
Java Definite Assignment in Isabelle/HOL?

Norbert Schirmer

Technische Universität München
Department of Informatics
80290 Munich, Germany

Email: schirmer@in.tum.de

Abstract. In Java the compiler guarantees that each local variable is
initialised when we attempt to access it at runtime. This prohibits access
to uninitialised memory during execution and is a key ingredient for type
safety. We have formalised the definite assignment analysis of the Java
compiler in the theorem prover Isabelle/HOL and proved it correct.

1 Motivation

One potential violation of type safety during runtime is caused by uninitialised
variables. An uninitialised piece of memory may contain an arbitrary sequence
of bits. If we regard them as proper values and read them, we can easily produce
some unpredictable behaviour. Think of an uninitialised object variable. The bit
sequence is interpreted as a reference to an object in main memory and since
the variable is not initialised we may read or write to an arbitrary memory
location. In Java special care is taken that access to uninitialised memory does
not occur. If an object is created, the fields of the object are initialised with
default values. For example the default value for an object reference is null.
For local variables the compiler and bytecode-verifier have to ensure that all
variables have a definitely assigned value when any access to its value occurs. The
terminology “Definite Assignment” stems from the Java Language Specification
(JLS)[1]. The definite assignment analysis of the compiler is basically a data-flow
analysis, which ensures that there is an assignment to a local variable on every
possible execution path before a read of the variable content. The analysis is
similar to a live variable analysis or “Definition-Use” chains [3].
The work presented in this paper is part of a comprehensive research effort aim-
ing at formalising and verifying key aspects of the Java programming language.
In particular we have a type system and an operational semantics (with a proof
of type soundness) and an axiomatic semantics (with a proof of its equivalence
to the operational semantics) for a large subset of Java [5,6]. All these formal-
isations and proofs have been carried out in the theorem prover Isabelle/HOL
[4]. The definite assignment analysis was not yet part of our type system. As far
as we know, the only formal model of Java source language which also treats
definite assignment is the work of Stärk et al. [7]. In that work the analysis is
? This research is funded by the EU project VerifiCard



described with data flow equations and the proofs are carried out by pencil and
paper. We present the analysis as type systems. The underlying data flow anal-
ysis does not require a fixed point iteration. Therefore the presentation as type
systems appears to be easier to understand as the data flow equations. Moreover
our model directly implies an implementation of the analysis and provides the
first machine checked formalisation. The complete sources and documentation
are available online [9].

2 The definite assignment analysis

In this section we introduce a formal model of the definite assignment analysis.
Due to space limitations we cannot explain all details. We only focus on the
analysis of a few Java language constructs. Our aim is to illustrate how we
analyse the while loop with all its complications, like constant conditions and
breaks.
We define a relation written as B »t» A where B is the set of initialised (or
definitely assigned) local variable before evaluation of the Java term t and A
is the set of definite assigned variables after its evaluation. For example for an
assignment y = x the relation, {x} »y = x» {x,y} is a valid analysis result. If
we start in a state where the variable x was already assigned a value, then the
assignment to y will be legal and we will end up in a state where both x and
y are assigned. On the one hand the analysis will ensure that the variables we
read from (like x) have an assigned value and on the other hand the analysis will
calculate the set of variables that will be assigned after execution of the term.
Let us look at a first example, taken from the JLS:

int k;
if (v > 0 && (k = System.in.read()) >= 0)

System.out.println(k);

In this example the compiler recognises that k has been definitely assigned a
value before it is printed out. Since the print method is only executed if the
condition has evaluated to True, both sides of the conjunction && must have
been evaluated. Therefore the assignment to variable k was evaluated. Note
that the operator && only evaluates the right expression if the left one evalu-
ated to True. The definite assignment analysis propagates knowledge about the
outcome of a condition while analysing a branching statement. We introduce
an auxiliary function assigns-if that calculates the set of assigned variables of a
condition depending on the current branch. The semantical intuition of the term
assigns-if b e is: “What are the assigned variables if the expression e evaluates
to the boolean value b”. In the example the function will yield the following
results for the condition evaluating to True or False:

assigns-if True (v > 0 && (k = System.in.read()) >= 0) = {k}
assigns-if False (v > 0 && (k = System.in.read()) >= 0) = {}

2



The next example considers a while loop:

int k;
while (true) {

k = n;
if (k >= 5) break;

}
System.out.println(k);

The definite assignment rules will allow to print out k in this example, too.
Since the condition of the while statement is constantly true the only way
out of the loop is through the break in the body of the loop. For the analysis
this means, that we have to take constant boolean conditions into account and
take care of normal and of abrupt completion due to break. The constant value
propagation in boolean conditions, to statically decide which path of evaluation
will be chosen, is very basic. Only boolean literals are propagated over boolean
connectives.
To properly analyse the while loop we need to calculate the sets of definitely
assigned variables in the loop body, for both normal and break completion. Since
while and break may also carry labels to indicate which while a nested break
will complete, we have to analyse the definitely assigned variables for each of
those labels. In our generalised model every break carries a label. In an analysis
B »t» A the output A is not just a set of assigned variables, but a pair of
analysis results for normal and break completion: starting in a state where the
local variables in set B are definitely assigned, if evaluation of term t completes
normally, then all variables in set nrm A are definitely assigned; if evaluation
of term t completes abruptly because of a break with label l, then all variables
in set (brk A) l are definitely assigned. The analysis is designed to yield a safe
approximation of the assigned variables at runtime. So whenever the analysis
regards a variable as initialised, the variable will actually be initialised at the
corresponding point of execution in any program run. The rules that set up the
relation are defined inductively, for most terms of the language there is exactly
one rule.
First we look at sequential composition written as c1;; c2 in our setting.

B »〈c1〉» C 1 nrm C 1 »〈c2〉» C 2

nrm A = nrm C 2 brk A = (brk C 1) ⇒∩ (brk C 2)
B »〈c1;; c2〉» A

(Comp)

The sequential composition of two statements c1 and c2 completes normally
if both statements complete normally and completes abruptly if either of the
statements completes abruptly. The second statement c2 is only executed if the
first one has completed normally. Therefore we feed the result nrm C 1 of the
first part of the analysis into the second part. The result for normal completion
of the second statement nrm C 2 is also the result for normal completion of the
combined statement, since we know that both statements must have completed

3



normally. For abrupt completion either the first or the second statement com-
pleted abruptly. For each label we intersect the results of both paths. That is
what the infix function ⇒∩ is for:

def A ⇒∩ B ≡ λ l . A l ∩ B l

B »〈e〉» E
(B ∪ assigns-if True e) »〈c1〉» C 1

(B ∪ assigns-if False e) »〈c2〉» C 2

nrm A = nrm C 1 ∩ nrm C 2 brk A = brk C 1 ⇒∩ brk C 2

B »〈If (e) c1 Else c2〉» A
(If)

To analyse the if statement, we first ensure that the condition e passes the
definite assignment analysis. By that we ensure that the variable accesses in e
are valid, although we do not further use the output E of this analysis. We can
gain a more precise approximation as input for the two conditional branches. If
evaluation continues with the first branch c1 we know that the condition e must
have evaluated to True. In the other case, when evaluation continues with c2,
we know that the condition e must have been False. This extra knowledge about
the value of the condition is exploited by the function assigns-if. The results C 1

and C 2 of the analysis of the two possible execution paths are intersected to
gain the overall result of the if statement. Since special care of constant values
is taken by assigns-if, this intersection also works fine for constant branching
conditions as the following example will illustrate:

int k;
if (true) {k = 5;} else {...}
System.out.println(k);

For this code fragment we get assigns-if True true = {} and assigns-if False
true = UNIV, where UNIV is the universal set in Isabelle. We can safely regard
all variables to have an assigned value in case the condition will evaluate to
false since this will never happen. The else block is unreachable. This leads
to nrm C 1 = {k} and nrm C 2 = UNIV. Therefore, intersecting these two sets
will leave us with nrm A = {k}. The same idea carries over to the break map
as well. If we are in a path of execution that will never be reached, the set of
assigned variables will be UNIV. When we then encounter a break with label
l this set will be inserted in the break map at position l (see rule Jmp). The
lifted intersection ⇒∩ will work for the break map in the same manner as the
ordinary intersection ∩ for the normal sets.

B »〈c〉» C
nrm A = nrm C ∩ (brk C ) l brk A = rmlab l (brk C )

B »〈l · c〉» A
(Lab)

If a break to a label l occurs inside of a labelled statement l · c, which carries the
same label, the break will be absorbed and the labelled statement will complete

4



normally. The set of variables that are definitely assigned for normal completion
then is given by the intersection of the variables for both possible paths out of
c: for normal completion and for abrupt completion because of a break with
label l. Since the labelled statement l · c absorbs a break to l it will itself never
complete with such a break. Therefore we reset the entry for the label l in brk
C with the function rmlab:

def rmlab l A ≡ λ k . if k=l then UNIV else A k

nrm A = UNIV
brk A = (case jump of

Break l ⇒ λ k . if k=l then B else UNIV
| Cont l ⇒ λ k . UNIV
| Ret ⇒ λ k . UNIV )

B »〈Jmp jump〉» A
(Jmp)

The jump statements in our model combines all non exceptional abrupt comple-
tions: break, continue and return. Execution of a jump will never complete
normally. Therefore nrm A = UNIV. Note that this implies that the definite
assignment analysis will never complain about any code in sequence after the
jump since this code is unreachable. The break map is more interesting. Since
definite assignment only cares about breaks we can take the trivial map λ k .
UNIV for continue and return. In case of a break with label l we take the
currently assigned variables B as entry for label l. For other labels we again use
the trivial map.

B »〈e〉» E
(B ∪ assigns-if True e) »〈c〉» C

nrm A = nrm C ∩ (B ∪ assigns-if False e) brk A = brk C
B »〈l · While(e) c〉» A

(Loop)

First of all the loop in our model of Java only handles continue jumps itself. A
break inside the loop is handled by an enclosing label statement. A labelled loop
in Java like l: while (...) ... is modelled by l · (l · While(. . .) . . .), where the
inner label is directly part of the while (to handle continue l) and the outer
one is an additional label statement (to handle break l). Splitting up these two
concepts unclutters the definite assignment analysis for the loop statement and
makes the basic ideas clearer. They are the same as for the if statement. The
loop body is analysed with the extra knowledge that the condition must have
evaluated to True. The assigned variables for normal completion are given by
the intersection of the two possible execution paths, one if we enter the body
at least once and the second one if we do not enter the body at all (when the
branching condition e evaluates to False). The analysis for constant conditions
like while (true) works in the same fashion as explained for the if statement.
Now let us look at the break map. Since evaluation of the branching condition
will never end up in a break we can directly take the break map from the

5



analysis of the loop body. Let me illustrate how the rules Lab, Jmp and Loop
work together to break out of a labelled while:

int j;
l: { while (true) {

j = 5;
break l;

}
}
System.out.println(j);

nrm brk
{j} λ k . UNIV
UNIV λ k . if k=l then {j} else UNIV
UNIV λ k . if k=l then {j} else UNIV
{j} λ k . UNIV

After the assignment j = 5 the set of definitely assigned variables that will be
the input for the analysis of break l will be {j}. So applying the Jmp rule
will yield UNIV for normal completion and (λ k . if k=l then {j} else UNIV )
for break completion. We will refer to this intermediate result as C. Since the
condition of the while statement is trivially true this will also be the result of
the whole loop (since assigns-if False true = UNIV ). Then the Lab rule has
to be considered. For normal completion it will calculate nrm C ∩ (brk C ) l =
UNIV ∩ {j} = {j}. For completion because of a break it will yield rmlab l (brk
C ) = λ k . UNIV which simply expresses that no break will actually leave the
label statement.
Since the break map is important for the analysis of the while statement we
want to take a look at how the break map is calculated for the finally statement
c1 Finally c2. Even if a break occurs in c1 the block c2 will be executed and
can assign some variables. We take this into account in the analysis.

B »〈c1〉» C 1 B »〈c2〉» C 2

nrm A = nrm C 1 ∪ nrm C 2

brk A = ((brk C 1) ⇒∪∀ (nrm C 2)) ⇒∩ (brk C 2)
B »〈c1 Finally c2〉» A

(Fin)

Regardless of how the first statement c1 will complete the finally block c2 will
be executed. If an abruption occurs in either statement it is (re-)raised after the
completion of finally. If both statements terminate abruptly the second one
takes precedence.
If the whole statement completes normally we can conclude that both c1 and
c2 were executed and completed normally. Therefore we take the union of both
analysis results for normal completion. In case the whole statement completes
abruptly because of a break we regard two possibilities: Does c2 complete nor-
mally or abruptly with a break. First if c2 completes normally then the break
has already occurred in the first statement c1. The assigned variables for normal
completion of c2 can be added to the break map of C 1. We augment every set in
the break map of C 1 with the set for normal completion of C 2. This is expressed
in ((brk C 1) ⇒∪∀ (nrm C 2)) with the auxiliary operator ⇒∪∀ :

def A ⇒∪∀ B ≡ λ k . A k ∪ B

6



Secondly if c2 completes abruptly with a break this will show up in the overall
result, because the abnormality of the second statement takes precedence. Stat-
ically we do not know whether the first statement c1 has completed normally or
abruptly. That is why we start the analysis of c2 with the set B assigned before
the whole finally statement and only regard (brk C 2) to be definitely assigned
if c2 completes with a break. The overall result of the break analysis for the
finally statement is given by the lifted intersection of these two main paths.

3 Safe approximation

The definite assignment analysis has to be a safe approximation. This means that
if the analysis will infer a variable as definitely assigned at a certain program
point, then this variable will actually be assigned at that point during every
execution of the program. This property is a key ingredient for type safety. Only
if we know for sure that a local variable has an assigned value we can safely
read this value and trust the type of the value. We have adapted the type safety
proof of [5] which did not yet take definite assignment into account. To ensure
type safety there, all local variables were initialised by the semantics itself. To
reestablish type safety after removing this default initialisation, the key property
about definite assignment we need is: the approximation of the assigned variables
that the analysis yields is a subset of the variables that will actually be assigned
in a program run:

theorem da-safe-approx :
assumes eval : prg Env`s0 −t�→ (v ,s1)
assumes wt : Env`t ::T
assumes da: dom (locals (store s0)) »t» A
assumes wf : wf-prog (prg Env)
shows (normal s1 −→ nrm A ⊆ dom (locals (store s1))) ∧

(∀ l . abrupt s1 = Some (Jump (Break l)) ∧ normal s0

−→ brk A l ⊆ dom (locals (store s1)))

Let me first explain the assumptions of the theorem. With eval we look at eval-
uation of a Java term t. We start in the initial state s0 and evaluate the term t
to the result value v and the final state s1. The semantics is an operational big
step semantics. Java statements and expressions are generalised to terms in this
semantics. Statements evaluate to a dummy result. With wt we assume that the
term t is welltyped in the typing environment Env. The program component of
the typing environment prg Env describes the class and interface hierarchy and
is also a parameter of the evaluation relation. The term must have passed the
definite assignment analysis: dom (locals (store s0)) »t» A. The state is decom-
posed into an abrupt- and a store-component. The abrupt-component signals all
kinds of possible reasons for an abrupt completion (exceptions, break, continue
and return). The store-component contains the contents of the heap and the lo-
cal variables. The already assigned variables in the current state s0 are the input
variables for the definite assignment analysis. Formally we can get hold of the

7



already assigned variables by taking the domain (dom) of the local variable map
locals of the store in state s0. Finally, assumption wf constrains the programs
under consideration. We only look at wellformed programs. The wellformedness
predicate encapsulates a lot of context conditions that we usually have in mind
for a Java program. Particularly interesting for the definite assignment analysis,
wellformedness ensures that all methods and static initialisers have been anal-
ysed and are welltyped. The conclusion of the theorem summarises the different
aspects of definite assignment analysis that we had in mind during the design
of the analysis. The main structure is a conjunction of the two constituents for
normal and break completion:

– If evaluation completes normally (normal s1) then the analysis result for
normal completion nrm A will be a subset of the actually assigned local
variables dom (locals (store s1)).

– If evaluation starts in a normal state (normal s0) and completes abruptly
because of a break to label l (abrupt s1 = Some (Jump (Break l))), the
analysis result brk A l for the corresponding break set has to be a subset of
the actually assigned local variables dom (locals (store s1)).

The break part of the conclusion carries the precondition that the evaluation
started in a normal state. This has to be motivated by our evaluation model
used to define the operational semantics and how abrupt completion is handled.
If the initial state is not normal, then abrupt completion is already signalled in
the initial state and therefore the evaluation will just be skipped. The theorem
is proved by induction on the evaluation relation.

4 Conclusion

In this paper we have formalised the definite assignment analysis of Java in the
theorem prover Isabelle/HOL and proved that the analysis yields a safe approxi-
mation of the assigned variables at runtime. This is a key property to ensure type
safe execution of a Java program. Our Java formalisation [5,6] was sufficiently
mature to let us add and analyse the new concept. This again shows, that it
is feasible to investigate aspects of a realistic programming language completely
formally in a theorem prover. For future research it would be interesting to inves-
tigate how the source language model for definite assignment fits together with
the analysis of the bytecode-verifier. The link between the source and the byte-
code typesystem has already been studied [7,8]. Stärk et al. [7] have reported on
some discrepancy of the definite assignment analysis of the JLS and their model
of bytecode-verification. However, the bytecode-verifier presented by Klein [2]
should be able to deal with it.

Acknowledgements I am grateful to Gerwin Klein, Martin Strecker and the
anonymous referees for comments on this paper.

8



References

1. James Gosling, Bill Joy, Guy L. Steele Jr., and Gilad Bracha. The Java Language
Specification, Second Edition. Addison Wesley, 2000.

2. Gerwin Klein. Verified Java Bytecode Verification. PhD thesis, Institut für Infor-
matik, Technische Universität München, 2003.

3. Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of Program
Analysis. Springer, 1999.

4. Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A
Proof Assistant for Higher-Order Logic. Springer, 2002. LNCS 2283.

5. David von Oheimb. Analyzing Java in Isabelle/HOL: Formalization, Type Safety
and Hoare Logic. PhD thesis, Technische Universität München, 2001.

6. Norbert Schirmer. Analysing the Java Package/Access Concepts in Isabelle/HOL.
Technical Report NIII-R0204, Computing Science Department, University of Ni-
jmegen, 2002.

7. Robert Stärk, Joachim Schmid, and Egon Börger. Java and the Java Virtual Ma-
chine: Definition, Verification, Validation. Springer, 2001.

8. Martin Strecker. Investigating type-certifying compilation with Isabelle. In
Proc. Conference on Logic for Programming, Artificial Intelligence, and Reason-
ing (LPAR), volume 2514 of Lecture Notes in Computer Science. Springer Verlag,
2002.

9. Verificard at Munich. Available from http://isabelle.in.tum.de/verificard.

9


