be the hypothesis
type with

Hug(h) = #{ok}©h = o

as hypothesis predicate. Thus, every infinite stream over {ok, fail}, which con-
tains infinitely many ok’s, is a legal hypotheses. The idea is that the n’th data
element occurring in an input stream x corresponds to the n’th element of h,
which is either equal to ok or fail. Now, if for a particular pair of input z and
hypothesis h a data element d in = corresponds to fail, it will be rejected, if
it corresponds to ok, it will be accepted. Thus, h predicts which data elements
the buffer will accept and which it will reject. We say that the buffer behaves
according to h.
In order to describe its behavior two auxiliary functions are employed. Let

state € (D U {7})* x {ok, fail}*>* — {empty, full},
accept € (D U {?})* x {ok, fail}>* = D¥,

be such that for all d € D, z € (DU {?})* and h € {0k, fail }*>:

state((), h) = empty,

state(x~(7), h) = empty,

hu(p@a)+1 = fail = state(x—(d), h) = state(z, h),
hy(D@©a)+1 = ok = state(z~(d), h) = full,

N~a, h) - accept(z, h),
dy~x, (faily~h) = accept(x, h),
d) (ok)~h) = (d)~accept(x, h).

state is used to keep track of the buffer’s state. The first equation expresses that
initially the buffer is empty. The others describe how the state changes when new
input arrives and the buffer behaves according to hypothesis A. In the third and
fourth equation hy(p@©q)+1 denotes the element of the hypothesis stream which
corresponds to d in the sense explained above. For any finite input stream x
and any hypothesis h, state(xz, h) returns the buffer’s state after it has processed
x according to h. Obviously, it does not make sense to define state for infinite
input streams, since no buffer state can be attributed to them.
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accept returns the stream of accepted data for a given input and a given hypoth-
esis. In contrast to state, accept is defined on infinite input streams although
no equation is given explicitly. Since it is defined to be a continuous function,
its behavior on infinite streams follows by continuity from its behavior on finite
streams.

The unreliable buffer is specified by [Aus, Cus|uys Where

Aug(z,h) ¥ Va' € (DU{?})*.Vd € D.(a/~(?) C x = state(z', h) = full) A
(2!

x
~(d) C x = state(z', h) = empty),

Cun(z,h,y) & D@y C accept(z, h) A

{ok, fail}©y C h A #{ok, fail}@y = #D@x A
#D©Oy = #{?}©Ox.

Intuitively, the assumption states that the environment is only allowed to send a
request 7 when the buffer is full and a data element d when the buffer is empty.

The commitment states in its first conjunct that each data element in the
output must previously have been accepted; in its second and third conjunct
that the environment is properly informed about the buffer’s internal decisions;
and in its fourth conjunct that every request will eventually be satisfied. O

Since the denotation of a general specification is a set of type correct stream
processing functions, feasibility, mixed specifications and the refinement relation
can be defined in exactly the same way as for simple specifications.

Theorem 3. Given two general specifications Spec, Spec’, with respectively T,
T’ as hypothesis types, and H, H' as hypothesis predicates, then Spec ~» Spec
if there is a mapping [ : T’ — T, such that for all h € T’

1. H'(h) = H(I(h)),
2. H'(h) = Specypy ~ Specj,.

Here Specy(n) and Spec), are the simple descendants of Spec and Spec’ deter-
mined by h and [(h), respectively.

To see that Theorem 3 is valid, assume that the two conditions (1, 2) hold,
and let f € [ Spec’ ]. Then, by the definition of [ ], there is an hypothesis
h such that f € [ Spec), | and H'(h). It follows from the two conditions that
H(I(h)) A f € [ Speciny |- Thus, again by the definition of [ ], f € [ Spec ].

This statement can of course easily be generalized to the case where Spec’
is the result of composing several general specifications using the four basic
composition operators. The proof is again straightforward.

Rules 2-3 are also valid for mixed specifications containing general specifica-
tions. The other rules for general specifications are given below:

Rule 10: Rule 11 :
Rule 9 : Ih. H Hy = Hi[j,)]
HAA = A, HANA = A H2/\A1[?(h)]:>A2
H/\Al/\02:>01 H/\Al/\02:>01 HZ/\AI[?(;L)]/\C2:>CI[?(}L)]

(A1, C1| ~ [A2, Colu (A1, Cifm ~ [As, Oy (A7, Cilm, ~ (A2, Calm,
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Rule 12 : _ .
CyAN(Ve. Ue=iAVjeEN A[L]=3p Up=0AVjeN.C[L 9]) = C,
[Avcl]H’\’) [Ach]H

Rule 13 :

HANA= A Rule 14 :

HANANCL = Ay HANA= A NAs

H/\A/\Cl/\02:>0 H/\A/\Cl/\C’2:>C’

[A, Clu ~ [A1, Ch]y o [A2, Coln (4, Clu ~ [A1, Chlu || [A2, Coln
Rule 16 :

Rule 15 : HAA= adm(Ax.A1) V adm(ly.Asz)

HAA= adm(\x.A7) H/\A:>A1[<z>]VA2[:2I>]

HNA= Aif})] HAANA ACLAAACy = C

H/\A/\Al[;i/\Cﬂz]jc HANANA ANCL = Ay

HANANA ANCL = A} HANANA ANCy = A

[A,Cla ~ p[A1,Cilr [A,Clg ~ [3r. A1, Ch]g @ [Fi. Az, Col g

The close relationship between simple and general specifications is reflected
by Rules 9-10. This means that the two logics can be combined. Thus, general
specifications and the rules for general specifications have to be introduced only
at the point in a system development where they are really needed. Rules 9-10
are trivially sound, and so is Rule 12.

Rule 1 states that a simple specification can be refined by weakening the
assumption and/or strengthening the commitment. For general specifications
still another aspect must be considered: two general specifications may rely on
different hypothesis types T and 75 or, if 71 and 75 coincide, different hypothesis
predicates H; and H,. Rule 11 captures all these aspects. Here [ € T, — T is a
mapping between the two hypothesis types, and h and ¢ are the corresponding
hypotheseses. Rule 1 can be seen as a special case of Rule 11. Simply choose
T, =15, H = H, = true and let [ denote the identity function. Since the first
premise implies the first condition of Theorem 3 on page 20, and premises two
and three together with Rule 1 imply the second condition of Theorem 3, it
follows that the rule is sound.

As in the case of simple specifications there is one rule for each of the four
composition operators. As for Rule 11 their soundness follows straightforwardly
from (the general version of) Theorem 3 and the corresponding rules of the
previous chapter. Thus:

Theorem 4. The refinement rules for general specifications are sound.

Theorem 5. If F' is an agent built from basic agents using the operators for
sequential composition, parallel composition, feedback and mutual feedback, and
[A,C)g ~ F, then F can be deduced from [A, C|y using Rules 2-3, 11 and 13-16,
given that

e such a deduction can always be carried out for a basic agent,
e any valid formula in the assertion logic is provable,
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e any predicate we need can be expressed in the assertion language.

A proof can be found in the appendix. Under the same expressiveness assump-
tion as above, for any nondeterministic agent F', it is now straightforward to
write a general specification Spec which is semantically equivalent to F. Choose

I¥ 5 O“ as the hypothesis type. Then [ Spec] =[ F ], if

Hspee(h) E h € F, Agpeci,h) E true, Cspecli, hy0) & h(i) = o.

Roughly speaking, our specification technique uses a set of relations in the same
sense as [BDD 193] employs a set of functions to get around the compositionality
problems reported in [BA8I1].

Example 8. Decomposing the Reliable Buffer:

In this example we will refine RB of Example 1 into a network of two speci-
fications, as pictured in Figure 5. UB of Example 7 is one of the component
specifications. The other one, SRV, specifies a server which is supposed to run
the unreliable buffer in such a way that its unreliability is invisible from the
outside.

This is a typical situation in interactive system design: often it is fixed in
advance that certain components are to be used when a given specification is
to be implemented. These components can be software modules, which already
exists or which are to be implemented by other developers, as well as pieces of
hardware — for instance processors, storage cells or a physical wire connecting
two protocol entities. Since hardware components often are unreliable, it is not
uncommon that one has to deal with strange specifications like UB.

T Yy
UB SRV
0

Y

Fig. 5. Network Refining RB.

The idea behind the server is quite simple: since the unreliable buffer may
loose data elements (in which case it outputs a fail), the server repeatedly sends
the same data element until it finally is accepted. Remember that (due to the
hypotheses predicate) the specification UB guarantees that a data element is
always eventually accepted provided it is sent often enough. To formally specify
the server, two auxiliary functions are needed. The first one

ok_in : (D U {ok, fail})* x (D U{?})¥ — B,

can be used to state that for any data element occurring in y (see Figure 5) there
is a corresponding request in ¢, and that for any sequence
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(fai)~(fail)~ ... ~(fail)~(ok)
occurring in y there is a corresponding data element in i.

More precisely, given that ¢ € (D U {?})¥, y € (D U {0k, fail})*, d,d € D,
x € D U{ok, fail}, ok_in is defined as follows:

ok_in({),1)
({

ok_in ) = false,

ye (DU ok,fail})* =
ok_in({d')~y,(?)~i) = ok-in(y, ),
ok_in({ok)~y, (?)~i) = false,
ok_in((faily~y, (?)~i) = false
ok_in({d"y~y, (dy~i) = false,
ok-in({ok)~y, (d)~i) = ok-in(y, i),
ok-in((fail)~y, (d)~i) = ok-in(y, ({d)~i),

€ (DU {ok, fail})> =
ok_in(y,i) =Vy' € (DU {0k, fail})*.y' Cy = ok_in(y',1).

Note that for every ¢, Ay.ok_in(y,i) is a safety predicate and hence admissible
with respect to y.
The second auxiliary function

to_ub : (D U {ok, fail})* x (DU {?})* = (DU {?})*
can be used to state that the server repeatedly sends the same data element

until it receives an ok on its first input channel. For i,y and d as above, to_ub is
defined by:

to-ub(y, () = )
to-ub({), (2)~i) = (7),

to-ub({). (d)~) = (d). |
to-ub((d)~y. () ~i) = (?)~toub(y,i),
to-ubl{ i)y, (0)~i) = (d)~to-ubly, (d)~i),
to-ub({ok)~y, (d)~i) = (d)~to_ub(y, ).

These axioms define the behavior for compatible input, i.e. input accepted by
ok_in. In some sense to_ub is the reverse of the auxiliary function accept which
is employed in the specification of UB:

Vh € {ok, fail})>
ok_in(y,i) A {ok fail}©y C h = accept(toub(y,i), h) C D@©:i. (%)

It is also the case that
ok_in(y,i) AN x = to_ub(y,i) = #{?}©x = #{?}©i V #y + 1 < #x. (%)

Both lemmas follow by stream induction®.

4 By stream induction we mean induction on the length of a stream (or the sum of the lengths
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Given that i,z € (DU {?})¥,y € (D U {ok, fail})*,0 € D“, then the server
is characterized by

[Asrv, Csry],

where

.\ def . .
ASRV(y7Z) = ok_m(y,z),
. def )
Csry (y,1,7,0) = 0= D@y A x = to_ub(y,i).
The idea behind the assumption and the second conjunct of the commitment
should be clear from the discussion above. The first conjunct of the commitment

requires the server to output any data element received on y along o.
To prove that this decomposition is correct, it must be shown that

[ArB, CrB] ~ [AuB, CuBlHys @ [Asrv, Csrv].
Rules 9 and 10 imply

[ArB, CrB] ~ [ARrB, CrB|Hys,
[Asrv, Csrv] Hug ~ [Asrv, Csry].

Moreover, if

C’{JB(av,y,h).déf #x = #y AVj € dom(z). DO(yl;) E accept(x];, h) A
{ok, fail}©(y|;) T h A #{ok, fail}©(y|;) = #D©O(z|;) A
#D©(yl;) = #{7}©(xl;),

then Rule 12 implies

[Aus, Ciplaus ~ [Aus, CuslHus -

Thus, it follows from Rules 2 and 3 that it is enough to prove

[ArB, CrBlHys ~ [Aus, Cuglays @ [Asrv, Csrv]aes- (1)

In the same way as in Example 4, it is necessary to use a consequence rule, in
this case Rule 11, to strengthen the component assumptions with two invariants:

Iup(z, h,i) & 3y € (DU {ok, fail})*.x = to_ub(y', i) A

{0k, fail}©y' C h A ok_in(y', i),

Isry (y,i,h) & {ok, fail}©y C h.

It follows from Rules 2,3 and 11 that (}) holds if it can be shown that

of several streams) where one in addition to the usual premises has to show that the formula is
admissible with respect to the stream (or tuple of streams) on which the induction is conducted.
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[ArB, CrB|Hys ~ [Ji. Aus A Tus, Cylays @ [Asrv A Isrv, Csrv] Hyy- (1)
According to Rule 16 (1) holds if it can be shown that

Hyg A AR = adm()\x.Ang A ISRV) V adm()\y.AUB A IUB)a
Hyp A Ar = (Asrv A Isrv)[[)] V (Aus A IUB)[%L

Huyg A Ars A Asry A Isrv A Csry A Aus A Ius A Cliy = Cra,
Hyp A AR A Asry A Isrv A Csrv = Aus A Iy,

Hyg A Arg A Aus A Iy A C{JB = Agsgrv A Isry.

It is easy to see that the first premise holds, since \y.Asgry A Isgy is a safety
predicate. That the second premise holds is obvious. That the antecedent of the
third premise implies 0 E D(©: follows easily by the help of (x). That the same
antecedent also implies #0 = #{?}(©i can be deduced by the help of (xx). The
correctness of premises four and five follows by stream induction. O

7. Discussion

Techniques for writing explicit assumption/commitment specifications and com-
position principles for such specifications have already been proposed for a num-
ber of formalisms. What is new in this paper is that we have investigated the
assumption/commitment paradigm in the context of nondeterministic Kahn-
networks. Our results can be summed-up as follows:

e We have defined two types of assumption/commitment specifications, namely
simple and general specifications.

e It has been shown that semantically, any deterministic agent can be uniquely
characterized by a simple specification, and any nondeterministic agent can
be uniquely characterized by a general specification.

e We have defined two sets of refinement rules, one for simple specifications and
one for general specifications. The rules are Hoare-logic inspired. In particular
the feedback rules employ an invariant in the style of a traditional while-rule.

e Both sets of rules have been proved to be sound and also semantically com-
plete with respect to a chosen set of composition operators.

e We have defined conversion rules which allow the two logics to be combined.
This means that general specifications and the rules for general specifications
have to be introduced only at the point in a system development where they
are really needed.

In addition, in a number of examples, we have illustrated how specifications can
be written in this formalism and how decompositions can be proved correct using
our rules.

We will now try to relate our results to assumption/commitment formalisms
defined for other semantic models.

A number of approaches, like [MC81], [Jon83] and [Stg91], deal only with
safety predicates and restricted types of liveness and are therefore less general
than the logic described in this paper.

[Pnu85] presents an assumption/commitment formalism for a shared-state
parallel language. A rule for a shared-state parallel operator is given. In fact
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this seems to be the first paper which tries to handle general safety and liveness
predicates in a compositional style. Roughly speaking, this parallel operator
corresponds to our construct for mutual feedback as depicted in Figure 2. The
rule differs from our Rule 8 (and 16) in that the induction is explicit, i.e. the user
must himself find an appropriate well-ordering. A related rule is formulated in
[Pan90]. There is a translation of these rules into our formalism, where the state
is interpreted as the tuple of input/output streams, but the rules we then get are
quite weak, i.e. incomplete, in the sense that we can only prove properties which
hold for all fixpoints and not properties which hold for the least fixpoint only.
[Sta85] also proposes a rule which seems to be a special case of Pnueli’s rule.

More recently, [AL90] has proposed a general composition principle with re-
spect to a shared-state model. This principle is similar to Rule 8 in that the
induction is only implicit, but differs from Rule 8 in that the assumptions are
required to be safety properties. It is shown in their paper that any “sensible”
specification can be written in a normal form where the assumption is a safety
property. A similar result holds for our specifications. However, at least with re-
spect to our specification formalism, it is often an advantage to be able to state
liveness constraints also in the assumptions. [AL93] proposes a slightly stronger
rule which handles some liveness properties in the assumptions. However, this
strengthening seems to be of little practical importance.

Our rules for the feedback operators can deal with at least some interesting
liveness properties in the assumptions. This is clear because we only require the
assumptions to be admissible with respect to the feedback channels. For exam-
ple the assumption of the specification ADD on Page 12 is a liveness property.
However, also our rules are not as strong as we would have liked. For example
when using our specification formalism it may be helpful to state that the lengths
of the input streams are related in a certain way. When using Rule 7 this can
lead to difficulties (see its second premise where the empty stream is inserted for
the feedback input). One way to handle this problem is to simulate the stepwise
consumption of the overall input. The following rule is based on this idea:

Rule 7' :

adm(Ay)

A=Al Y,
A/\Al[;]/\cl[g]ﬁc ‘

AN Ay A Crlig 1= Aaly 4]

Y (i) 41
[4,C]~ p[Ay, C]

Here t is a function which takes a stream tuple as argument and returns a
chain such that for all ¢, U¢(¢) = . The idea is that ¢ partitions ¢ in accordance
with how the input is consumed. Thus, the first element of ¢(i) represents the
consumption of input w.r.t. the first element of the Kleene chain, i.e. the empty
stream; the second element of ¢(7) represents the consumption of input w.r.t. the
second element of the Kleene chain; etc. The rule can be made even stronger by
characterizing the input consumption as a function of the tuple of input streams.
Rules 8, 15 and 16 can be reformulated in a similar style. The rules are complete
in the same sense as earlier.

The P-A logic of [PJ91] gives rules for both asynchronous and synchronous
communication with respect to a CSP-like language. Also in this approach the
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assumptions are safety predicates. Moreover, general liveness predicates can only
be derived indirectly from the commitment via a number of additional rules.

We are using sets of monotonic and continuous functions to model agents.
There are certain time dependent components like non-strict fair merge which
cannot be modeled in this type of semantics [Kel78], i.e. they are not agents as
agents are defined here. In [BS94] this problem is dealt with by using a more
sophisticated semantics based on timed streams [Par83]. The rules proposed in
[BS94] can be seen as a generalization of the rules introduced above.

Some case-studies have been carried out. In particular a non-trivial produc-
tion cell has been successfully specified and decomposed using the proposed
formalism [Phi93], [FP95].
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The object of this appendix is to give proofs for claims made elsewhere in the

paper.

A.1l. Proof of Theorem 1

The soundness proofs for Rules 1 - 6 are trivial. The soundness of Rules 7 and 8

follow from Lemmas 1 and 2.

Lemma 1. If
A(l) = adm(A\x € Y¥. Ay (i, x)),
A(i) = A1 (1, (),
A(Z) A Al (Zv y) A Cl (Zv Y, 0, y) = C(Zv o, y)v
A(Z) A Al (Zv l‘) A Cl(iv z,o, y) = Al (Zv y)v
then
[A, Cl~ p[Ar, Ch].
Proof. Assume that 1 - 4 hold, and that f, ¢, 0o and y are such that
fellAL Gl ],
A@) A f(i) = (o, y).
The monotonicity of f implies that there are chains 0, § such that
~ A~y def
(01,91) = ({1, (M)
A Ay def N e -
(05,9;5) = f(i,95-1)  ifj>1.
Kleene’s theorem [Kle52] implies
u(6,9) = (o,y)-
Assume for an arbitrary j > 1
6, 8, 9 and 11 imply
C1(2,95, 0541, Jj+1)-
4,7,11 and 12 imply
Al (Zv gj+1)~
Thus, for all y > 1
Al (27 g]) = Al (27 gj-l-l)'
2,7, 13 and induction on j imply for all j > 1
Al (Zv g])
1,7, 10 and 14 imply
Al (Zv y)
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6, 7 and 15 imply

C1(i,y,0,9)- (16)
3, 7,15 and 16 imply

C(i,0,y).
Thus, it has been shown that

A(i) A p f(i) = (0,9) = C(i,0,y). (17)

17 and the way f, i, o and y were chosen imply 5. [

Lemma 2. If

A(i,r) = adm(Az € X¥. A1 (i,2z,7)) Vadm(Ay € Y. As(y,7,7)), (18)
A(ivT) j"41(1.7077")\/‘42(<>7Tvi)7 (19)
A(ivT) A Al(i,l‘,r) A AQ(vavi) A Cl(ivxvovy) A CQ(ZI},T,.Z‘,S) =
C(i7r7 O7y7x7 8)7 (20)
A(ivT) A Al(i,l‘,r) A C’1(i,x,0,y) = A2(:U7r7i)7 (21)
A(i,’l") A Az(y,T,i) A CZ(yvrvxv S) = Al(i,l',’f'), (22)
then
[A,C]’\’)[HTERw.A17CI]®[3iEIw.A27CQ]. (23)
Proof. Assume that 18 - 22 hold, and that fi, fs, ¢, 7, 0, ¥, © and s are such that
f1 € [[ [El?“ S Rw.Al,Cl] ]], (24)
fo € [[ [Ell € Iw.AQ,CQ] ]], (25)
A(ivT)/\f1®f2(i7r):(07y7x78)' (26)

The monotonicity of f; and fo implies that there are chains 6,9, % and § such
that

(61,1, 31,81) = (0, 0, 0. 0), (27)

(67,85, 25,5;) € fulis2j1) || o(@-1,7) i 5> 10 (28)
Kleene’s theorem implies

u(o,v,%,8) = (o,y,x,s). (29)
Assume for an arbitrary j > 1

Ay (i, 25,7). (30)

24, 27, 28 and 30 imply

Ci(i, 25,0541, 95+1)- (31)
21, 26, 30 and 31 imply

As(fj41,7,7)-
Thus, for all y > 1

A1(3,25,71) = A2(Gj+1,7,1). (32)



Specification and Refinement

By a similar argument it follows that for all j > 1
AZ(gjv r, Z) = Al (Zv i.j+17 ’f‘).

19, 26, 32, 33 and induction on j imply that for all 7 > 1

k> 5 A A (i, 25, 7) ATk k> G A As (G, 7, 0).

Assume
adm(Az € X¥. Ay (i,2,7)).
29, 34 and 35 imply
Aq(i,x,r).
24, 26 and 36 imply
Ci(i,z,0,y).
21, 26, 36 and 37 imply
As(y,r,1).
25, 26 and 38 imply
Co(y,r, x,s).
20, 26, 36, 37, 38 and 39 imply
C(i,r,0,y,x,8).
Assume

adm(Ay € Y¥. As(y,r,1)).

31

(33)

(34)

(35)

By an argument similar to the one above, 40 may again be deduced.
Since 18 and 26 imply that either 35 or 41 hold, it has been shown that

A(i,’l") A fl @ fg(i,’f‘) = (o,y,x,s) = C(i,’f‘, O,y,x,s).
42 and the way fi1, f2, i, 1, 0, y,  and s were chosen imply 23. [

A.2. Proof of Theorem 2

Follows straightforwardly from Lemmas 3 - 6.

Lemma 3. If

fiofa € [[A,C]],
then there are Ay, A, Cy and Cs such that

fre[ A, G ],

f2 €[ [A2,C5] ],

Ai) = A1(2),

A AN CL(1,x) = Az(x),

A1) A C1(i,x) A Co(x,0) = C(i,0).
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Proof. Assume 43. Let
Aq() o true,
As(x) o true,
Cii,2) € fii) = a,
Cy(z,0) o fa(z) =o.

It follows trivially that 44-48 hold. [

Lemma 4. If

fill f2 €[ 14,011,
then there are Ay, A5, Cy and C5 such that
fre[[A, Gl ]
f2 €[ [A2,Co] ]
A(i,r) = Ai() A Ax(r),
A, r) ANC1(i,0) N Ca(r,s) = C(i,7,0,5).
Proof. Assume 49. Let

Cy(r, s) & fa(r) =s.
It follows trivially that 50-53 hold. [

Lemma 5. If

nfellAC]],
then there are A; and C such that
fellAn Gl
(1) = adm(Ax € Y¥. A1 (i, x)),
(i) = A1(5, (),
(i) A Ar(i,y) A Ci(iyy,0,9) = C(i,0,9),
A(l) A Al(l,l‘) A C1(i,x,0,y) = Al(zvy)
Proof. Assume 54. Let

A
A
A

Ay (iy2) € (35 € N K;(i,2)) v (3 € Ch(Y™).

x = UjAVYj e N.K;(i,7;)),

K(i,2) & 2z = (),

def

K;(i,z) = 32" €Y¥. 0 € OY. K;_1(i,2") A f(i,2") = (0, )

if 3 >1,
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Cl(ivxvovy) déf f(lvx) = (Ovy)'

Basically, K;(i,x) characterizes the j’th element x of the Kleene-chain for the
function f and the given input ¢. This means that (i,x) satisfies A; iff x is an
element of the Kleene-chain or its least upper bound for the input ¢. 55 holds
trivially. 56 follows from the second disjunct of A;’s definition, while 57 is a direct
consequence of the definition of ;. To prove 58, observe that the antecedent of
58 is equivalent to

A(i) A Av(,y) A fy) = (0,9)- (60)

Since A; characterizes the Kleene-chain or its least upper bound for a given
input ¢, 60 implies

A(@) N AL (i y) A fi) = (0,y). (61)
54 implies

A(@) A f(i) = (0,9) = C(i, 0,9).
Thus 58 holds. To prove 59, let ¢, x, 0 and y be such that

A() AN AL (4, 2) ANCL(i, 2, 0,y). (62)
62 implies

A(@) N AL(i @) A fis @) = (0,9). (63)

It follows from the definition of A; that there are two cases to consider. If x is
the least upper bound of the Kleene-chain for the input 7, it follows that z =y,
in which case 63 implies

A1(27y)

On the other hand, if z is an element of the Kleene-chain for the input ¢, then
there is a 7 > 1 such that

K;(i, ). (64)
63 and 64 imply

Kjt(i,y). (65)
65 implies

A (2, y). (66)

This proves 59. [

Lemma 6. If
fiofe[[4,0]] (67)
then there are Ay, A5, Cy and C5 such that
fie[[Fre R AL, Ch ], (68)
foe[[Felv A, O, (69)
A(i,r) = adm(Az € X¥. A1 (i,2z,7)) Vadm(Ay € Y¥. As(y,7,7)), (70)
A(iyr) = A1(3, (), r) Vv A2((), 1, 9), (71)
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A, m) N Ay (i, 2,m) A Ao(y,r,i) ACL(3,2,0,y) A Caly, T, 2,8) =
C(i,r,0,y,,8), (72)

A(i, ) AN Ay (i, 2,1) A CL(i,x,0,y) = As(y,T,1), (73)

A(i, 1) A Ax(y,1,1) A Co(y, 7w, 8) = Ay (i, z,71). (74)

Proof. Let

Ay 2,r) (3 eN. Ty e V2. K (i, r,m,y) V

(32 € Ch(X¥).3j € Ch(Y*).x = Ui AVj € N. K;(i,r,3;,9;)),
As(y, i) & (35 e N Tz € XY K, (i, r,2,y)) V

(32 € Ch(X*).3j € Ch(Y¥).y = Uj AVj € N. K;(i,7, 25, 4;)),

Ky(ira,y) o= () Ay =),

K;(i,r,z,y) 3 e X¥. 3y €Y. Joe 0. 3s € S¥.
Ki—i(i,r, 2’ y") A fi(is o) = (0,y) A fa(y', 1) = (3, 9),

Ci(i,z,0,9) = f1(i,2) = (0,9),

Co(y,m,2,5) = foly,m) = (2,5).

68-74 can now be deduced from 67 by an argument similar to that of Lemma
5. 0O

A.3. Proof of Theorem 4

The soundness of Rules 9 and 10 follows trivially. The soundness of Rules 11-16
follows easily from Lemma 3 and the soundness of the corresponding rules for
simple specifications.

A.4. Proof of Theorem 5

Since Rule 11 allows us to extend the set of hypotheses, we may assume that there
is an injective mapping m from [ F' ] to the set of hypotheseses characterized by
H such that for all f €[ F]

Hm(f)Af € [Amis), Conl 1

Under this assumption Lemmas 3-6 can be used to construct sets of simple
specifications, i.e. general specifications, in the same way as they were used to
construct simple specifications in the proof of Theorem 2.



