
Formal Aspects of Computing ������ �� �����
c� ���� BCS

Speci�cation and Re�nement of
Networks of Asynchronously
Communicating Agents Using the
Assumption�Commitment Paradigm

Ketil St�len� Frank Dederichs� Rainer Weber

Fakult	at f	ur Informatik
 Technische Universit	at M	unchen
Arcisstra�e ��
 Postfach �� �
 ��
 D������ M	unchen
 Germany

Keywords� Speci�cation� Assumption�Commitment� Rely�Guarantee� Decom�
position� Re�nement� Calculus� Streams� Data�ow

Abstract� This paper presents an assumption�commitment speci�cation tech�
nique and a re�nement calculus for networks of agents communicating asyn�
chronously via unbounded FIFO channels in the tradition of Kahn�

� We de�ne two types of assumption�commitment speci�cations� namely simple
and general speci�cations�

� It is shown that semantically� any deterministic agent can be uniquely char�
acterized by a simple speci�cation� and any nondeterministic agent can be
uniquely characterized by a general speci�cation�

� We de�ne two sets of re�nement rules� one for simple speci�cations and one
for general speci�cations� The rules are Hoare�logic inspired� In particular
the feedback rules employ invariants in the style of a traditional while�rule�

� Both sets of rules have been proved to be sound and also �semantic� relative
complete�

� Conversion rules allow the two logics to be combined� This means that general
speci�cations and the rules for general speci�cations have to be introduced
only at the point in a system development where they are really needed�

Correspondence and o�print requests to� Ketil St�len
 Fakult	at f	ur Informatik
 Arcisstrasse ��

Postfach �� �
 ��
 D������ M	unchen
 Germany �email�stoelen�informatik�tu�muenchen�de�

� K� St�len
 F� Dederichs and R� Weber

�� Introduction

Ever since formal system design became a major research direction some 	
 years
ago� it has been common to write speci�cations in an assumption�commitment
form� The assumption characterizes the essential properties of the environment
in which the speci�ed program� from now on referred to as the agent� is supposed
to run� while the commitment is a requirement which must be ful�lled by the
agent whenever it is executed in an environment which satis�es the assumption�
For example� in Hoare�logic �Hoa�
� the post�condition characterizes the

states in which the agent is allowed to terminate when executed in an initial
state which satis�es the pre�condition� Thus� the pre�condition makes an as�
sumption about the environment� while the post�condition states a commitment
which must be ful�lled by the agent�
In general� the popularity of the assumption�commitment paradigm is due

to the fact that an agent is normally not supposed to work in an arbitrary
environment� in which case speci�cations and agent designs can be simpli�ed by
�restricting� the environment in terms of assumptions�
There are many di�erent techniques for writing assumption�commitment

speci�cations� Roughly speaking� they can be split into two main categories�
those which require an explicit assumption�commitment form� and those which
are content with an implicit assumption�commitment form�
In the �rst category� the assumption is clearly separated from the commit�

ment� A speci�cation can be thought of as a pair �A�C�� where A is the as�
sumption about the environment� and C is the commitment to the agent� The
pre�post speci�cations of Hoare�logic belong to this category� so does Jones�
rely�guarantee method �Jon���� the Misra�Chandy technique �MC��� for hier�
archical decomposition of networks� and a number of other contributions like
�Pnu���� �Sta���� �Pan

�� �AL

�� �St�
��� �PJ
���
In the second category� speci�cations still make assumptions about the en�

vironment and state commitments to the agent� but the assumptions and the
commitments are mixed together and stated more implicitly� Examples of such
methods are �BKP���� �CM����
The motivation for insisting on an explicit assumption�commitment form

varies from approach to approach� In some methods like �Jon��� and �MC���
this structure is mainly employed to ensure compositionality ��dR���� �Zwi�
��
of the design rules� namely that the speci�cation of an agent always can be
veri�ed on the basis of the speci�cations of its subagents� without knowledge of
the interior construction of those subagents� For example� in the Owicki�Gries
method �OG��� environment assumptions can only be made about the initial
state� and as a consequence the rule for parallel composition is not compositional�
In other methods� with a richer assertion language� an explicit assump�

tion�commitment form is not needed in order to ensure compositionality� Nev�
ertheless� an explicit assumption�commitment form is still favored by many re�
searchers� Abadi�Lamport �AL

�� for example� argue as below��

� �Why write a speci�cation of the form �A�C� when we can simply write C�
The answer lies in the practical matter of what the speci�cation looks like�
If we eliminate the explicit environment assumption� then that assumption
appears implicitly in the properties C describing the system� Instead of C

� In the quotation �A�C�
 A and C have been substituted for E �M
 E and M
 respectively�

Speci�cation and Re�nement �

describing only the behavior of the system when the environment behaves
correctly�C must also allow arbitrary behavior when the environment behaves
incorrectly� Eliminating A makes C too complicated� and it is not a practical
alternative to writing speci�cations in the form �A�C���

The objective of this paper is to investigate the assumption�commitment
paradigm in the context of �possibly� nondeterministic Kahn�networks �Kah����
�KM���� �Kel���� Agents are modeled as sets of stream processing functions as ex�
plained in �Kel���� �Bro�
�� �BDD�
��� They communicate via unbounded FIFO
channels� We distinguish between two types of explicit assumption�commitment
speci�cations� namely simple and general speci�cations� A simple speci�cation
can be used to specify any deterministic agent� while any nondeterministic agent
can be speci�ed by a general speci�cation� Re�nement rules are formulated and
proved sound and �semantic� relative complete�
The basic notation and the semantic model are introduced in Section 	�

In Section � agents and networks of agents are de�ned� Section � introduces
simple speci�cations and the corresponding re�nement calculus� What we call
symmetric speci�cations is discussed and rejected in Section �� while general
speci�cations and their re�nement rules are the topics of Section �� Section � gives
a brief summary and relates our approach to other proposals known from the
literature� Finally� there is an appendix containing soundness and completeness
proofs�

�� Basic Concepts and Notation

Let N denote the set of positive natural numbers� and let B denote the set
ftrue� falseg� A stream is a �nite or in�nite sequence of data� It models the
history of a communication channel� i�e� it represents the sequence of messages
sent along the channel� hi stands for the empty stream� and hd�� d�� � � � � dni stands
for a �nite stream whose �rst element is d�� and whose n�th and last element
is dn� Given a set of data D� D

� denotes the set of all �nite streams generated
from D� D� denotes the set of all in�nite streams generated from D� and D�

denotes D� �D��
This notation is overloaded to tuples of data sets in a straightforward way�

hi denotes any empty stream tuple� moreover� if T � �D�� D�� � � � � Dn� then T
�

denotes �D�
� � D�

� � � � � � D�
n�� T

� denotes �D�
� � D�

� � � � � � D�
n �� and T

�

denotes �D�
� �D�

� � � � ��D�
n��

There are a number of standard operators on streams and stream tuples� If
d � D� r � D�� s� t � T�� A � D� and j is a natural number then�

� s�t denotes the pointwise concatenation of s and t� i�e� the j�th component
of s�t is equal to the result of pre�xing the j�th component tj of t with the
j�th component sj of s if sj is �nite� and is equal to sj otherwise�

� s v t denotes that s is a pre�x of t� i�e� �p � T�� s�p � t�

� A c�r denotes the projection of r on A� data not occurring in A are deleted�
e�g� f
� �g c� h
� �� 	�
� �i � h
� ��
i�

� �r denotes the length of r� i�e� the number of elements in r if r � D�� and
� otherwise�

� rjj denotes the pre�x of r consisting of its j �rst elements if j � �r�

� rj denotes the j�th element of r if � � j � �r�

 K� St�len
 F� Dederichs and R� Weber

� dom�r� denotes the set of indices corresponding to r� i�e� dom�r� � fj j � �
j � �rg�

� rng�r� denotes the set of elements in r� i�e� rng�r� � frj jj � dom�r�g�

A chain �c is an in�nite sequence of stream tuples �c�� �c�� � � � such that for
all j � N� �cj v �cj��� For any chain �c� t�c denotes its least upper bound� Since
streams may be in�nite such least upper bounds always exist� Ch�X�� where X
is a set of streams� denotes the set of all chains over X � Variables denoting chains
are always decorated with a � to distinguish them from other variables�

Predicates will be expressed in �rst order predicate logic� As usual� 	 binds
weaker than
� �� � which again bind weaker that all other function symbols�
P �at � denotes the result of substituting t for all occurrences of the variable a in
P � Predicates are sometimes classi�ed as safety and liveness predicates� These
concepts are de�ned as in �AS����

P is admissible i� for all chains �c� �
j � N� P ��cj�� 	 P �t�c�� An admissible
predicate holds for the least upper bound of a chain �c if it holds for all members
of �c� All safety predicates are admissible� However� there are admissible predi�
cates which are not safety predicates� For example �i mod 	 �
��i �� is an
admissible predicate� but not a safety predicate� adm�P � holds i� P is admissi�
ble� There are well�known techniques for proving that a predicate is admissible
�Man����
A function f � I� � O� � where I�� O� are stream tuples� is called a stream

processing function i� it is pre�x monotonic�

s� t � I�� s v t	 f�s� v f�t��

and pre�x continuous�

�c � Ch�I���f�t�c� � tff��cj� j j � Ng�

More informally� that a function is pre�x monotonic basically means that
if it is given more input then the output already produced cannot be changed�
i�e� the output may at most be increased� Moreover� pre�x continuity implies
that the function�s behavior for in�nite inputs is completely determined by its
behavior for �nite inputs� The set of all stream processing functions in I� � O�

is denoted by I�
c
� O� �

�� Agents

An agent F � I� � O� receives messages through a �nite number of input chan�
nels of type I� and sends messages through a �nite number of output channels
of type O��
The denotation of an agent F � written �� F ��� is a set of type correct stream

processing functions� Hence� from the declaration above it follows that �� F �� �

I�
c
� O��
Agents can be nondeterministic� This is re�ected by the fact that sets of

functions are used as denotations� Any function f � �� F �� represents a possible
behavior of F � The agent may �choose� freely among these functions� Obviously�
if there is no choice� the agent is deterministic� Hence� we call F deterministic if
its denotation is a unary set and nondeterministic� otherwise�

Speci�cation and Re�nement �

F� F�� � �i x o F� F�

� �

� �

i r

o s

Fig� �� Sequential and Parallel Composition�

Given two agents F� � I
� � X� and F� � X

� � O� � then F� � F� is of type
I� � O� and represents the sequential composition of F� and F�� Its denotation
is

�� F� � F� ��
def
� ff� � f� j f� � �� F� ��
 f� � �� F� ��g�

where f� � f��i�
def
� f��f��i��� Figure � shows the situation� Each arrow stands

for a �nite number of channels� In contrast to e�g� CSP�programs or sequential
programs� F� need not terminate before F� starts to compute� Instead F� and
F� work in a pipelined manner�
Given two agents F� � I

� � O� and F� � R
� � S�� then F� k F� is of type

I� � R� � O� � S� and represents the parallel composition of F� and F�� Its
denotation is

�� F� k F� ��
def
� ff� k f� j f� � �� F� ��
 f� � �� F� ��g�

where f� k f��i� r�
def
� �f��i�� f��r��� Parallel composition is also shown in Figure

�� F� and F� are simply put side by side and work independently without any
mutual communication�
Let F � I� � Y � � O� � Y � be an agent� where Y is a data set �and

not a tuple�� Then the last input channel of F has the same type as the last
output channel� and they can be connected as depicted in Figure 	� This is
called feedback� The resulting construct �F is of type I� � O� � Y �� and its
denotation is

�� �F ��
def
� f� f j f � �� F ��g�

where � f�i�
def
� �o� y� i�

� f�i� y� � �o� y��

�
o� � O� �
y� � Y �� f�i� y�� � �o�� y��	 �o� y� v �o�� y���

�o� y� is called the least �xpoint of f with respect to i� The continuity of stream
processing functions ensures that there is a least �xpoint�
Let F� � I

� � X� � O� � Y � and F� � Y
� � R� � X� � S� be agents�

where X and Y are data sets� They can then be connected as in Figure 	� This
is called mutual feedback� The resulting construct F� � F� is of type I

� �R� �
O� � Y � �X� � S�� and its denotation is

� K� St�len
 F� Dederichs and R� Weber

F

� �

� �

i

x

o y

F� F�

� � � �

� � � �

�
�
�
�
�
��

B
B
B
B
B
BB

i

x y

r

o y x s

Fig� �� Feedback and Mutual Feedback�

�� F� � F� ��
def
� ff� � f�j f� � �� F� ��
 f� � �� F� ��g�

where f� � f��i� r�
def
� �o� y� x� s� i�

� f��i� x� � �o� y��

� f��y� r� � �x� s��

�
o� � O� �
x� � X��
y� � Y ��
s� � S��
f��i� x

�� � �o�� y��
 f��y
�� r� � �x�� s��	 �o� y� x� s� v �o�� y�� x�� s���

It is easy to generalize the � and � operators to enable feedback of stream tuples�
The rules presented below remain valid �see �SDW
����
The denotation of any network generated from some given basic agents using

the operators �� k� � and � is a set of stream processing functions� and if all
constituents of a network are deterministic agents� the denotation of the network
is a singleton set� This is a well�known result� which dates back to �Kah���� It
makes it possible to replace an agent by a network of simpler agents that has
the same denotation� This is the key concept that enables modular top�down
development�
In this paper we distinguish between agents which are syntactic entities and

their semantic representation as sets of stream processing functions� The four
operators �� k� � and � can be thought of as constructs in a programming lan�
guage� Thus� given some notation for characterizing the basic agents of a network�
i�e� the �atomic� building blocks� networks can be represented in a program�like
notation �see �Ded
	���
However� since we are concerned with agents which are embedded in envi�

ronments� a basic agent is not always a program� It may also be a speci�cation
representing some sort of physical device� like� for instance� an unreliable wire
connecting two computers� or even a human being working in front of a terminal�
Of course� such agents do not always correspond to computable functions� and
it is not the task of the program designer to develop such agents� However� in a
program design it is often useful to be able to specify agents of this type�

�� Simple Speci�cations

In our approach an agent communicates with its environment via unbounded
FIFO channels� Hence� at least in the case of deterministic agents� it seems

Speci�cation and Re�nement �

natural to de�ne the environment assumption as a predicate on the history of
the input channels� i�e� on the input streams� and the commitment as a predicate
on the history of the input and output channels� i�e� as a relation between the
input and output streams� The result is what we call a simple speci�cation�
More formally� a simple speci�cation is a pair of predicates �A�C�� where

A � I� � B and C � I� � O� � B� Its denotation �� �A�C� �� is the set of all
type correct stream processing functions which satis�es the speci�cation� More
formally�

�� �A�C� ��
def
� ff � I�

c
� O� j
i � I�� A�i�	 C�i� f�i��g�

In other words� the denotation is the set of all type correct stream processing
functions f such that whenever the input i of f ful�lls the assumption A� the
output f�i� is related to i in accordance with the commitment C�

Example �� One Element Bu�er�
As a �rst example� consider the task of specifying a bu�er capable of storing
exactly one data element� The environment may either send a data element to
be stored or a request for the data element currently stored� The environment
is assumed to be such that no data element is sent when the bu�er is full� and
no request is sent when the bu�er is empty� The bu�er� on the other hand�
is required to store any received data element and to output the stored data
element and become empty after receiving a request�
Let D be the set of data� and let � represent a request� then it is enough to

require the bu�er to satisfy the speci�cation RB� where

ARB�i�
def
�
i� � �D � f�g��� i� v i	 �f�g c�i� � �D c�i� � �f�g c�i� � ��

CRB�i� o�
def
� o v D c�i
�o � �f�g c�i�

The assumption states that no request is sent to an empty bu�er ��rst inequal�
ity�� and that no data element is sent to a full bu�er �second inequality�� The
commitment requires that the bu�er transmits data elements in the order they
are received ��rst conjunct�� and moreover that the bu�er always eventually
responds to a request �second conjunct�� �

The operators �� k� � and � can be used to compose speci�cations� and
also speci�cations and agents in a straightforward way� By a mixed speci�cation
we mean an agent� a simple speci�cation or any network built from agents and
simple speci�cations using the four composition operators� Since simple speci�
�cations denote sets of stream processing functions� the denotation of a mixed
speci�cation is de�ned in exactly the same way as for networks of agents�
During program development it is important that the speci�cations which

are to be implemented remain implementable� i�e� that they remain ful�llable
by computer programs� From a practical point of view� it is generally accepted
that it does not make much sense to formally check the implementability of a
speci�cation� The reason is that to prove implementability it is often necessary
to construct a program which ful�lls the speci�cation� and that is of course the
goal of the whole program design exercise�
A weaker and more easily provable constraint is what we call feasibility�

A simple speci�cation �A�C� is feasible i� its denotation is nonempty� i�e� i�
�� �A�C� �� �� ��

� K� St�len
 F� Dederichs and R� Weber

Feasibility corresponds to what is called feasibility in �Mor���� satis�ability
in VDM �Jon

� and realizability in �AL

�� A non�feasible speci�cation is in�
consistent and can therefore not be ful�lled by any agent� On the other hand�
there are stream processing functions that cannot be expressed in any algorith�
mic language� Thus� that a speci�cation is feasible does not guarantee that it is
implementable� See �Bro
�� for a detailed discussion of feasibility and techniques
for proving that a speci�cation is feasible�

Example �� Non�Feasible Speci�cation�
An example of a non�feasible speci�cation is �A�C� where

A�r�
def
� true�

C�r� s�
def
� �r ��� �s ���

To see that this speci�cation is not feasible� assume the opposite� This means it
is satis�ed by at least one stream processing function f � f is continuous which
implies that for any strictly increasing chain �r we have�

f�t�r� � tff��rj� j j � Ng�

Since �r is strictly increasing� it follows for all j � �� ��rj ��� and therefore also
�f��rj� ��� Hence�

�f�t�r� � � t ff��rj� j j � Ng ���

On the other hand� since �r is strictly increasing we have ��t�r� � � which
implies �f�t�r� � �� This is a contradiction� Thus the speci�cation is not
feasible� �

A simple speci�cation �A�� C�� is said to re�ne a simple speci�cation �A�� C���
written �A�� C�� � �A�� C��� i� the denotation of the former is contained in or
equal to the denotation of the latter� i�e� i� �� �A�� C�� �� � �� �A�� C�� ���
This relation can again be generalized to mixed speci�cations� Given a re�

quirement speci�cation �A�C�� the goal of a system design is to construct an
agent F such that �A�C� � F holds� The re�nement relation � is re�exive�
transitive and a congruence with respect to the composition operators� Hence�
� admits compositional system development� once a speci�cation is decomposed
into a network of subspeci�cations� each of these subspeci�cations can be further
re�ned in isolation�
We will now present the re�nement rules for simple speci�cations� The �rst

re�nement rule states that a speci�cation�s assumption can be weakened and its
commitment can be strengthened�

Rule � �
A� 	 A�
A�
 C� 	 C�
�A�� C��� �A�� C��

To see that Rule � is sound� observe that if f is a stream processing function
such that f � �� �A�� C�� ��� then since the �rst premise implies that the new
assumption A� is weaker than the old assumption A�� and the second premise

Speci�cation and Re�nement �

implies that the new commitment C� is stronger than the old commitment C�
for any input which satis�es A�� it is clear that f � �� �A�� C�� ���

That � is transitive and a congruence with respect to the composition op�
erators can of course also be stated as re�nement rules�

Rule � �
Spec� � Spec�
Spec� � Spec�
Spec� � Spec�

Rule � �
Spec� � Spec�
Spec� Spec�Spec��Spec��

Spec�� Spec� and Spec� denote mixed speci�cations� In Rule � Spec�Spec��Spec��
denotes some mixed speci�cation which can be obtained from the mixed speci�
�cation Spec by substituting Spec� for one occurrence of Spec��

Since stream processing functions are monotonic and continuous it is not
necessary to state monotonicity and continuity constraints explicitly in the spec�
i�cations� For example� in Example � it is not possible to deduce that an im�
plementation must behave continuously from the predicate CRB alone� However�
when reasoning formally about speci�cations� it is often necessary to state these
implicit constraints explicitly� and for this purpose the following rule is useful�

Rule � �
C�
 �
�c� t �c � i
 �
j � N� A��

i
�cj
��	 ��p� t �p � o

j � N� C��

i
�cj

o
�pj
��	 C�

�A�C��� �A�C��

�c� �p are chains� The soundness of Rule � follows from the continuity of stream
processing functions� Rule � is a so�called adaptation rule� There are of course a
number of other adaptation rules that may be helpful� For example� Rule � only
states that a correct implementation must behave continuously with respect to
any pre�x of the input i� It does not state explicitly that the behavior also must
be continuous for any further input� i�e� extension of i� This implicit constraint
can of course also be captured in terms of an adaptation rule� However since
Rule � is the only adaptation rule needed below� all other adaptation rules are
left out�

Given that the input�output variables are named in accordance with Figure �
on Page �� then the rule for sequential composition can be formulated as follows�

Rule 	 �
A	 A�
A
 C� 	 A�
A
 C�
 C� 	 C
�A�C�� �A�� C�� � �A�� C��

This rule states that in any environment� a speci�cation can be replaced by
the sequential composition of two component speci�cations provided the three
premises hold�

Observe that all stream variables occurring in a premise are local with respect
to that premise� This means that Rule � is a short�hand for the following rule�

�� K� St�len
 F� Dederichs and R� Weber

i � I�� A�i�	 A��i�

i � I��
x � X�� A�i�
 C��i� x�	 A��x�

i � I��
o � O� �
x � X�� A�i�
 C��i� x�
 C��x� o�	 C�i� o�
�A�C�� �A�� C�� � �A�� C��

Throughout this paper� all free variables occurring in the premises of re�nement
rules are universally quanti�ed in this way�
To prove soundness it is necessary to show that for any pair of stream pro�

cessing functions f� and f� in the denotations of the �rst and second component
speci�cation� respectively� their sequential composition satis�es the overall spec�
i�cation� To see that this is the case� �rstly observe that the assumption A is
at least as restrictive as A�� the assumption of f�� Since f� satis�es �A�� C���
this ensures that whenever A�i� holds� f��s output x is such that C��i� x�� Now�
the second premise implies that any such x also meets the assumption A� of f��
Since f� satis�es �A�� C��� it follows that the output o of f� is such that C��x� o��
Thus we have shown that C��i� x�
 C��x� o� characterizes the overall e�ect of
f� � f� when the overall input stream satis�es A� in which case the desired result
follows from premise three�
If the input and output variables are named in accordance with Figure � on

Page �� i�e� the input variables are disjoint from the output variables� and the
variables of the left�hand side component are disjoint from the variables of the
right�hand side component� the parallel rule

Rule
 �
A	 A�
A�
A
 C�
 C� 	 C
�A�C�� �A�� C�� k �A�� C��

is almost trivial� Since the overall assumption A implies the component assump�
tions A� and A�� and moreover the component commitments C� and C�� to�
gether with the overall assumption imply the overall commitment C� the overall
speci�cation can be replaced by the parallel composition of the two component
speci�cations�
Also in the case of the feedback rule the variable lists are implicitly given

this time with respect to Figure 	 on Page �� This means that the component
speci�cation �A�� C�� has �i� x���o� y� as input�output variables� and that the
overall speci�cation �A�C� has �i���o� y� as input�output variables�

Rule � �
A	 adm��x�A��
A	 A��

x
hi�

A
 A��
x
y �
 C��

x
y �	 C

A
 A�
 C� 	 A��
x
y �

�A�C�� � �A�� C��

The rule is based on the stepwise computation of the feedback streams formally
characterized by Kleene�s theorem �Kle�	�� i�e� the generation of the so�called
Kleene chain� Initially the feedback streams are empty� Then the agent starts to
work consuming input and producing output in a stepwise manner� Output on

Speci�cation and Re�nement ��

the feedback channels becomes input again� triggering the agent to produce ad�
ditional output� This process goes on until a �stable situation� is reached �which
implies that it may go on forever�� Formally a �stable situation� corresponds to
the least �xpoint of the recursive equation in the feedback de�nition on Page ��
The feedback rule has a close similarity to the while�rule of Hoare logic� A�

can be thought of as the invariant� The invariant holds initially �second premise��
and is maintained by each computation step �fourth premise�� in which case it
also holds after in�nitely many computation steps ��rst premise�� The conclusion
is then a consequence of premise three�
The mutual feedback rule may be formulated in a similar way�

Rule � �
A	 adm��x�A�� � adm��y�A��
A	 A��

x
hi� �A��

y

hi�

A
 A�
 C�
 A�
 C� 	 C
A
 A�
 C� 	 A�
A
 A�
 C� 	 A�
�A�C�� ��r� A�� C��� ��i� A�� C��

In accordance with Figure 	 on Page �� the component speci�cations have re�
spectively �i� x���o� y� and �y� r���x� s� as input�output variables� and the overall
speci�cation has �i� r���o� y� x� s� as input�output variables� In some sense� this
rule can be seen as a �generalization� of Rule �� Due to the continuity con�
straint on stream processing functions� it is enough if one of the agents �kicks
o��� This means that we may use A� � A� as invariant instead of A�
 A�� It
follows from premises four and �ve that if one of the component assumptions
holds for one element of the Kleene�chain� then the other component assump�
tion holds for the next element of the Kleene�chain� Since the second premise
implies that at least one of the component assumptions holds for the �rst ele�
ment of the Kleene�chain it follows that that both components assumptions holds
for in�nitely many elements of the Kleene�chain� The �rst premise then implies
that one of the component assumptions holds for the least upper bound of the
Kleene�chain� in which case premises four and �ve imply that both component
assumptions hold for the least upper bound of the Kleene�chain� The conclusion
is then a consequence of premise three�
Note� that without the existential quanti�ers occurring in the component

speci�cations� the rule becomes too weak� The problem is that the input received
on x may depend upon the value of r� and that the input received on y may
depend upon the value of i� In the above rule these dependencies can be expressed
due to the fact that r may occur in A� and i may occur in A��

Example �� Summation Agent�
The task is to design an agent which for each natural number received on its
input channel� outputs the sum of all numbers received up to that point in time�
The environment is assumed always eventually to send a new number� In other
words� we want to design an agent which re�nes the speci�cation SUM� where

ASUM�r�
def
� �r ���

CSUM�r� o�
def
� �o ��

j � N� oj �

Pj

k�� rk�

�� K� St�len
 F� Dederichs and R� Weber

REG ADD

STR

� � �

� �

�

�
�
�
�
�
�
�
�

B
B
B
B
B
B
B
Bx y r

y x

o

Fig� �� Network Re�ning SUM�

SUM can be re�ned by a network �REG � ADD� � STR as depicted in Figure
�� ADD is supposed to describe an agent which� given two input streams of
natural numbers� generates an output stream where each element is the sum of
the corresponding elements of the input streams� e�g� the n�th element of the
output stream is equal to the sum of n�th elements of the two input streams�
REG� on the other hand� is required to specify an agent which outputs its input
stream pre�xed with
� Thus an agent characterized by REG can be thought
of as a register which stores the last number received on its input channel� Its
initial value is
� This means that if ASUM�r� holds then

x � h!�j��rji�h!
�
j��rji� � � � �h!nj��rji� � � � �

where x is the right�hand side output stream of �REG � ADD�� Hence� it is
enough to require STR to characterize an agent which outputs its second input
stream� More formally�

�AREG� CREG��
�AADD� CADD��
�ASTR� CSTR��

where

AREG�x�
def
� true�

CREG�x� y�
def
� y � h
i�x�

AADD�y� r�
def
� �r ���

CADD�y� r� x�
def
� �x � �y

j � dom�x�� xj � rj � yj �

ASTR�y� x�
def
� true�

CSTR�y� x� o�
def
� o � x�

Speci�cation and Re�nement ��

The rules introduced above can be used to formally prove that this decomposition
is correct� Let

A��r�
def
� ASUM�r��

C ��r� y� x�
def
� CSUM�r� x��

Since

ASUM 	 A��
C � 	 ASTR�
C �
 CSTR 	 CSUM�

it follows from Rule � that

�ASUM� CSUM�� �A
�� C �� � �ASTR� CSTR�� ���

Moreover� since it is straightforward to prove that

A� 	 adm�AREG� � adm��y�AADD��
A� 	 AREG�

x
hi� � AADD�

y

hi��

A�
 AREG
 CREG
 AADD
 CADD 	 C ��
A�
 AADD
 CADD 	 AREG�
A�
 AREG
 CREG 	 AADD�

it follows from Rule � that

�A�� C ��� �AREG� CREG�� �AADD� CADD��

This� ��� and Rules 	 and � imply

�ASUM� CSUM�� ��AREG� CREG�� �AADD� CADD�� � �ASTR� CSTR��

Thus� the proposed decomposition is valid� Further re�nements of the three com�
ponent speci�cations ADD� REG and STR may now be carried out in isolation�
�

In the example above we needed the agent STR because � does not hide the
feedback channel y� It is of course straightforward to de�ne an operator � which
only di�ers from � in that the feedback channel represented by y is hidden� Rule
� is also valid for � if C is restricted from having occurrences of y� On other
occasions operators� where only the feedback channel represented by x is hidden�
or where both feedback channels are hidden� are needed� Instead of introducing
operators and rules for each of these situations we overload and use � for all
four� It will always be clear from the context which version is intended�

Example �� Recording the Maximum�
In Example � the veri�cation was straightforward� Using the overloaded � in�
troduced above� we will now look at a variation of Example �� which is more
complicated in the sense that it is necessary to strengthen the component as�
sumptions with two invariants in order to use Rule ��
The task is to develop an agent with one input channel r and one output

�
 K� St�len
 F� Dederichs and R� Weber

channel x� which for any natural number received on r outputs the maximum
natural number received so far along x� More formally an agent which satis�es

�AMAX� CMAX��

where

AMAX�r�
def
� true�

CMAX�r� x�
def
� �x � �r

j � dom�x��xj � max�rng�rjj���

This speci�cation can be decomposed into two component speci�cations� REG
and COMP� as shown in Figure ��

REG COMP

� � �

�

x

�
�
�
�
�
�
�
�
��

B
B
B
B
B
B
B
B
BBx y r

Fig� �� Network Re�ning MAX�

As before� REG speci�es a register which stores the last number received on x�
Its initial value is still
� However� the register is fragile in the sense that it is
guaranteed to behave correctly only if the input stream is nondecreasing�

AREG�x�
def
�
j � dom�x��j �� �x	 xj � xj���

CREG�x� y�
def
� y � h
i�x�

COMP� on the other hand� compares any natural number received on r with
the corresponding number received on y� The maximum of these two numbers is
chosen and output along x�

ACOMP�y� r�
def
� true�

CCOMP�y� r� x�
def
� �x � minf�y��rg

j � dom�x��xj � maxfyj � rjg�

The �rst conjunct restricts any correct implementation to output exactly one
message along the output channel for each pair of messages it receives on its two
input channels� The second makes sure that the maximum is chosen�
To prove that this decomposition is correct� it must be shown that

�AMAX� CMAX�� �AREG� CREG�� �ACOMP� CCOMP�� ���

Unfortunately� it is not possible to use Rule � directly� This because

Speci�cation and Re�nement ��

AMAX
 ACOMP
 CCOMP 	 AREG

does not hold� What is missing is the relationship between r and y� We will
therefore strengthen the the component assumptions with two invariants�

IREG�x� r�
def
�
j � dom�x��xj � max�rng�rjj��
�x � �r�

ICOMP�y� r�
def
�
j � dom�y��yj � max�rng�rjj��� � f
g�
�y � �r � ��

Since Rule � implies that

��r�IREG� CREG�� �AREG� CREG��
�ICOMP� CCOMP�� �ACOMP� CCOMP��

it follows from Rules 	 and � that ��� holds if it can be shown that

�AMAX� CMAX�� ��r�IREG� CREG�� �ICOMP� CCOMP��

According to Rule � the latter holds if we can prove that

adm��x�IREG� � adm��y�ICOMP��
IREG�

x
hi� � ICOMP�

y

hi��

IREG
 CREG
 ICOMP
 CCOMP 	 CMAX�
IREG
 CREG 	 ICOMP�
ICOMP
 CCOMP 	 IREG�

Since IREG and ICOMP are safety predicates with respect to x and y� respectively�
it is clear that the �rst premise holds� The second premise is trivial� To prove
premises three� four and �ve is also straightforward� �

The example above gives a general strategy for decomposition modulo ��
strengthen the component assumptions with appropriately chosen invariants and
then prove that the premises of Rule � hold� This closely resembles a decompo�
sition modulo the while�construct in Hoare�logic� When conducting a decompo�
sition modulo � a similar strategy is often needed� The only di�erence is that in
the case of � it is necessary to formulate two invariants� while one invariant is
enough in the case of �� These invariant strategies can of course be embedded
in the actual re�nement rules� Rules � and � could then be applied directly� i�e�
without �rst using Rules ��	 and � to strengthen the assumptions� From a formal
point of view these two alternatives are equivalent it is just a matter of taste�
However� a practitioner would perhaps prefer to have the invariants explicitly in
the rules�

Theorem �� The re�nement rules for simple speci�cations are sound�

Informal soundness proofs have been given above� More detailed proofs for Rules
� and � can be found in the appendix�
In the examples above a predicate calculus related assertion language has

been employed for writing speci�cations� However� in this paper no assertion
language has been formally de�ned� nor have we formulated any assertion logic

�� K� St�len
 F� Dederichs and R� Weber

for discharging the premises of our rules� we have just implicitly assumed the ex�
istence of these things� This will continue� We are just mentioning these concepts
here because they play a role in the discussion below�
The logic introduced in this chapter is �semantic� relative complete in the

following sense�

Theorem �� If F is a deterministic agent built from basic deterministic agents
using the operators for sequential composition� parallel composition� feedback
and mutual feedback� and �A�C�� F � then F can be deduced from �A�C� using
Rules ��� and ���� given that

� such a deduction can always be carried out for a basic deterministic agent��

� any valid formula in the assertion logic is provable�

� any predicate we need can be expressed in the assertion language�

See the appendix for a detailed proof� Note that under the same expressiveness
assumption as above� for any deterministic agent F � there is a simple speci�ca�
tion Spec such that �� F �� � �� Spec ��� Let �� F �� � ffg then �true� f�i� � o� is
semantically equivalent to F �

�� Symmetric Speci�cations

In Section � it is explained what it means for an agent F � either deterministic or
nondeterministic� to ful�ll a simple speci�cation �A�C�� Thus� simple speci�ca�
tions can quite naturally be used to specify nondeterministic agents� too� How�
ever� they are not expressive enough� i�e� not every nondeterministic agent can
be speci�ed by a simple speci�cation� One problem is that for certain nondeter�
ministic agents� the assumption cannot be formulated without some knowledge
about the output� To understand the point� consider a modi�ed version of the
one element bu�er�

Example 	� One Element Unreliable Bu�er�
Basically the bu�er should exhibit the same behavior as the one element bu�er
described in Example �� In addition we now assume that it is unreliable in
the sense that data communicated by the environment can be rejected� Special
messages are issued to inform the environment about the outcome� namely fail
if a data element is rejected and ok if it is accepted� Again the environment is
assumed to send a request only if the bu�er is full and a data element only if the
bu�er is empty� It follows from this description that the environment has to take
the bu�er�s output into account in order to make sure that the messages it sends
to the bu�er are consistent with the bu�er�s input assumption� The example is
worked out formally on page �
� �

At a �rst glance it seems that the weakness of simple speci�cations can be
�xed by allowing assumptions to depend upon the output� too� i�e� by allowing
speci�cations like �A�C�� with A�C � I� �O� � B� and

� Remember �see Section �
 Page �� we have not given any notation �programming constructs�
for expressing basic agents � thus we have to assume that there are some relative complete
rules with respect to the chosen notation

Speci�cation and Re�nement ��

�� �A�C� �� � ff � I�
c
� O� j
i � I�� A�i� f�i��	 C�i� f�i��g

We call such speci�cations symmetric since A and C are now treated symmet�
rically with respect to the input�output streams� Unfortunately� we may then
write strange speci�cations like

��i ���
�i � �o� i � o� ���

which is not only satis�ed by the identity agent� but also for example by any
agent which for all inputs falsi�es the assumption��
Another argument against symmetric speci�cations is that in order to for�

mulate su"ciently strong assumptions� what is needed is not really information
about the agents output� but information about the nondeterministic choices
taken by the agent� i�e� only information about some aspects of the output�
A third and more serious problem is that symmetric speci�cations are insuf�

�ciently expressive� Consider the following example �taken from �Bro
	���

Example
� �

Let f�� f�� f�� f� � f�g
� c
� f�g� be such that

f��hi� � f��hi� � h�i�
f��h�i� � f��h�i� � h�� �i�
f��hi� � f��hi� � hi�
f��h�i� � f��h�i� � h�i�
y � h�� �i�x	 f��y� � f��y� � f��y� � f��y� � h�� �i�

Assume that F� and F� are agents such that �� F� �� � ff�� f�g and �� F� �� �
ff�� f�g� Then F� and F� determine exactly the same input�output relation�
Thus for any symmetric speci�cation Spec� Spec � F� i� Spec � F�� In other
words� there is no symmetric speci�cation which distinguishes F� from F��
Nevertheless� semantically the di�erence between F� and F� is not insigni��

cant� because the two agents have di�erent behaviors with respect to the feed�
back operator� To see this� �rstly observe that � f� � h�� �i� � f� � h�i and
� f� � � f� � hi� Thus �F� may either output h�� �i or hi� while �F� may either
output h�i or hi� �

The expressiveness problem described above is basically the Brock�Ackermann
�BA��� anomaly� Due to the lack of expressiveness it can be shown that for
symmetric speci�cations no deduction system can be found that is semantically
complete for nondeterministic agents in the sense explained on Page ��� Given a
speci�cation Spec and an agent F � and assume we know that Spec� �F holds�
A deduction system is compositional i� the speci�cation of an agent can always
be veri�ed on the basis of the speci�cations of its subagents� without knowl�
edge of the interior construction of those subagents �Zwi�
�� This means that in
a complete and compositional deduction system there must be a speci�cation

� It can be argued that the simple speci�cation �false� P � su�ers from exactly the same problem�
However
 there is a slight di�erence� �false� P � is satis�ed by any agent� The same does not hold
for ���� As argued in �Bro�
�
 if any assumption A of a symmetric speci�cation is required to
satisfy �i�A�i� f�i�� for any type�correct stream processing function f
 and any assumption A

of a simple speci�cation is required to satisfy �i�A�i�
 then this di�erence disappears�

�� K� St�len
 F� Dederichs and R� Weber

Spec�� such that Spec � �Spec� and Spec� � F are provable� For symmetric
speci�cations no such deduction system can be found� To prove this fact we may
use the agents F�� F� de�ned in Example �� where

�� �F� �� � f�f�� �f�g � f��h��i� ��hig� �� �F� �� � f�f�� �f�g � f��h�i� ��hig�

Note that �F�� �F� have no input channels� Let �A�C� with A�C � f�g� � B be
de�ned by

A�o�
def
� true� C�o�

def
� o � h��i � o � hi�

Obviously� �A�C� � �F� is valid� Now� if there is a complete compositional
deduction system then there must be a symmetric speci�cation �A�� C�� such
that

�A�C�� � �A�� C��� ��� �A�� C��� F�� ����

However� because F� and F� have exactly the same input�output behavior� there
is no symmetric speci�cation that distinguishes F� from F�� Thus� it follows from
���� that �A�� C�� � F�� as well as � �A�� C�� � �F�� From this� ���� and the
transitivity of � we can conclude �A�C�� �F�� which does not hold�

�� General Speci�cations

As shown in the previous section� the problem with symmetric speci�cations is
that they are not su"ciently expressive� Roughly speaking� we need a speci�ca�
tion concept capable of distinguishing F� from F�� Since as shown in Section ��
any deterministic agent can be uniquely characterized by a simple speci�cation�
we de�ne a general speci�cation as a set of simple speci�cations�

f�Ah� Ch� jH�h�g�

H is a predicate characterizing a set of indices� and for each index h� �Ah� Ch�
is a simple speci�cation from now on called a simple descendant of the above
general speci�cation�
More formally� and in a slightly simpler notation� a general speci�cation is of

the form

�A�C�H �

where A � I� � T � B� C � I� � T �O� � B� and H � T � B� T is the type
of the indices and H � the hypothesis predicate� is a predicate on this type� Its
denotation

�� �A�C�H ��
def
�
S
f�� �Ah� Ch� �� jH�h�g�

with Ah�i�
def
� A�i� h� and Ch�i� o�

def
� C�i� h� o�� is the union of the denotations

of the corresponding simple speci�cations� This de�nition is equivalent to�

Speci�cation and Re�nement ��

�� �A�C�H ��
def
� ff � I�

c
� O� j �h � T�

H�h�
 �
i � I� � A�i� h�	 C�i� h� f�i���g

Any index h can be thought of as a hypothesis about the agents internal behavior�
It is interesting to note the close relationship between hypotheses and what are
called oracles in �Kel��� and prophecy variables in �AL���� To see how these
hypotheses can be used� let us go back to the unreliable bu�er of Example ��

Example �� One Element Unreliable Bu�er
 continued�
As in Example �� let D be the set of data� and let � represent a request� ok� fail
are additional output messages� The bu�er outputs fail if a data element is
rejected and ok if a data element is accepted� Let fok� failg� be the hypothesis
type with

HUB�h�
def
� �fokg c�h ��

as hypothesis predicate� Thus� every in�nite stream over fok� failg� which con�
tains in�nitely many ok�s� is a legal hypotheses� The idea is that the n�th data
element occurring in an input stream x corresponds to the n�th element of h�
which is either equal to ok or fail� Now� if for a particular pair of input x and
hypothesis h a data element d in x corresponds to fail� it will be rejected� if
it corresponds to ok� it will be accepted� Thus� h predicts which data elements
the bu�er will accept and which it will reject� We say that the bu�er behaves
according to h�
In order to describe its behavior two auxiliary functions are employed� Let

state � �D � f�g�� � fok� failg� � fempty� fullg�

accept � �D � f�g�� � fok� failg�
c
� D��

be such that for all d � D� x � �D � f�g�� and h � fok� failg��

state�hi� h� � empty�
state�x�h�i� h� � empty�
h��D c�x	�� � fail	 state�x�hdi� h� � state�x� h��
h��D c�x	�� � ok 	 state�x�hdi� h� � full�

accept�hi� h� � hi�
accept�h�i�x� h� � accept�x� h��
accept�hdi�x� hfaili�h� � accept�x� h��
accept�hdi�x� hoki�h� � hdi�accept�x� h��

state is used to keep track of the bu�er�s state� The �rst equation expresses that
initially the bu�er is empty� The others describe how the state changes when new
input arrives and the bu�er behaves according to hypothesis h� In the third and
fourth equation h��D c�x	�� denotes the element of the hypothesis stream which
corresponds to d in the sense explained above� For any �nite input stream x
and any hypothesis h� state�x� h� returns the bu�er�s state after it has processed
x according to h� Obviously� it does not make sense to de�ne state for in�nite
input streams� since no bu�er state can be attributed to them�

�� K� St�len
 F� Dederichs and R� Weber

accept returns the stream of accepted data for a given input and a given hypoth�
esis� In contrast to state� accept is de�ned on in�nite input streams although
no equation is given explicitly� Since it is de�ned to be a continuous function�
its behavior on in�nite streams follows by continuity from its behavior on �nite
streams�
The unreliable bu�er is speci�ed by �AUB� CUB�HUB where

AUB�x� h�
def
�
x� � �D � f�g���
d � D��x��h�i v x	 state�x�� h� � full�

�x��hdi v x	 state�x�� h� � empty��

CUB�x� h� y�
def
� D c�y v accept�x� h�

fok� failg c�y v h
�fok� failg c�y � �D c�x

�D c�y � �f�g c�x�

Intuitively� the assumption states that the environment is only allowed to send a
request � when the bu�er is full and a data element d when the bu�er is empty�
The commitment states in its �rst conjunct that each data element in the

output must previously have been accepted� in its second and third conjunct
that the environment is properly informed about the bu�er�s internal decisions�
and in its fourth conjunct that every request will eventually be satis�ed� �

Since the denotation of a general speci�cation is a set of type correct stream
processing functions� feasibility� mixed speci�cations and the re�nement relation
can be de�ned in exactly the same way as for simple speci�cations�

Theorem �� Given two general speci�cations Spec� Spec�� with respectively T �
T � as hypothesis types� and H � H � as hypothesis predicates� then Spec� Spec�

if there is a mapping l � T � � T � such that for all h � T �

�� H ��h�	 H�l�h���

	� H ��h�	 Specl�h	 � Spec�h�

Here Specl�h	 and Spec�h are the simple descendants of Spec and Spec� deter�
mined by h and l�h�� respectively�

To see that Theorem � is valid� assume that the two conditions ��� 	� hold�
and let f � �� Spec� ��� Then� by the de�nition of �� ��� there is an hypothesis
h such that f � �� Spec�h �� and H ��h�� It follows from the two conditions that
H�l�h��
 f � �� Specl�h	 ��� Thus� again by the de�nition of �� ��� f � �� Spec ���
This statement can of course easily be generalized to the case where Spec�

is the result of composing several general speci�cations using the four basic
composition operators� The proof is again straightforward�
Rules 	�� are also valid for mixed speci�cations containing general speci�ca�

tions� The other rules for general speci�cations are given below�

Rule � �
H
 A� 	 A�
H
 A�
 C� 	 C�
�A�� C��� �A�� C��H

Rule �� �
�h�H
H
 A� 	 A�
H
 A�
 C� 	 C�
�A�� C��H � �A�� C��

Rule �� �
H� 	 H��

q

l�h	�

H�
A��
q

l�h	�	 A�
H�
A��

q

l�h	�
 C� 	 C��
q

l�h	�

�A�� C��H� � �A�� C��H�

Speci�cation and Re�nement ��

Rule �� �
C�
 �
�c� t �c � i

j � N� A��

i
�cj
�	 ��p� t �p � o

j � N� C��

i
�cj

o
�pj
��	 C�

�A�C��H � �A�C��H

Rule �� �
H
 A	 A�
H
 A
 C� 	 A�
H
 A
 C�
 C� 	 C
�A�C�H � �A�� C��H � �A�� C��H

Rule �� �
H
A	 A�
 A�
H
A
 C�
 C� 	 C
�A�C�H � �A�� C��H k �A�� C��H

Rule �	 �
H
 A	 adm��x�A��
H
 A	 A��

x
hi�

H
 A
 A��
x
y �
 C��

x
y �	 C

H
 A
 A�
 C� 	 A��
x
y �

�A�C�H � � �A�� C��H

Rule �
 �
H
A	 adm��x�A�� � adm��y�A��
H
A	 A��

x
hi� � A��

y

hi�

H
A
 A�
 C�
A�
 C� 	 C
H
A
 A�
 C� 	 A�
H
A
 A�
 C� 	 A�
�A�C�H � ��r� A�� C��H � ��i� A�� C��H

The close relationship between simple and general speci�cations is re�ected
by Rules
��
� This means that the two logics can be combined� Thus� general
speci�cations and the rules for general speci�cations have to be introduced only
at the point in a system development where they are really needed� Rules
��

are trivially sound� and so is Rule �	�
Rule � states that a simple speci�cation can be re�ned by weakening the

assumption and�or strengthening the commitment� For general speci�cations
still another aspect must be considered� two general speci�cations may rely on
di�erent hypothesis types T� and T� or� if T� and T� coincide� di�erent hypothesis
predicates H� and H�� Rule �� captures all these aspects� Here l � T� � T� is a
mapping between the two hypothesis types� and h and q are the corresponding
hypotheseses� Rule � can be seen as a special case of Rule ��� Simply choose
T� � T�� H� � H� � true and let l denote the identity function� Since the �rst
premise implies the �rst condition of Theorem � on page 	
� and premises two
and three together with Rule � imply the second condition of Theorem �� it
follows that the rule is sound�
As in the case of simple speci�cations there is one rule for each of the four

composition operators� As for Rule �� their soundness follows straightforwardly
from �the general version of� Theorem � and the corresponding rules of the
previous chapter� Thus�

Theorem �� The re�nement rules for general speci�cations are sound�

Theorem 	� If F is an agent built from basic agents using the operators for
sequential composition� parallel composition� feedback and mutual feedback� and
�A�C�H � F � then F can be deduced from �A�C�H using Rules 	��� �� and ������
given that

� such a deduction can always be carried out for a basic agent�

� any valid formula in the assertion logic is provable�

�� K� St�len
 F� Dederichs and R� Weber

� any predicate we need can be expressed in the assertion language�

A proof can be found in the appendix� Under the same expressiveness assump�
tion as above� for any nondeterministic agent F � it is now straightforward to
write a general speci�cation Spec which is semantically equivalent to F � Choose

I�
c
� O� as the hypothesis type� Then �� Spec �� � �� F ��� if

HSpec�h�
def
� h � F� ASpec�i� h�

def
� true� CSpec�i� h� o�

def
� h�i� � o�

Roughly speaking� our speci�cation technique uses a set of relations in the same
sense as �BDD�
�� employs a set of functions to get around the compositionality
problems reported in �BA����

Example �� Decomposing the Reliable Bu�er�
In this example we will re�ne RB of Example � into a network of two speci�
�cations� as pictured in Figure �� UB of Example � is one of the component
speci�cations� The other one� SRV� speci�es a server which is supposed to run
the unreliable bu�er in such a way that its unreliability is invisible from the
outside�
This is a typical situation in interactive system design� often it is �xed in

advance that certain components are to be used when a given speci�cation is
to be implemented� These components can be software modules� which already
exists or which are to be implemented by other developers� as well as pieces of
hardware for instance processors� storage cells or a physical wire connecting
two protocol entities� Since hardware components often are unreliable� it is not
uncommon that one has to deal with strange speci�cations like UB�

UB SRV

� � �

�
�
�
�
�
�
�
�
�

B
B
B
B
B
B
B
Bx y i

o

Fig� �� Network Re�ning RB�

The idea behind the server is quite simple� since the unreliable bu�er may
loose data elements �in which case it outputs a fail�� the server repeatedly sends
the same data element until it �nally is accepted� Remember that �due to the
hypotheses predicate� the speci�cation UB guarantees that a data element is
always eventually accepted provided it is sent often enough� To formally specify
the server� two auxiliary functions are needed� The �rst one

ok in � �D � fok� failg�� � �D � f�g�� � B�

can be used to state that for any data element occurring in y �see Figure �� there
is a corresponding request in i� and that for any sequence

Speci�cation and Re�nement ��

hfaili�hfaili� � � ��hfaili�hoki

occurring in y there is a corresponding data element in i�
More precisely� given that i � �D � f�g��� y � �D � fok� failg��� d� d� � D�

x � D � fok� failg� ok in is de�ned as follows�

ok in�hi� i� � true�
ok in�hxi�y� hi� � false�
y � �D � fok� failg�� 	

ok in�hd�i�y� h�i�i� � ok in�y� i��
ok in�hoki�y� h�i�i� � false�
ok in�hfaili�y� h�i�i� � false�
ok in�hd�i�y� hdi�i� � false�
ok in�hoki�y� hdi�i� � ok in�y� i��
ok in�hfaili�y� hdi�i� � ok in�y� hdi�i��

y � �D � fok� failg�� 	
ok in�y� i� �
y� � �D � fok� failg��� y� v y 	 ok in�y�� i��

Note that for every i� �y�ok in�y� i� is a safety predicate and hence admissible
with respect to y�
The second auxiliary function

to ub � �D � fok� failg�� � �D � f�g��
c
� �D � f�g���

can be used to state that the server repeatedly sends the same data element
until it receives an ok on its �rst input channel� For i� y and d as above� to ub is
de�ned by�

to ub�y� hi� � hi
to ub�hi� h�i�i� � h�i�
to ub�hi� hdi�i� � hdi�
to ub�hdi�y� h�i�i� � h�i�to ub�y� i��
to ub�hfaili�y� hdi�i� � hdi�to ub�y� hdi�i��
to ub�hoki�y� hdi�i� � hdi�to ub�y� i��

These axioms de�ne the behavior for compatible input� i�e� input accepted by
ok in� In some sense to ub is the reverse of the auxiliary function accept which
is employed in the speci�cation of UB�

h � fok� failg���
ok in�y� i�
 fok� failg c�y v h	 accept�to ub�y� i�� h� v D c�i� ���

It is also the case that

ok in�y� i�
 x � to ub�y� i�	 �f�g c�x � �f�g c�i ��y � � � �x� ����

Both lemmas follow by stream induction��

� By stream induction we mean induction on the length of a stream �or the sum of the lengths

�
 K� St�len
 F� Dederichs and R� Weber

Given that i� x � �D � f�g��� y � �D � fok� failg��� o � D�� then the server
is characterized by

�ASRV� CSRV��

where

ASRV�y� i�
def
� ok in�y� i��

CSRV�y� i� x� o�
def
� o � D c�y
 x � to ub�y� i��

The idea behind the assumption and the second conjunct of the commitment
should be clear from the discussion above� The �rst conjunct of the commitment
requires the server to output any data element received on y along o�
To prove that this decomposition is correct� it must be shown that

�ARB� CRB�� �AUB� CUB�HUB � �ASRV� CSRV��

Rules
 and �
 imply

�ARB� CRB�� �ARB� CRB�HUB �
�ASRV� CSRV�HUB � �ASRV� CSRV��

Moreover� if

C �
UB�x� y� h�

def
� �x � �y

j � dom�x�� D c��yjj� v accept�xjj � h�

fok� failg c��yjj� v h
�fok� failg c��yjj� � �D c��xjj�

�D c��yjj� � �f�g c��xjj��

then Rule �	 implies

�AUB� C
�
UB�HUB � �AUB� CUB�HUB �

Thus� it follows from Rules 	 and � that it is enough to prove

�ARB� CRB�HUB � �AUB� C
�
UB�HUB � �ASRV� CSRV�HUB � �y�

In the same way as in Example �� it is necessary to use a consequence rule� in
this case Rule ��� to strengthen the component assumptions with two invariants�

IUB�x� h� i�
def
� �y� � �D � fok� failg��� x � to ub�y�� i�

fok� failg c�y� v h
 ok in�y�� i��

ISRV�y� i� h�
def
� fok� failg c�y v h�

It follows from Rules 	�� and �� that �y� holds if it can be shown that

of several streams� where one in addition to the usual premises has to show that the formula is
admissible with respect to the stream �or tuple of streams� on which the induction is conducted�

Speci�cation and Re�nement ��

�ARB� CRB�HUB � ��i� AUB
 IUB� C
�
UB�HUB � �ASRV
 ISRV� CSRV�HUB � �z�

According to Rule �� �z� holds if it can be shown that

HUB
 ARB 	 adm��x�ASRV
 ISRV� � adm��y�AUB
 IUB��
HUB
 ARB 	 �ASRV
 ISRV��

x
hi� � �AUB
 IUB��

y

hi��

HUB
 ARB
 ASRV
 ISRV
 CSRV
 AUB
 IUB
 C �
UB 	 CRB�

HUB
 ARB
 ASRV
 ISRV
 CSRV 	 AUB
 IUB�
HUB
 ARB
 AUB
 IUB
 C �

UB 	 ASRV
 ISRV�

It is easy to see that the �rst premise holds� since �y�ASRV
 ISRV is a safety
predicate� That the second premise holds is obvious� That the antecedent of the
third premise implies o v D c�i follows easily by the help of ���� That the same
antecedent also implies �o � �f�g c�i can be deduced by the help of ����� The
correctness of premises four and �ve follows by stream induction� �

�� Discussion

Techniques for writing explicit assumption�commitment speci�cations and com�
position principles for such speci�cations have already been proposed for a num�
ber of formalisms� What is new in this paper is that we have investigated the
assumption�commitment paradigm in the context of nondeterministic Kahn�
networks� Our results can be summed�up as follows�

� We have de�ned two types of assumption�commitment speci�cations� namely
simple and general speci�cations�

� It has been shown that semantically� any deterministic agent can be uniquely
characterized by a simple speci�cation� and any nondeterministic agent can
be uniquely characterized by a general speci�cation�

� We have de�ned two sets of re�nement rules� one for simple speci�cations and
one for general speci�cations� The rules are Hoare�logic inspired� In particular
the feedback rules employ an invariant in the style of a traditional while�rule�

� Both sets of rules have been proved to be sound and also semantically com�
plete with respect to a chosen set of composition operators�

� We have de�ned conversion rules which allow the two logics to be combined�
This means that general speci�cations and the rules for general speci�cations
have to be introduced only at the point in a system development where they
are really needed�

In addition� in a number of examples� we have illustrated how speci�cations can
be written in this formalism and how decompositions can be proved correct using
our rules�
We will now try to relate our results to assumption�commitment formalisms

de�ned for other semantic models�
A number of approaches� like �MC���� �Jon��� and �St�
��� deal only with

safety predicates and restricted types of liveness and are therefore less general
than the logic described in this paper�
�Pnu��� presents an assumption�commitment formalism for a shared�state

parallel language� A rule for a shared�state parallel operator is given� In fact

�� K� St�len
 F� Dederichs and R� Weber

this seems to be the �rst paper which tries to handle general safety and liveness
predicates in a compositional style� Roughly speaking� this parallel operator
corresponds to our construct for mutual feedback as depicted in Figure 	� The
rule di�ers from our Rule � �and ��� in that the induction is explicit� i�e� the user
must himself �nd an appropriate well�ordering� A related rule is formulated in
�Pan

�� There is a translation of these rules into our formalism� where the state
is interpreted as the tuple of input�output streams� but the rules we then get are
quite weak� i�e� incomplete� in the sense that we can only prove properties which
hold for all �xpoints and not properties which hold for the least �xpoint only�
�Sta��� also proposes a rule which seems to be a special case of Pnueli�s rule�

More recently� �AL

� has proposed a general composition principle with re�
spect to a shared�state model� This principle is similar to Rule � in that the
induction is only implicit� but di�ers from Rule � in that the assumptions are
required to be safety properties� It is shown in their paper that any �sensible�
speci�cation can be written in a normal form where the assumption is a safety
property� A similar result holds for our speci�cations� However� at least with re�
spect to our speci�cation formalism� it is often an advantage to be able to state
liveness constraints also in the assumptions� �AL
�� proposes a slightly stronger
rule which handles some liveness properties in the assumptions� However� this
strengthening seems to be of little practical importance�

Our rules for the feedback operators can deal with at least some interesting
liveness properties in the assumptions� This is clear because we only require the
assumptions to be admissible with respect to the feedback channels� For exam�
ple the assumption of the speci�cation ADD on Page �	 is a liveness property�
However� also our rules are not as strong as we would have liked� For example
when using our speci�cation formalism it may be helpful to state that the lengths
of the input streams are related in a certain way� When using Rule � this can
lead to di"culties �see its second premise where the empty stream is inserted for
the feedback input�� One way to handle this problem is to simulate the stepwise
consumption of the overall input� The following rule is based on this idea�

Rule �� �
adm�A��
A	 A��

x
hi

i
t�i	�
�

A
 A��
x
y �
 C��

x
y �	 C

A
 A��
i
t�i	j
�
 C��

i
t�i	j
�	 A��

x
y
i
t�i	j��

�

�A�C�� � �A�� C��

Here t is a function which takes a stream tuple as argument and returns a
chain such that for all i� tt�i� � i� The idea is that t partitions i in accordance
with how the input is consumed� Thus� the �rst element of t�i� represents the
consumption of input w�r�t� the �rst element of the Kleene chain� i�e� the empty
stream� the second element of t�i� represents the consumption of input w�r�t� the
second element of the Kleene chain� etc� The rule can be made even stronger by
characterizing the input consumption as a function of the tuple of input streams�
Rules �� �� and �� can be reformulated in a similar style� The rules are complete
in the same sense as earlier�

The P�A logic of �PJ
�� gives rules for both asynchronous and synchronous
communication with respect to a CSP�like language� Also in this approach the

Speci�cation and Re�nement ��

assumptions are safety predicates� Moreover� general liveness predicates can only
be derived indirectly from the commitment via a number of additional rules�
We are using sets of monotonic and continuous functions to model agents�

There are certain time dependent components like non�strict fair merge which
cannot be modeled in this type of semantics �Kel���� i�e� they are not agents as
agents are de�ned here� In �BS
�� this problem is dealt with by using a more
sophisticated semantics based on timed streams �Par���� The rules proposed in
�BS
�� can be seen as a generalization of the rules introduced above�
Some case�studies have been carried out� In particular a non�trivial produc�

tion cell has been successfully speci�ed and decomposed using the proposed
formalism �Phi
��� �FP
���

	� Acknowledgement

We would like to thank M� Broy who has in�uenced this work in many ways� P�
Collette and C�B� Jones have read earlier drafts and provided valuable feedback�
Valuable comments have also been received from O�J� Dahl� M� Kr#et$%nsk$y� O�
Owe� F� Pl$a#sil� W�P� de Roever and Q� Xu� The research reported in this paper
has been supported by Sonderforschungsbereich ��	 �Werkzeuge und Methoden
f&ur die Nutzung paralleler Rechner Architekturen��

References

�AL��� M� Abadi and L� Lamport� The existence of re�nement mappings� Technical
Report ��
 Digital
 Palo Alto
 �����

�AL��� M� Abadi and L� Lamport� Composing speci�cations� In J� W� de Bakker
 W� P�
de Roever
 and G� Rozenberg
 editors
 Proc� REX Workshop on Stepwise Re�ne�

ment of Distributed Systems� Lecture Notes in Computer Science ���
 pages ��
�

�����

�AL��� M� Abadi and L� Lamport� Conjoining speci�cations� Technical Report ���

Digital
 Palo Alto
 �����

�AS��� B� Alpern and F� B� Schneider� De�ning liveness� Information Processing Letters

����������
 �����

�BA��� J� D� Brock and W� B� Ackermann� Scenarios� A model of non�determinate com�
putation� In J� Diaz and I� Ramos
 editors
 Proc� Formalization of Programming

Concepts� Lecture Notes in Computer Science ��	
 pages �������
 �����
�BDD���� M� Broy
 F� Dederichs
 C� Dendorfer
 M� Fuchs
 T� F� Gritzner
 and R� Weber�

The design of distributed systems � an introduction to Focus �revised version��
Technical Report SFB �
������ A
 Technische Universit	at M	unchen
 �����

�BKP�
� H� Barringer
 R� Kuiper
 and A� Pnueli� Now you may compose temporal logic
speci�cations� In Proc� Sixteenth ACM Symposium on Theory of Computing

pages �����
 ���
�

�Bro��� M� Broy� Towards a design methodology for distributed systems� In M� Broy

editor
 Proc� Constructive Methods in Computing Science� Summerschool� Mark�

toberdorf
 pages ������
� Springer
 �����
�Bro��� M� Broy� Functional speci�cation of time sensitive communicating systems� In

M� Broy
 editor
 Proc� Programming and Mathematical Method� Summerschool�

Marktoberdorf
 pages �������� Springer
 �����
�Bro�
� M� Broy� A functional rephrasing of the assumption�commitment speci�cation

style� Technical Report SFB �
������
 A
 Technische Universit	at M	unchen
 ���
�
�BS�
� M� Broy and K� St�len� Speci�cation and re�nement of �nite data�ow networks �

a relational approach� In H� Langmaack
 W��P� de Roever
 and J� Vytopil
 editors

Proc� FTRTFT
��� Lecture Notes in Computer Science �
�
 pages �
�����
 ���
�

�CM��� K� M� Chandy and J� Misra� Parallel Program Design� A Foundation� Addison�
Wesley
 �����

�� K� St�len
 F� Dederichs and R� Weber

�Ded��� F� Dederichs� Transformation verteilter Systeme� Von applikativen zu prozedu�

ralen Darstellungen� PhD thesis
 Technische Universit	at M	unchen
 ����� Also
available as SFB�report �
������� A
 Technische Universit	at M	unchen�

�dR��� W� P� de Roever� The quest for compositionality
 formal models in programming�
In F� J� Neuhold and G� Chroust
 editors
 Proc� IFIP ��
 pages �������
 �����

�FP��� M� Fuchs and J� Philipps� Formal development of a production cell in Focus
� a case study� In C� Lewerenz and T� Lindner
 editors
 Formal Development

of Reactive Systems� Case Study Production Cell� Lecture Notes in Computer

Science ���
 pages �������� �����
�Hoa��� C� A� R� Hoare� An axiomatic basis for computer programming� Communications

of the ACM
 ����������
 �����
�Jon��� C� B� Jones� Speci�cation and design of �parallel� programs� In R�E�A� Mason

editor
 Proc� Information Processing ��
 pages �������� North�Holland
 �����
�Jon��� C� B� Jones� Systematic Software Development Using VDM� Second Edition�

Prentice�Hall
 �����
�Kah�
� G� Kahn� The semantics of a simple language for parallel programming� In

J�L� Rosenfeld
 editor
 Proc� Information Processing 	�
 pages
���
��� North�
Holland
 ���
�

�Kel��� R� M� Keller� Denotational models for parallel programs with indeterminate op�
erators� In E� J� Neuhold
 editor
 Proc� Formal Description of Programming

Concepts
 pages �������� North�Holland
 �����
�Kle��� S� C� Kleene� Introduction to Metamathematics� Van Nostrand
 �����
�KM��� G� Kahn and D� B� MacQueen� Corutines and networks of parallel processes�

In B� Gilchrist
 editor
 Proc� Information Processing 		
 pages �������� North�
Holland
 �����

�Man�
� Z� Manna� Mathematical Theory of Computation� McGraw�Hill
 ���
�
�MC��� J� Misra and K� M� Chandy� Proofs of networks of processes� IEEE Transactions

on Software Engineering
 ��
���
��
 �����
�Mor��� C� Morgan� The speci�cation statement� ACM Transactions on Programming

Languages and Systems
 ���
���
��
 �����
�OG��� S� Owicki and D� Gries� An axiomatic proof technique for parallel programs� Acta

Informatica
 �������
�
 �����
�Pan��� P� K� Pandya� Some comments on the assumption�commitment framework for

compositional veri�cation of distributed programs� In J� W� de Bakker
 W� P�
de Roever
 and G� Rozenberg
 editors
 Proc� REX Workshop on Stepwise Re�

�nement of Distributed Systems� Lecture Notes in Computer Science ���
 pages
�����
�
 �����

�Par��� D� Park� The �fairness� problem and nondeterministic computing networks� In
J� W� de Bakker and J van Leeuwen
 editors
 Proc� �th Foundations of Computer

Science� Mathematical Centre Tracts ���
 pages �������� Mathematisch Centrum
Amsterdam
 �����

�Phi��� J� Philipps� Spezi�kation einer Fertigungszelle � eine Fallstudie in Focus� Mas�
ter�s thesis
 Technische Universi	at M	unchen
 �����

�PJ��� P� K� Pandya and M� Joseph� P�A logic � a compositional proof system for
distributed programs� Distributed Computing
 ������

 �����

�Pnu��� A� Pnueli� In transition from global to modular temporal reasoning about pro�
grams� In K� R� Apt
 editor
 Proc� Logics and Models of Concurrent Systems

pages �����

� Springer
 �����

�SDW��� K� St�len
 F� Dederichs
 and R� Weber� Assumption�commitment rules for net�
works of asynchronously communicating agents� Technical Report SFB �
������
A
 Technische Universit	at M	unchen
 �����

�Sta��� E� W� Stark� A proof technique for rely�guarantee properties� In S� N� Mahesh�
wari
 editor
 Proc� �th Conference on the Foundation of Software Technology and

Theoretical Computer Science� Lecture Notes in Computer Science ��

 pages
�������
 �����

�St���� K� St�len� A method for the development of totally correct shared�state parallel
programs� In J� C� M� Baeten and J� F� Groote
 editors
 Proc� CONCUR
���
Lecture Notes in Computer Science ��	
 pages �������
 �����

�Zwi��� J� Zwiers� Compositionality� Concurrency and Partial Correctness� Proof The�

ories for Networks of Processes and Their Relationship
 volume ��� of Lecture
Notes in Computer Science� �����

Speci�cation and Re�nement ��

A� Proofs

The object of this appendix is to give proofs for claims made elsewhere in the
paper�

A��� Proof of Theorem �

The soundness proofs for Rules � � � are trivial� The soundness of Rules � and �
follow from Lemmas � and 	�

Lemma �� If

A�i�	 adm��x � Y �� A��i� x��� ���

A�i�	 A��i� hi�� �	�

A�i�
 A��i� y�
 C��i� y� o� y�	 C�i� o� y�� ���

A�i�
 A��i� x�
 C��i� x� o� y�	 A��i� y�� ���

then

�A�C�� � �A�� C��� ���

Proof� Assume that � � � hold� and that f � i� o and y are such that

f � �� �A�� C�� ��� ���

A�i�
 � f�i� � �o� y�� ���

The monotonicity of f implies that there are chains �o� �y such that

��o�� �y��
def
� �hi� hi�� ���

��oj � �yj�
def
� f�i� �yj��� if j � �� �
�

Kleene�s theorem �Kle�	� implies

t��o� �y� � �o� y�� ��
�

Assume for an arbitrary j � �

A��i� �yj�� ����

�� ��
 and �� imply

C��i� �yj � �oj��� �yj���� ��	�

�� �� �� and �	 imply

A��i� �yj����

Thus� for all j � �

A��i� �yj�	 A��i� �yj���� ����

	� �� �� and induction on j imply for all j � �

A��i� �yj�� ����

�� �� �
 and �� imply

A��i� y�� ����

�� K� St�len
 F� Dederichs and R� Weber

�� � and �� imply

C��i� y� o� y�� ����

�� �� �� and �� imply

C�i� o� y��

Thus� it has been shown that

A�i�
 � f�i� � �o� y�	 C�i� o� y�� ����

�� and the way f � i� o and y were chosen imply ��

Lemma �� If

A�i� r�	 adm��x � X�� A��i� x� r�� � adm��y � Y �� A��y� r� i��� ����

A�i� r�	 A��i� hi� r� � A��hi� r� i�� ��
�

A�i� r�
 A��i� x� r�
 A��y� r� i�
 C��i� x� o� y�
 C��y� r� x� s�	

C�i� r� o� y� x� s�� �	
�

A�i� r�
 A��i� x� r�
 C��i� x� o� y�	 A��y� r� i�� �	��

A�i� r�
 A��y� r� i�
 C��y� r� x� s�	 A��i� x� r�� �		�

then

�A�C�� ��r � R�� A�� C��� ��i � I�� A�� C��� �	��

Proof� Assume that �� � 		 hold� and that f�� f�� i� r� o� y� x and s are such that

f� � �� ��r � R�� A�� C�� ��� �	��

f� � �� ��i � I�� A�� C�� ��� �	��

A�i� r�
 f� � f��i� r� � �o� y� x� s�� �	��

The monotonicity of f� and f� implies that there are chains �o� �y� �x and �s such
that

��o�� �y�� �x�� �s��
def
� �hi� hi� hi� hi�� �	��

��oj � �yj � �xj � �sj�
def
� f��i� �xj��� k f���yj��� r� if j � �� �	��

Kleene�s theorem implies

t��o� �y� �x� �s� � �o� y� x� s�� �	
�

Assume for an arbitrary j � �

A��i� �xj � r�� ��
�

	�� 	�� 	� and �
 imply

C��i� �xj � �oj��� �yj���� ����

	�� 	�� �
 and �� imply

A���yj��� r� i��

Thus� for all j � �

A��i� �xj � r�	 A���yj��� r� i�� ��	�

Speci�cation and Re�nement ��

By a similar argument it follows that for all j � �

A���yj � r� i�	 A��i� �xj��� r�� ����

�
� 	�� �	� �� and induction on j imply that for all j � �

�k� k � j
 A��i� �xk� r�
 �k� k � j
A���yk� r� i�� ����

Assume

adm��x � X�� A��i� x� r��� ����

	
� �� and �� imply

A��i� x� r�� ����

	�� 	� and �� imply

C��i� x� o� y�� ����

	�� 	�� �� and �� imply

A��y� r� i�� ����

	�� 	� and �� imply

C��y� r� x� s�� ��
�

	
� 	�� ��� ��� �� and �
 imply

C�i� r� o� y� x� s�� ��
�

Assume

adm��y � Y �� A��y� r� i��� ����

By an argument similar to the one above� �
 may again be deduced�
Since �� and 	� imply that either �� or �� hold� it has been shown that

A�i� r�
 f� � f��i� r� � �o� y� x� s�	 C�i� r� o� y� x� s�� ��	�

�	 and the way f�� f�� i� r� o� y� x and s were chosen imply 	��

A��� Proof of Theorem �

Follows straightforwardly from Lemmas � � ��

Lemma �� If

f� � f� � �� �A�C� ��� ����

then there are A�� A�� C� and C� such that

f� � �� �A�� C�� ��� ����

f� � �� �A�� C�� ��� ����

A�i�	 A��i�� ����

A�i�
 C��i� x�	 A��x�� ����

A�i�
 C��i� x�
 C��x� o�	 C�i� o�� ����

�� K� St�len
 F� Dederichs and R� Weber

Proof� Assume ��� Let

A��i�
def
� true�

A��x�
def
� true�

C��i� x�
def
� f��i� � x�

C��x� o�
def
� f��x� � o�

It follows trivially that ����� hold�

Lemma �� If

f� k f� � �� �A�C� ��� ��
�

then there are A�� A�� C� and C� such that

f� � �� �A�� C�� ��� ��
�

f� � �� �A�� C�� ��� ����

A�i� r�	 A��i�
 A��r�� ��	�

A�i� r�
 C��i� o�
 C��r� s�	 C�i� r� o� s�� ����

Proof� Assume �
� Let

A��i�
def
� true�

A��r�
def
� true�

C��i� o�
def
� f��i� � o�

C��r� s�
def
� f��r� � s�

It follows trivially that �
��� hold�

Lemma 	� If

� f � �� �A�C� ��� ����

then there are A� and C� such that

f � �� �A�� C�� ��� ����

A�i�	 adm��x � Y �� A��i� x��� ����

A�i�	 A��i� hi�� ����

A�i�
 A��i� y�
 C��i� y� o� y�	 C�i� o� y�� ����

A�i�
 A��i� x�
 C��i� x� o� y�	 A��i� y�� ��
�

Proof� Assume ��� Let

A��i� x�
def
� ��j � N�Kj�i� x�� � ���y � Ch�Y ���

x � t�y

j � N�Kj�i� �yj���

K��i� x�
def
� x � hi�

Kj�i� x�
def
� �x� � Y �� �o � O� �Kj���i� x

��
 f�i� x�� � �o� x� if j � ��

Speci�cation and Re�nement ��

C��i� x� o� y�
def
� f�i� x� � �o� y��

Basically� Kj�i� x� characterizes the j�th element x of the Kleene�chain for the
function f and the given input i� This means that �i� x� satis�es A� i� x is an
element of the Kleene�chain or its least upper bound for the input i� �� holds
trivially� �� follows from the second disjunct of A��s de�nition� while �� is a direct
consequence of the de�nition of K�� To prove ��� observe that the antecedent of
�� is equivalent to

A�i�
 A��i� y�
 f�i� y� � �o� y�� ��
�

Since A� characterizes the Kleene�chain or its least upper bound for a given
input i� �
 implies

A�i�
 A��i� y�
 � f�i� � �o� y�� ����

�� implies

A�i�
 � f�i� � �o� y�	 C�i� o� y��

Thus �� holds� To prove �
� let i� x� o and y be such that

A�i�
 A��i� x�
 C��i� x� o� y�� ��	�

�	 implies

A�i�
 A��i� x�
 f�i� x� � �o� y�� ����

It follows from the de�nition of A� that there are two cases to consider� If x is
the least upper bound of the Kleene�chain for the input i� it follows that x � y�
in which case �� implies

A��i� y��

On the other hand� if x is an element of the Kleene�chain for the input i� then
there is a j � � such that

Kj�i� x�� ����

�� and �� imply

Kj���i� y�� ����

�� implies

A��i� y�� ����

This proves �
�

Lemma
� If

f� � f� � �� �A�C� �� ����

then there are A�� A�� C� and C� such that

f� � �� ��r � R�� A�� C�� ��� ����

f� � �� ��i � I�� A�� C�� ��� ��
�

A�i� r�	 adm��x � X�� A��i� x� r�� � adm��y � Y �� A��y� r� i��� ��
�

A�i� r�	 A��i� hi� r� � A��hi� r� i�� ����

�
 K� St�len
 F� Dederichs and R� Weber

A�i� r�
 A��i� x� r�
 A��y� r� i�
 C��i� x� o� y�
 C��y� r� x� s�	

C�i� r� o� y� x� s�� ��	�

A�i� r�
 A��i� x� r�
 C��i� x� o� y�	 A��y� r� i�� ����

A�i� r�
 A��y� r� i�
 C��y� r� x� s�	 A��i� x� r�� ����

Proof� Let

A��i� x� r�
def
� ��j � N� �y � Y ��Kj�i� r� x� y�� �

���x � Ch�X��� ��y � Ch�Y ��� x � t�x

j � N�Kj�i� r� �xj � �yj���

A��y� r� i�
def
� ��j � N� �x � X��Kj�i� r� x� y�� �

���x � Ch�X��� ��y � Ch�Y ��� y � t�y

j � N�Kj�i� r� �xj � �yj���

K��i� r� x� y�
def
� x � hi
 y � hi�

Kj�i� r� x� y�
def
� �x� � X�� �y� � Y �� �o � O� � �s � S��

Kj���i� r� x
�� y��
 f��i� x

�� � �o� y�
 f��y
�� r� � �x� s��

C��i� x� o� y�
def
� f��i� x� � �o� y��

C��y� r� x� s�
def
� f��y� r� � �x� s��

����� can now be deduced from �� by an argument similar to that of Lemma
��

A��� Proof of Theorem �

The soundness of Rules
 and �
 follows trivially� The soundness of Rules �����
follows easily from Lemma � and the soundness of the corresponding rules for
simple speci�cations�

A��� Proof of Theorem �

Since Rule �� allows us to extend the set of hypotheses� we may assume that there
is an injective mapping m from �� F �� to the set of hypotheseses characterized by
H such that for all f � �� F ��

H�m�f��
 f � �� �Am�f	� Cm�f	� ���

Under this assumption Lemmas ��� can be used to construct sets of simple
speci�cations� i�e� general speci�cations� in the same way as they were used to
construct simple speci�cations in the proof of Theorem 	�

