Business Process Modeling
in Software Development*

Veronika Thurner
Department of Computer Science, Technical University of Munich

Arcisstr. 21, 80290 Munich, Germany
email: thurner@informatik.tu-muenchen.de

Abstract

This paper is structured into two parts, dealing with notational and methodological
aspects, respectively. The first part introduces a description technique for business
processes which provides both an intuitive, graphical notation and a textual syntax.
The definition of semantics of this description technique is related to a mathematical
system model. Using this mathematical system model as a common formal basis,
the relation between business process model and other models employed in software
development can be precisely defined. In the second part, a business process driven
method of software development is outlined, as well as a systematic approach to business
process reengineering. As software development and business process reengineering
are closely related and often occur together in practice, these two approaches will be
integrated into a method which systematically combines both techniques.

1 Motivation and State of the Art

In many software engineering methods, approaches to requirements engineering
involve a detailed modeling of different aspects such as system structure, data
or behavior. These models are an essential means of communication between
system developers and expert users. Furthermore, they are the basis from
which system design and implementation are derived in later stages of the
development process.

As the quality of requirements specifications is a decisive factor for software
quality and correction costs [Dav93b], much effort is usually spent on system
modeling in the early stages of the software development process. However, the
models developed quite often only aim at providing the system developer with
a better understanding of the system to be developed, rather than producing a
set of unambiguous, consistent and semantically integrated documents which
support an (at least) half-automated derivation of subsequent results in the
development process, such as design or implementation documents. Thus, the
high effort spent on modeling is often not used effectively.

Therefore, in order to support system development in an optimal way, descrip-
tion techniques for models of specific system views must be intuitively under-
standable on the one hand. On the other hand, description techniques must
be precise enough to ensure an unambiguous and consistent description of the
system. Consequently, a precise definition of its semantics should be provided
for each description technique that is employed for system modeling. Further-
more, a semantical basis common to all the description techniques involved

*This work was carried out within the Project SYsLAB, sponsored by Siemens-Nixdorf and the German
Research Community (DFG) under the Leibniz program.

has to be defined, which allows the precise definition of the interdependencies
between the different models and system views.

“Classical” software development methods, such as the structural approach
SSADM [CCT90], or the object-oriented approaches OOA/OOD [Boo94],
OMT [RBP*91] and OOSE [Jac92], provide powerful, usually graphical de-
scription techniques. However, these are not semantically well founded. As a
consequence, misunderstandings due to different interpretation of notational
elements occur. Furthermore, models are ambiguous, so that inconsistencies
are hard to detect. Due to the insufficient definition of semantics, sophisticated
services such as consistency checks cannot be automated, so that tool support
usually is limited to graphical editing tools.

Recent software development methods attempt to provide some semantic foun-
dation to their description techniques, quite often by using a metamodel, as
was done e.g. for UML [BJR96]. Metamodels are usually documented as some
sort of class diagram or ER diagram. They focus on statical system aspects
but do not possess an interpretation that models dynamic aspects of system
behavior appropriately. Thus metamodels are no sufficient definition of formal
semantics for description techniques. The semantical adequacy of the meta-
model provided for UML is discussed in more detail in [BHH].

In the SySLAB project, we use a mathematical system model ([RKB95],
[GRK96]) which is based on stream processing functions [BDD*93] as a foun-
dation for formalizing and integrating the various description techniques used
in SYSLAB for specifying different system views ([Het96], [GKRB96], [GR96]).

The doctoral thesis corresponding to this paper will cover the definition of an
adequate description technique for business process modeling, which is both
intuitively understandable and semantically well defined. The definition of
semantics and the relation to other description techniques is based on the
mathematical system model of SysLAB [GRK96].

Furthermore, methodological aspects of business process modeling in system
development are treated. In the business reengineering community, the intro-
duction of adequate information technology is seen as one of the key enablers of
innovation and radical improvements within an enterprise (for example, con-
fer [Dav93al]). Thus, business reengineering very rarely takes place without
dealing with software development and customizing to a certain extent.

When software is developed for supporting human users in the execution of
some defined tasks, usually an attempt is made to engage the specific advan-
tages of information technology effectively, rather than mereley automating
existing (often paper oriented) execution mechanisms. At the introduction
of the new software system to the respective business organization, execution
mechanisms and, more globally, business processes are adapted in order to
use the new system support effectively. Thus, business process reengineering
and software development are closely related and often occur hand in hand.
However, although expertise on either one of the two domains is abundant in
literature, both approaches have not yet been integrated in a satisfactory way.

We present a business process oriented approach to software development,
as well as a method for business process reengineering, which is based on
the experience gained in business process modeling and reengineering projects
in corporation with Siemens-Nixdorf AG. The systematic integration of both
methods is currently under development.

2 Description Technique for Business Process Models

After an informal introduction of basic concepts, we present a graphical and a
corresponding textual description technique intuitively by way of example.

2.1 Abstract Syntax

As key concepts of a business process we use
e process / acitivity,
e message, and
e event, which is defined as a tripel of message, sender and receiver activity.

Using the intermediate concepts of role (or logical actor) and logical channel
(defined as a pair of sender and receiver activities), we relate the key concepts
to other notions fundamental in system modeling, such as component, object,
data type, physical channel, and physical actor. Helpful for structuring process
diagrams, but not formalized here, are the concepts of task and phase.

2.1.1 Informal Definition of Process Concepts

An activity defines the creation of some resulting output out of incoming mes-
sages. A process is an activity that is further refined. We call an object that
is passed from one activity to another a message. Fach sending and receiving
of a message is an event. It defines the causal relationship between a pair of
activities due to the passing of a message, thus implying a partial order over
the set of activities of a process.

Via the concept of a role or logical actor, we flexibly relate activities and phys-
ical actors, which may be human beings (or organizational units), hardware,
software systems, or a combination thereof. Activities are associated with roles
in n:1, roles with physical actors in m:n relationships. Messages are passed via
logical communication channels, connecting the sending and receiving activity.
When physical actors are assigned (via roles) to activities later on in the mod-
eling process, the logical channels are mapped to physical channels connecting
the system’s physical actors. Each business process performs a specific task
that helps to achieve some of the system’s business goals. Phases structure a
process according to milestones and significant intermediate results.

2.1.2 A Mathematical Notion of Processes

Formally, we define a process as a triple p = (A, M, e) where
e A is a set of processes or activities,
e M is a set of messages, and

e C M x Ax A is the event relation (which we require to be acyclic),
defining the set of events that occur in process p.

From the event relation e, we derive a partial ordering relation < over the set
of activities A in a process p according to

ar < ay, < a,=ay V
3mEM,aEA a1 S a N (maaa a?) ce

for any a;,as € A. Reflexivity and transitivity are ensured by the definition
of <. Antisymmetry follows from our restriction of process p to be acyclic.

A set R of roles is related to the set of activities A via the relation o C A x R.
We restrict o to hold (a,71) € 0 A (a,72) € 0 = 1 =1y for all a € A and
r1,r2 € R, so that each activity is associated with only a single role.

2.2 Concrete Graphical Syntax

As graphic representation of business processes, we use directed acyclic data
flow nets, derived from data flow diagrams introduced in [DeM79]. The expres-
siveness of this notation is sufficiently powerful, since we restrict our business
process model to the description of ezemplaric system behavior (cf. section 4).

amount L(:;eve_ cash
,,,,,,,,,,,,,,,, cash_storage o __
| enter_ cad check O | request_ | amount | Process_ S0 —L, hand_out_ | pick_up_ 1
| card_and_pin ! authorization m»‘Lvyighg[ayql __——» request cust id money ﬁﬁ cash ____ !
chaﬁoﬁmﬁerf o JT bank_autom. | customer | bank_autom. - I bank_autom. ! customer
********* decrease_ oot
account
arount| database ok

Figure 1: Process diagram for withdrawing money from a teller machine

Figures 1 and 2 show example process diagrams. Rectangular nodes represent
activities or processes, where solid surrounding lines denote internal activities,
dashed lines external ones. Decision activities symbolize their possible out-
comes by a set of fields annotated with conditions (see verify_identification in
Figure 2). A small square in a node’s upper right corner indicates the ac-
tivity’s further refinement. Roles are denoted at the bottom of an activity
symbol. Arrows annotated with a type symbolize data flow.

t_fi 1 reque
ok | PrOmPLIO ot fzgu&&_ g
I withdrawal | —=——"s Withdrawdl | !
P pp—— . bank_autom. ' customer ! !
renter_y | 1 ' cad [request_ id verify_ i?(oA

Lcard_ahd pip ! verification identific. ‘i’—d

| customer | 1 T bank_autom. in database k| .
Seretooee P p gject_ g ! pick_up_ |
-1 card FC o cad !
no bank_autom. ! customer |

where id_ok = J client € database: dlientid=id A client.pin = pin
id_nok= 1§ client € database: clientid=id A client.pin = pin

Figure 2: Refinement of process check_authorization, and its context

Figure 2 shows the refinement of process check_authorization. The neighboring
nodes of the refined process are copied in order to visualize the process context
on the refinement level. They are distinguished by their dashed background.

In the classical notion of data flow nets, an activity as starts processing only
after receiving all its input from all its direct predecessor activities a;,, ..., ay,.
We refer to this interpretation of message passing as end-to-start relationship.

For practical purposes, this interpretation proves to be too restrictive to
be suitable. Therefore, we suggest the more general notion of middle-to-
middle relationship or dependency, where the relation of some ay,ay € A with
Imen (M, aq,a9) € ¢ indicates that at some point of time in the execution of
a1, message m is sent from a; to as. This interpretation does not enforce an
ordering relationship between all the outputs and inputs of two activities.

2.3 Concrete Textual Syntax

Our textual description of business processes is based on black box, glass box
and refinement view. Black box and refinement view together are equally
expressive as the graphical process description, leaving the choice of represen-
tation to the user according to his or her purposes. We complement both by
the glass box view, which documents aspects of an activity’s internal realiza-
tion, such as pre- and postconditions, or any data that was created as output
in some other process, and is to be read or modified by the activity.

We based the definition of our textual syntax for processes and activities on
some ideas that were introduced first in [CAB94] as operation schemes. How-
ever, we extend their concepts and use a formalized notation rather than nat-
ural language. In the following, the textual notation is illustrated on part of
the example process introduced above. A definition of the concrete textual
syntax in EBNF-notation is given in Appendix A.

process model behavior_of_teller_machine = {withdraw_money, retrieve_account_information }

process withdraw_money = {
enter_card_and_pin, check_authorization, request_withdrawal, process_request,
retrieve_cash, decrease_account, hand_out_money, pick_up_cash

}
black box check_authorization = {
type internal
role bank_automaton
input (card, enter_card_and_pin, check_authorization),
(pin, enter_card_and_pin, check_authorization)
output (prompt, check_authorization, request_withdrawal)
}
glass box check_authorization = {
reads customer_record from customer_database
where customer_record.id = input.card.customer_id
changes customer_record.nr_requests from customer_database
where customer_record.id = input.card.customer_id
to customer_record.nr_requests = customer_record.nr_requests + 1
pre
post input.pin = customer_record.pin
where customer_record.id = input.card.customer_id
}

refinement check_authorization = {

subactivities request_verification, verify_identification, prompt_for_withdrawal, eject_card,
pick_up_card

subinput (card, enter_card_and_pin, check_authorization)
= (card, enter_card-and_pin, request_verification),
(pin, enter_card_and_pin, check_authorization)
= (pin, enter_card-and_pin, request_verification)

suboutput (prompt, check_authorization, request_withdrawal)
= (prompt, prompt_for_withdrawal, request_withdrawal)

}

black box verify_identification = {
type internal
role database

out_switch id_ok := 3 client € database : client.id = id A client.pin = pin;
id_nok := B client € database : client.id = id A client.pin = pin

input (id, request_verification, verify_identification),
(pin, request_verification, verify_identification)
output id_ok: (ok, verify_identification, prompt_for_withdrawal);

id_nok: (nok, verify_identification, eject_card)

3 Towards a Formalization of the Description Technique

The semantics of our description technique for business processes will be de-
fined with respect to a mathematical system model, forming the basis for
relating business process descriptions to other concepts of system modeling.

3.1 Mathematical System Model

As described in more detail in [GRK96] and [RKB95], in SYSLAB a system
is seen as a set of hierarchically structured, communicating components. A
component is understood in the object-oriented sense as a unit of data values
(states) and functionality with a published interface and providing some ser-
vice. Communication is realized via a communication medium that transmits
messages among the ports of components.

In the mathematical system model, component behavior is given as a black-
box description. For basic components (i.e. components that are not refined
any further), behavior may in addition be defined in a state-oriented way. As
component types, we distinguish process, role and data components.

3.2 Process and State Transition Diagrams

" prompt_for |
o vfithrawdd |
T . bank_autom.
request_ 1 1 id verify i?(e
| Veerification | _ identific. ?— @
benk dugm, |~ database 1ok —
gect_r 1 |)
tead | oo
o [benk aiom

where id_ok= J client € database: clientid=id A client.pin = pin
id_nok = E client € database: clientid=id /\ client.pin=pin

from._ precondition input output postcondition | to_

state ‘ ‘ ‘ ‘ state

drv client € database : client.id = id, pin ok dviok
id A client.pin = pin

drv H client € database : client.id id, pin nok dvinok
= id A client.pin = pin

Figure 3: Automaton for activity component verify_identification

Depending on the stage of development of our system’s process model, we focus
on different aspects as components. First, each process or activity itself is seen
as a component. Thus a single component is associated with each activity,
providing the service rendered by this activity and encapsulating the activity’s
local data. Figure 3 shows the state oriented view of a single activity.

if

Lotebese il

where id_ok= J dlient € database: dlientid=id A clientpin= pin
id_nok = f§ dlient € database: clientid=id A dlientpin=pin

dviok

‘done’
ok

liingd

from_ precondition input output postcondition to_
state state
start card, pin decp
decp card, pin id, pin id = card.id drv
drv 3 client € database : client.id = id, pin ok dviok
id A client.pin = pin
dviok ok prompt dpw
dpw prompt amount drw
drw amount pr:amount dpru
drw amount cash_id, dprl
pd:amount
dpru pr:amount cash cash_counter’ = drc
cash_counter - amount
dpru cust_id, dprb
pd:amount
dprl pr:amount dprb
dprl cust-id, ok client.deposit’ = dda
pd:amount client.deposit - amount
drc cust_id, drcl
pd:amount
dprb pr:amount cash cash_counter’ = drcl
cash_counter - amount
dprb cust_id, ok client.deposit’ = ddau
pd:amount client.deposit - amount

Figure 4: Automaton with process control states

Then, these basic components are composed to a state oriented view of the
corresponding business process as a whole. Figure 4 shows part of an exam-
ple, where channel identifiers pr = (process_request, retrieve_cash) and pd =
(process_request, decrease_account) are introduced to resolve ambiguities in
the output of message “amount” of activity process_request. From this pro-
cess description, the automata for describing complete system behavior are

derived.
auth_ok book_ok
- booked
rized
instance
not
atho-
ath ok rized
name | precondition | input | output | postcondition
auth_ok 3 client € database : client.id = id id, pin ok 3 client € database : client.id = id A
A client.pin = pin client.pin = pin
auth_nok B client € database : client.id = id id, pin nok B client € database : client.id = id
A client.pin = pin A client.pin = pin
book-ok 3 client € database : client.id = id id, amount ok 3 client € database : client.id = id
A client.deposit’ = client.deposit -
amount

Figure 5: Example automaton for component database

Furthermore, those basic activity components belonging to the same process
instance and the same role are composed to yield a component corresponding
to a role’s behavior in a specific process instance. Figure 5 shows the behavior
of component database in our example process.

3.3 Data and Sorts in the Process Model

In the process model, data occur associated with input and output channels
of components, or as data states of basic components. In both cases, data
are usually typed. Therefore, we associate a sort as described in [Het96] with
every channel of the process model (and thus with the message transmitted by
it), as well as with the data states of basic components.

4 Methodological Aspects

The introduction of new software to an existing business organization should
not only automate existing practices, but rather bring about real improvements
in processing and efficiency. Therefore, system development and business pro-
cess reengineering have to be dealt with hand in hand in a systematic way.
Integrated approaches require the combination of a solid know-how both in
software development and in economics and business process reengineering.

In the following, we introduce a business process driven approach to software
development, as well as a systematic method for business reengineering. The
integration of these techniques is subject of further research.

4.1 Business Processes in Software Development

In the SYsLAB methodology of system development, we employ business pro-
cess modeling for identifying and documenting typical system behavior in a
global, task oriented way. In parallel, we document those data objects that
are relevant and necessary for specifying the process model. Focussing on typ-
ical exemplaric system behavior rather than a generic specification of complete
system behavior helps to keep the process model simple while still expressing
the most important aspects.

Note that at this stage, we do not yet consider how these activities will be
carried out, as a too early focus on established execution mechanisms endangers
the potential for improvements and change that is connected with a systematic
integration of business process reengineering and system development.

Based on the business process model, we derive interface definitions for the
efficient, process oriented support of specific working places. First, we extract
those activities of the process whose roles are associated with the working place
under consideration. From this subset, the activities directly communicating
with the software system define the order, context and functionality of the
system services that will be executed from this specific working place. In
addition, the information that is input to (or output of, respectively) a system
service, is already documented in the process model.

To ensure that the static structure of the system supports the behavior of the
system in an optimal way, we sketch a first design of our system’s component
structure only after gaining a well founded understanding of the typical system
behavior in its global context by developing a first draft of the process model.
As modeling progresses, process model and component structure are developed
and refined iteratively in an integrated way.

When the system’s component structure turns stable in principle, we progress
from the modeling of typical to the more complex and technical modeling
of complete system behavior. As the description technique used for complete
behavior modeling should especially accomodate the needs of the system devel-
oper with regard to expressiveness for generic complete behavior description,
formality and tool support, in SYSLAB we turn to state transition diagrams
[GKRB96] for specifying the complete behavior of system components. As
both description techniques for system behavior are semantically integrated
with respect to the mathematical system model, the information specified in
the business process model is a start-up for the state transition diagrams.

The addition of error handling is an important step in the completion of a
system’s behavior description. Here, we use the previously defined business
processes for schematically detecting possible errors in system behavior. Prime
candidates for detecting errors are the events in a process. For example, a
necessary output event is not issued by an activity within the required time
interval. Or, an illegal output is issued that has to be dealt with by some
exception handling routine to be defined.

State transition diagrams describe complete system behavior on a level of
detail which is already close to implementation. In fact, with an adequate tool
support, code for prototyping can be generated from state transition diagrams.

At different stages in the software development process, the business process
model can be used to check the intermediate results of the development process
on quality and adequacy. For example, the simulated execution of a business
process is employed to verify the adequacy of an interface prototype. Similarly,
a business process specified during requirements engineering as desired system
behavior is used as a testcase in the integration test of the software system.

4.2 Overview over the Business Reengineering Method

As in requirements engineering, the integration and involvement of expert
users is a key factor for the success of a business reengineering project. The
business reengineering method sketched here is derived from a corporation with
Siemens-Nixdorf AG. It is described in more detail in [Thu97]. In our approach,
we embed business process reengineering in a global reengineering methodology
to ensure an integrated realization of both quick, continuous improvements and
more radical, complex changes in process and organization structure. Both is
necessary: early improvement results keep employees motivated for the change
effort, and radical changes enable innovation [Dav93a).

—
8 corporate strategic
£ strategy analysis | performance analysis
8
&
5 project project project
g manage- set-up = management of projects = close
£ ment down
~—
immediate - continuous
tactical o improvements: - local —
change - quickly to realize
8 extended - continuous
s tactical = improvements: - complex problems —
3 change - across boundaries of organizational units
=3
g
g immediate - :dlslnbutelad(sand responsibilities
S | | sraegic = changes, - daptresources H
@ chan - structural reorganization
ge N " N
= - reorientation of business areas
extended
strategic Loy changes: - business process reengineering —
change

Figure 6: Embedding BPR in our methodology for business reengineering

To achieve this, we structure our reengineering activities into four subtask
domains, symbolized in Figure 6 by rectangles with rounded corners in columns
at the left. Each task domain is put into practice by one or more processes.

Tactical improvements concentrate on detailed business activities and deal with
local technological and operational changes, without impact on the business

organization as a whole. By immediate tactical changes, we categorize small
scale improvements, tackling any problem where both its cause and a possible
solution are somewhat obvious, and the solution is easy to implement. In
contrast to this, extended tactical changes cover long-term improvements which
require a higher degree of error recovering and problem solving.

As strategic improvements are closely related with business objectives and a
business’s strategy of achieving them, they tackle global organizational and
process problems. Immediate strategic changes are a treatment for problems
arising from flaws in the organization of an enterprise, e.g. due to the existing
distribution of competence, responsibility and tasks. Finally, the task domain
of extended strategic changes is the most complex of the four, as it incorpo-
rates and triggers all other reengineering tasks, the introduction of information
technology, and other changes that extend over a rather long period of time.

- start new - start new
ITC process ITC process

- start new - start new - start new

ITC process ITC process ITC process
- start new - start new - start new - start new
ETC ETC process ETC process ETC process ETC process
\sc - start new - start new
I1SC process ISC process
(_ strategy) C Aslsandysis) (weaknessanalys's) (___ToBedesign) (_testimplementation) (roll out)
exlend_sd - model technical processes - structure weaknessss - develop improved - evauate effectiveness of - implement improvements
strategic - define bpr goals and referential - analyze weaknesses process concept new process cor\ce;.)t onlarge scale
change and strategy management processes - Start improvement projects - develop new - evaluate transferability to - carry out findl adaptions
(ESC) - identify weaknesses management process related business domains

Figure 7: Overview over methodology for business process reengineering

Figure 7 gives an overview over our methodology for business process reengi-
neering, detailing the BPR process of Figure 6. Phases structuring the process
chain are depicted by rounded rectangles, aligned horizontally in a row.

Starting from the major goals of the business system, we identify major pro-
cesses as a general context and define the boundary of that part of the busi-
ness system to be analyzed in more detail. We structure our process model
according to task domains and phases, as well as by hierarchical refinement.
For modeling, we employ a hybrid aproach, integrating both top-down and
bottom-up steps to ensure adequate granularity and consistency.

All along with process modeling, any weaknesses in the existing system that are
touched in interviews or discussions are collected and documented. They are
supplemented by weaknesses specific to processes, which are identified by struc-
tured process evaluation and evaluation workshops, both of which are based
on the process model previously developed. In a next step, these weaknesses
are structured into related groups. Complex weaknesses are then analyzed to
separate mere symptoms from problem causes, using creative problem solv-
ing techniques derived from [Van88], to render possible solutions that tackle
problems at their roots, rather than treating mere symptoms.

According to our methodology, design and testing of changes and improve-
ments are closely linked and integrated in an iterative process, which allows
even roughly sketched concepts to be evaluated, before they have to be worked
out in detail. For all improvement measurements, it is evaluated wether the
expected chance of its success and its estimated gain is worth the cost of the
improvement project. Measuring the progress of improvement projects sup-
ports early discovery of problems in improvement concepts, and thus is the
basis for decisions on the further realization of improvement projects.

5 Outlook on Current and Future Work

To reduce redundancy in a process model, a new version of the description
technique will introduce a class concept for activities. There, activities that
occur multiply in one or several processes are grouped into an activity class, in
which the features common to all instantiations of this activity are predefined.
A process will then consist of a set of uniquely identifyable activity instances,
which are based on a set of defined activity classes.

Furthermore, for the description technique for business processes, the formal
foundation with respect to the mathematical system model will be worked out
in greater detail, extending also on the relationship between business process
diagrams and state transition diagrams already sketched in section 3.

The integration of detailed, quantifyable management mechanisms and the
technical aspects of business reengineering and software development into a
more plannable, integrated business reengineering and software development
process is subject of further research, which will be embedded in the interdis-
ciplinary project FORSOFT.

A Definition of Concrete Textual Syntax

For defining the concrete textual syntax of the description technique for
business processes, we use the Extended Backus-Naur Form EBNF as de-
fined in [BFG'93]. The nonterminals (activity-id), (process-model-id),
(data-id), (switch-id), (role), (sort), (expression), (predicate-expression) and
(component) are not specified in a more detailed way in this paper.

(process_model) ::= process model (process-model-id) = {
{(activity-id) //,}*

(process) = process (activity-id) = {
{(activity-id) //, }*

(black_box) == black box (activity-id) = {
type internal | external
role {(role)}
{out_switch {(switch-id) := (predicate-expression) //,}* }
input {(event) //,}*
output {(event) //,}* | {(switch-id): {(event) //,}* //;}*
}
(glass_box) := glass box (activity-id) = {
reads {(data-id) from (component) where (predicate-expression) //,}*
changes {(data-id) from (component) where (predicate-expression)
to (expression) //,}*
pre (predicate-expression)
post (predicate-expression) | {(switch-id): (predicate-expression) //;}*
}
refinement = refinement (activity-id) =
(y

*

subactivities {(a.ctivity—ig) 1/}
subinput {(event) = {(event) //,}* //;}
) suboutput {(event) = {(event) //,}* //;}*

(event) == ((sort), (activity-id), (activity-id))

Acknowledgements

Thanks go to Prof. Dr. Manfred Broy for the possibility of working on this
doctoral thesis, and to him and all my colleagues for many interesting discus-
sions and cooperative efforts. Furthermore, I thank Dr. Giinther Klementz
and his department at Siemens-Nixdorf for continuous support. Especially, I
am highly indebted to Michael Adler and Andre DelLeeuw for my integration
into their business reengineering team, and for many fruitful discussions.

References

[BDD*93]

[BFG193]

[BHH]

[BJR96]
[Boo94]
[CAB194]
[CCT90]
[Dav93a]
[Dav93b)
[DeM79)]
[GKRBY6]
[GRY6]
[GRKY6]
[Het96]
[Jac92]
[RBP*91]

[RKBY5]

[Thu97]

[Van8s]

M. Broy, F. Dederichs, C. Dendorfer, M. Fuchs, T.F. Gritzner and R. Weber. The Design
of Distributed Systems — An Introduction to FOCUS. Technical Report TUM-19202-
2, SFB-Bericht Nr. 342/2-2/92 A, Technische Universitdt Miinchen, Miinchen, January
1993.

M. Broy, C. Facchi, R. Grosu, R. Hettler, H. HuBmann, D. Nazareth, F. Regensburger,
O. Slotosch and K. Stolen. The requirement and design specification language SPEC-
TRUM — An informal introduction, Part II. Technical Report TUM-I9312, Technische
Universitat Miinchen, Miinchen, May 1993.

R. Breu, U. Hinkel, C. Hofmann, C. Klein, B. Paech, B. Rumpe and V. Thurner. Towards
a Formalization of the Unified Modelling Language. to appear at ECOOP’97, Jyvskyla,
Finland, June 1997.

G. Booch, I. Jacobson and J. Rumbaugh. Unified Method Language — UML Semantics.
Rational Software Corporation, Santa Clara, CA., 1.0 edition, January 1996.

G. Booch. Object-Oriented Analysis and Design. Benjamin Cummings, 1994.

D. Coleman, P. Arnold, S. Bodoff, C. Dollin, H. Gilchrist, F. Hayes and P. Jeremeaes.
Object-Oriented Development — The Fusion Method. Object-Oriented Series. Prentice-
Hall International, Inc., Englewood Cliffs, New Jersey, 1994.

CCTA, NCC Blackwell. SSADM Reference Manual, 4th edition, 1990.

T.H. Davenport. Process Innovation — Reengineering Work through Information Tech-
nology. Harvard Business School Press, Boston, Massachusetts, 1993.

A.M. Davis. Software Requirements — Objects, Functions, and States. Prentice-Hall
International, Inc., Englewood Cliffs, New Jersey, 1993.

T. DeMarco. Structured Analysis and System Specification. Prentice-Hall International,
Inc., Englewood Cliffs, New Jersey, 1979.

R. Grosu, C. Klein, B. Rumpe and M. Broy. State Transition Diagrams. Technical
Report TUM-19630, Technische Universitat Miinchen, Miinchen, June 1996.

R. Grosu and B. Rumpe. Cuncurrent Timed Port Automata. Technical Report TUM-
19533, Technische Universitat Minchen, Miinchen, October 1996.

R. Grosu, B. Rumpe and C. Klein. Enhancing the SYSLAB System Model with State.
Technical Report TUM-19631, Technische Universitat Miinchen, July 1996.

R. Hettler. Description Techniques for Data in the SYSLAB Method. Technical Report
TUM-19632, Technische Universitdt Miinchen, Miinchen, October 1996.

I. Jacobson. Object-Oriented Software Engineering — A Use Case Driven Approach.
Addison-Wesley Publishing Company, Reading, Mass., 1992.

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy and W. Lorensen. Object-Oriented
Modelling and Design. Prentice-Hall International, Inc., London, 1991.

B. Rumpe, C. Klein and M. Broy. Ein strombasiertes mathematisches Modell verteilter
informationsverarbeitender Systeme - Syslab Systemmodell -. Technical Report TUM-
19510, Technische Universitat Miinchen, March 1995.

V. Thurner. “Making it Their Idea” — A Case Study: Customer Participation and
Commitment in BPR. to appear at the SCI’97 focus symposium on BPR, Caracas, July
1997.

A.B. VanGundy. Techniques of Structured Problem Solving. Van Nostrand Reinhold,
New York, 2 edition, 1988.

