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Abstract

We illustrate the use of functional system specifications and their re-
finement in the development of system components by a simple case study.
The development includes the modular specification, refinement, and veri-
fication of system components. We start the development with an informal
description of the tasks of the case study and then step by step carry out
the tasks formally. The informal requirement specification can be used as
starting point for alternative formalization and development techniques.
The emphasis in this study is laid on the modelling of a system at differ-
ent levels of abstraction and the verification conditions obtained by the
refinement relations between these versions. We show in particular, how
we can refine a time independent component into a component that uses
timeouts and thus depends on the timing of the input in an essential way.

*This work is supported by the Sonderforschungsbereich 342 “Methoden und Werkzeuge
fir die Nutzung paralleler Rechnerarchitekturen”
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1 PRELIMINARY REMARKS 3

1 Preliminary Remarks

For the development of reliable distributed reactive systems we need methods for
their specification, refinement, and verification. In the literature we find numer-
ous suggested formalisms for describing reactive systems. Prominent examples
are

e state transition descriptions complemented by various versions of logical
calculi such as assertion logics, temporal logics and several combinations
thereof,

e Petri nets as a graphical formalisms for describing distributed state tran-
sition systems including explicit concurrency,

e process algebras in various instances, such as CCS or CSP, together with
their operational semantics given by transition systems, axiomatic equa-
tions and semantic models.

All these approaches have advantages and drawbacks. The best way to obtain
insights and criteria how useful these different approaches are in practice, are
comparisons of development case studies.

In this paper we propose such a small case study consisting of a number of
representative development steps. We then demonstrate how functional system
development techniques can deal with the proposed problem.

The small example of the stepwise development of a buffer of length one, as
described informally in section 2, is used to demonstrate functional formalisms
for the specification, refinement, and verification of system components. The
emphasis is put on the usefulness of functional formalisms in the development
process and on the achieved modularity of the system descriptions and the
development process.

We start with an informal description of the tasks. Then we give formal
solutions to each of the tasks using functional system specifications, refinement
and verification techniques.

We suggest this example also as a test case for other methods for the speci-
fication, development, and verification of system components.

2 Informal Description of the Components

In this section we give a brief informal description of the components that we
will specify.

A one element buffer is a component that can store one data element and
return it upon request.

A fair loose one element buffer is a component that can store one data
element and return 1t upon request, however, it may fail in storing data elements
or in serving requests. It indicates success or failure by a positive or negative
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acknowledgement. It is fair in the sense that it will not fail forever on repeated
attempts.

A driwer is a component that when composed with a fair loose buffer forms
a system that behaves like a one element buffer.

A real time one element buffer is a one element buffer that operates in a
discrete time frame. It may take some time until it is ready to take the next
input. It indicates by interaction, when it is ready to take the next input.

A real time fair loose one element buffer is a component that operates in
a real time frame; it can store one data element and return it upon request,
however, 1t may fail in storing a data element or in serving a request. It indicates
success by a positive acknowledgement within a fixed amount of time. It is fair
in the sense that it will not fail forever on repeated attempts.

A real time driver 1s a component that operates in a real time frame; when
composed with a real time loose buffer it forms a system that behaves like a
real time one element buffer.

3 Specification and Verification Tasks

The following development, refinement,! and verification tasks are carried out
in the sequel:

Specification of a one element buffer.
Specification of a fair loose one element buffer.
Specification of a driver.

Verification that the composition of the driver and the fair loose one ele-
ment buffer is an implementation (refinement) of the one element buffer.

Specification of a real time one element buffer.
Verification that (5) is a refinement of (1).

Specification of a real time fair loose one element buffer.

Specification of a real time driver.
Verification that (9) is a refinement of (3).

Verification that the composition of the real time driver and the real time
loose one element buffer is an implementation (refinement) of the real time
one element buffer.

)
)
)
8) Verification that (7) is a refinement of (2).
)
)
)

1We do not explain the notion refinement here, since we want to leave freedom for for-
malizing it. Throughout the treatment of the case study we use a very particular concept of
refinement, which will be introduced in the appendix.
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(12) Verification that (11) can be concluded from (6), (8), and (10).

(13) Discussion how easily the development may be adapted to modified re-
quirements such as a k—element buffer or modified refinements based on
other versions of unreliability of the buffer.

In the following sections we carry out these tasks. We use functional techniques
for system specification, refinement and verification. We introduce and explain
these techniques through the development process. A short introduction to
functional specification techniques is given in the appendix.

4 Specification of a One Element Buffer

In this section we give specifications of a one element buffer using and demon-
strating three specification styles.

4.1 Informal Description and Syntactic Interface

A one element buffer is an interactive component with one input line and one
output line. It may store at most one data element. It receives input messages
which are either data elements or requests (represented by the signal o). As
long as the buffer never gets a request signal when it is empty and as long as
it never gets a data message when it is full then 1t behaves properly like a one
element buffer.

The behavior of the buffer is formalized by stream processing functions. A
short introduction of the concept of streams and stream processing functions is
given in the appendix.

Let D be a set of data elements. We use the set M of input messages for

the buffer which is defined as follows:
M=DU{o}

The element © is used as a signal indicating a request for the element stored
in the buffer. We represent the behavior of a one element buffer by stream
processing functions:

f: MY — DY

The domain and range of this function determine the syntactic interface of the
buffer. The set of possible behaviors f of a one element buffer is specified by
the proposition:

B.f

where B is a predicate:
B:(MY—=D")—B
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The predicate B characterizes the set of behaviors? of the one element buffer
represented by stream processing functions.

4.2 Equational Specifications

The buffer is a component with a behavior described as follows. If the buffer is
empty and it receives a data message, it stores the data message. If the buffer
is full and it receives a request signal, it sends its data message on its output
line. Mathematically the predicate B can be specified by the weakest predicate
that fulfills the following equation:

Bf=VdeD:f{dy=0AVeeMY:3f BfAf(d o z)=d fux
One may wonder why we do not write simply
fld o x)=d fu
instead of the more complicated formula
3f:BfASfd o z)=d f=

The reason 1s as follows. The simple equation for f would include the require-
ment

f(d o z)=d f=

also for input streams z that do not fulfill the assumption that data are sent
only if the buffer is not full and requests are sent only if the buffer 1s not empty.
The equation includes the requirement that the unspecified behavior on such
improper input coincides for the input d o « and z after d has been produced
as output. This overspecification is avoided by the formula above.

Note on the specification style: This way we have given a “recursive” or
equational definition of the predicate B by an equation of the form

(x) B.f=... If:B.fA ...

Since the expression B.f occurs in positive form on the righthand side of the
defining equation, the logical expression on the righthand side of the equation
represents an operation that is monotonic in B with respect to logical implica-
tion. Therefore there exists a weakest and a strongest solution of the defining
equation (corresponding to the weakest and strongest fixpoints of the predicate
transformer represented by the righthand side of the defining equation). We say
that a predicate occurs in positive form in an expression, if it occurs syntacti-
cally only under an even number of negation signs. Since the equation (*) does

2If this set of behaviours contains more than one element then we speak of under-
specification.
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not contain any negation signs the expression B.f trivially occurs in positive
form.

We choose the weakest solution of the equation (%) for the predicate B,
since this corresponds to the way we use this style of specifications. This way of
specifying B gives immediately a proof principle. We abbreviate the equation
() for the specifying predicate by the equation

B = T[B]

T denotes the predicate transformer defined by the righthand side of the equa-
tion. According to our definition the predicate B is required to be the weakest
predicate that fulfills the equation (). According to this characterization we
obtain the following logical principle for every predicate C' we have:

(C=T[C])= (C= B)

This formula expresses that every predicate that is a fixpoint of T is not weaker
than the predicate B. It provides a proof principle for the specifying predicates
defined by recursive equations.

To keep our formulas readable we sometimes use the following abbreviation
in equations: the equation

t1 = t5([B1/f]
stands for (let f be an identifier that does not occur in the term t)
E'f:tl Itz/\Bf

This abbreviation allows to avoid the existential quantifier. It leads to the
following shorter syntactic form of the specification of the predicate B:

Bf=vVdeD:f{d)=()AVee M f(d o z)=d [B]e

This notation can help to keep the formulas short and more readable.

End of note on the specification style.

There are many styles to write functional specifications. In the following we
give a number of specifications of the predicate B written in specific other
specification styles.

4.3 Assumption/Commitment Specification Format

Another possibility to write a specifying formula for the predicate B is given
by the assumption/commitment format (cf. [Broy 94], [Stglen et al. 92]). For
such specifications we need to find an assumption predicate

A MY — B
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and a commitment predicate
C:M“xD¥— B

The assumption predicate formalizes the constraints about the input histories
that have to be fulfilled in order to guarantee a proper behavior of the buffer.
The commitment predicate formalizes the notion of a proper behavior.

In the case of the one element buffer these predicates are specified by the
following equations (for x € M¥,d € D,y € D¥):

A = true
A(@Ax) = false
A(dAx) = (a: ={V(fta=0A A.rt.x))
v = (w=0)
Cldhy) = (=)
Cld © zy) = (fty=dAC(z,rty))

Both predicates A and C are assumed to be the weakest predicates that fulfill
the defining equations. The assumption expresses that proper input for the one
element buffer consists of a stream that is empty or starts with a data element
followed by a request signal (or by the empty stream) and continues this way
by successively carrying a data element and a request signal.

The commitment C'(z,y) expresses for a stream # (that fulfills the assump-
tion) the stream y contains as many elements as the stream x contains request
signals and these elements are the data elements in the sufficiently large prefix
of . Another way to specify the commitment predicate C' would be to use the
following equation:

C(x,y) = #{0}©z = #y ANy C DO=

This yields a stronger predicate C, which, however, due to the restriction of
the input stream x by the assumption, works equivalently for the assump-
tion/commitment scheme.

Similarly we can specifiy the assumption predicate explicitly by the following
equation

Alx)=Vz: 2 Cr = #{0}©z < #DOz <1+ #{0}©Oz

In this simple case of an assumption predicate we can also use a regular expres-
sion for specifying A:

Ae={ze M2 Cz} C{Do}"{D})

Using the predicates A and C' we define the specifying predicate B by the
following formula:

B.f=Vee MY : Az = C(z, f.x)
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When using this structure of a specification we speak of an assumption/com-
mitment specification format.

4.4 State—Based Specifications

A third possibility for the formalization of the one element buffer is a speci-
fication that refers to local states of the component. We introduce a set of
states:

State = DU {g}

For this set we define a stream processing function for every element of the set
State by the predicate

H : [State — [M*¥ — D*]] — B
Formally the predicate H is specified as follows:
H.h= VYo € State,de D : Jh: H.hA

Using the predicate H we can define the specifying predicate B by the following
formula:

Bf=3h:HhANf=ho

We can also give a slightly different state-oriented specification where the speci-
fication (the predicate) is parameterized by the state; mathematically expressed,

we use a predicate R
H : State — ([M*¥ — D*] — B)

By the parameterized predicate H we can associate a specification with every
state by the following formula

(Ho).f=3h:HhANf=ho

The formula also relates the parameterized predicate H and the predicate H.

4.5 Short Discussion of the Specifications

All three specifications of the predicate B are logically equivalent. We do not
give proofs for the equivalence of these specifications. The proofs are rather
straightforward by induction on the length of the input streams and therefore
left to the reader.

The specifications leave unspecified what happens if the buffer gets a request
when 1t is empty or a data message when it is full. The behavior of the buffer is
underspecified. There 1s an infinite set of functions that fulfill the predicate B.
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Given the specification B by the defining equation (%) we can prove a number
of simple properties about one element buffers, such as the following formula:

B.f= ()= Af(d o)=(d).

The proof is straightforward by the monotonicity of f (we base the proof on the
first specification of B):

Assume B.f. We use that f is continous. We obtain the following proof (let
de D):

() C (d) by the definition of prefix ordering,

£ E f{d) by the monotonicity of f,

FOCU by B sinee f4d) = {

£0 =0, by the definition of the prefix ordering ({) is least element).

The second part of the conclusion is proved as follows (let d € D):

f(Adj@A()) = by B.f )
d f.{= by the lemma above (where B.f )
(d)

These two simple examples of proofs show two basic proof concepts for functional
specifications based on the monotonicity assumption for the specified functions
and equational reasoning.

5 Specification of a Loose One Element Buffer

A one element loose buffer is a component with one input line and two output
lines called data output channel and acknowledgement channel. It may store
at most one data element. It receives input messages which are either data
elements or requests (represented by the signal ). If the buffer never gets a
request signal when it is empty and never gets a data message when it 1s full
then it behaves properly like a one element buffer, but it may lose data messages
and request signals. It may lose a data message that is sent to it when it is in
an empty state, but then this loss is indicated by the signal & on its acknow-
ledgement channel; if it stores its data message correctly this is indicated by the
acknowledgement signal ¢ on its acknowledgement channel. It may also refuse
to answer properly to a request signal, but also this is indicated by the signal
6 on its acknowledgement channel; if it sends its data message correctly this
is indicated by the acknowledgement signal @ on its acknowledgement channel.
We assume that the loose buffer is fair in the sense that it reacts by an ack-
nowledgement signal eventually if the message transmission is tried sufficiently
often.
We define the following message sets:

M:DU{@}
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N ={s,6}

We represent the behaviors of a loose buffer by functions:
f:MY — (D¥ x N¥)

The domain and the range of this function fix the syntactic interface of the loose
buffer. We use a predicate

P (MY — (D¥x N¥)) — B

to specify the behavior of a loose buffer. The specification of the predicate P
reads as follows:

Pf = VeeM¥deD: InmelN: YielN:
i<n = f(d [(),e]/\
@) =1{),e" el A
i<m = [fldF 7o) =[(),e" e & AIS: PfA

fd 1 mem o) = [de" e e s] fa

In the formula above we write m? for the stream consisting of i copies of the
message m.

The specification of the loose buffer includes both liveness properties (every
input is answered and the buffer is fair in the sense that it eventually responds
to proper input with a positive acknowledgement) and safety properties (the
elements that are produced as output are those received as input). This is also
the case for the specification of the one element buffer in the previous chapter,
however, there the liveness conditions were less involved.

Another possibility to specify a loose buffer is obtained by using states and
prophecy variables. In a functional specification we can use state concepts by
introducing a set of states. With each state we associate a behavior represented
by a stream processing function. A prophecy can be formally understood just
as part of the state. However, it is used not to record the past of the input
as far as it is relevant for the future behavior of a component, but it is used
as an oracle for the nondeterministic decisions of the component and helps to
express the fairness of the component. In our example we use natural numbers
as prophecies.

Let the set of states of the fair loose buffer be specified as follows:

State = DU {g}

We define the auxiliary predicate (the set IV of natural numbers is used to
represent prophecies)

Q:[WXStateH(MwHDwaw)]HB
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by the following formula (let @ again be the weakest predicate that fulfills the
formula):

Qh = VYdeD,weM*: 3h:QhA
dne N : h(0,¢).(d:l‘) = [0),s] | | ( d)
dne N : h(0,d).(0 x) = [d,9] hN(n 8).x
Vne N : h(n+1,0).(d x) = [{),e] h(n ¢)
h(n+1,d).(0 ) = [(),8] h(n,d).x

In this specification for the function application h(n,s).z where .k holds the
number n is a prophecy variable which determines the number of failing attempts
until an input is accepted and s € State represents the state of the buffer. We
define the predicate P specifying the loose buffer with the help of the predicate
@ as follows:

P.f = 3hn:Qh A f=h(n,o)

The specification of the predicate @ 1s written carefully such that the choice of
the prophecy variable n may depend on the input stream x. So every time the
first parameter of & is 0 another number can be chosen.

The specification covers the behavior of the buffer for infinite streams « by
the continuity property. It is not difficult to prove that:

Pf=Pf

The other direction of this implication does not hold, however, since the predi-
cate P is (unnecessarily) stronger than the predicate P in a subtle way. From
P.f where f({(d)) = [{),e] we cannot conclude anything about f(d, d2) with
dy # da. For the function h(n, @) we know that there exists a number n such
that h(n,o).(dy ... dn) = [(), e”ﬁ@]A/}(ﬁ, dy) with Q.h. A more liberal speci-
fication for () can be given, of course, by using a more elaborate state space in
which we can record which data element is tried to be submitted. But such a
more liberal specification is less suggestive, when writing state-oriented specifi-
cations.

The proof that the specification P is a refinement of the specification P is
straightforward by induction on the length of the input streams.

An assumption/commitment specification for the loose buffer is certainly
more delicate, since we cannot give a characterization for input histories that
fulfill the assumption without referring to the output history. Whether the
buffer is empty or full can only be determined by looking both at the input and
the output history. This problem typically arises for assumption/commitment
specifications of nondeterministic components.

We demonstrate how to write an assumption/commitment specification even
in these cases using prophecies (following [Stelen et al. 92]). To do this we
introduce a filter function

filter : MY x N*° — MY
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specified by (let x € M¥ y € N*°):

filter(z, e y) ft.x filter(rt.z,y)
filter(z, 6 y) = filter(rt.x,y)

Based on this filter function we define the assumption and the commitment
predicates for which we add prophecy parameters.

A: MY x N® - B
C: MYx(D¥xNY)x N° - B

The predicates are specified by (for v € M¥,y € D¥ z € N¥, r € N®):

Az, r)
C'(x, (y, 2), r)

A(filter(x, r))
(z Cr= C(filter(x, ), y) A
(#2 = co = #{a}©z = 00))

where the predicates A and C are defined as in the section on the assump-
tion/commitment specification for the one element buffer B. Based on this
specification we can specifiy the predicate P by a more general assumption/com-
mitment format:

Pf=VYre N® xe MY: Ax,r) = C(z, f.e,r)

This assumption/commitment specification, however, is much more involved. Tt
is not very helpful, since it is rather difficult to understand.

6 Specification of a Driver

In this section we specifiy a component called a driver that can be used to
construct a nonloose buffer from the loose buffer by composing it with the
driver into a network.

A driver is a component that has two input lines and one output line. On
one input line, called its message line, 1t gets a stream of messages which are
to be transferred and on the other input line, called its control line, it gets
positive and negative acknowledgements represented by the signals @ and o. It
repeats the sending of a message on negative acknowledgements until it receives
a positive acknowledgement.

A driver is a component with behaviors represented formally by functions of
the functionality:

g: MY x N¥ — MY

The behavior of the driver is specified by the predicate

V:(MYxNY—=M“)—B
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as follows:

Vg= Yae M,z e MY ye& N¥:
g(a z,y)=a if ft.y = o then g(z,rt.y) else gla x,rt.y) fi

Again this specification is written carefully taking into account the following
informal requirement: a driver sends a first copy of a message on its message
input channel independent of the question whether a positive or negative ack-
nowledgement is available. Only after the first copy of the message has been
sent the first signal in the acknowledgement stream is inspected. If this signal is
positive, then the transmission of the message a is finished and the transmission
of the next element in the message stream is started. If the signal is negative,
then the transmission of a is repeated.

By the assumption of monotonicity for the function ¢ we can prove the
following formula

9((),v) = ()

under the (weak) additional assumption that the set M contains at least two
elements. The proof is carried out by contradiction. Assume

g(()9) # ()

Then for some message b € M
However, for a # b we have

which yields the contradiction.

7 Specification of a System Composed of the
Loose Buffer and the Driver

In this section we study a network that is obtained by composing the loose
buffer with the driver. This networks behaves like a one-element buffers. We
prove this at the end of this section.

We specify a system component C' that is composed of the driver and of
the one element loose buffer. A graphical representation of the component C' in
terms of a data flow network is given in Figure 1.

The behavior of the component represented by the network is characterized
by the predicate

C:(M*—=D")— B
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Figure 1: Graphical representation of the network for component ('

which 1s defined as follows:

C.f=3¢,9: Pq AN Vg ANVe:3y:[fa,y]=q9(z,y)

The predicate 1s obtained by a straightforward translation of the network given
in Figure 1 into a logical formula.

Now we can envisage a proof that the component specified by the predicate
C according to the structure of the network behaves like a reliable one element
buffer as specified by the predicate B. Formally the verification condition for
the refinement relation is expressed by the following proposition:

Vf:C.f = B.f

The proof of this proposition is performed by unfolding the specifying predicate
C'. Then a proof by induction on the length of the input stream « can be carried
out. We outline this proof in the following.

According to the specification B to show that the proposition C.f = B.f
holds we have to prove C' = T[C] as explained in section 4.2, since B is the
weakest predicate that fulfills its defining equation for B given in Section 4.2.
This leads to the following proposition.

Cf= YdeD: fldy=() A3f:CFfAfd o 2)=d fux

By definition from the proposition C' f we can conclude that there exist functions
g and g for which P.q and V.¢g hold such that for all streams x there exists a
stream y such that the following equation holds:

[fx,y] = q.g9(x,y)

For # = (d) we obtain by induction that there exists a number n € IN, such
that for all 4, if ¢ < n, there exists a stream y such that

[fx,y]=qg(z,y)hy=¢e' g

For ¢ = n+ 1 we obtain

[fa, gl =" o] ¢9((),9)Ay=2" & ¥
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and since g({},y) = {} and ¢.{) = [{), ()] we obtain

f{d) =)

Forxz =d © & we obtain by the same type of reasoning that there exist numbers
n,m € IN and a stream y such that

[fo,9)=[(d),e" & ™ 8] qg(&,9) Ay=e" & ™ & ¥
We obtain from these equations that there exist streams z and y such that the
following formula holds:

fx= d zA [z, 9] = ¢.9(%,9)

By induction on the length of the stream x we obtain that there exists a function
f such that R R
fx=d f.z where C.f

for finite streams x. By the continuity of the involved functions this result
extends to infinite streams, too. This concludes the proof.

In the following sections we refine both the driver and the unreliable buffer
such that they work within a framework of a discrete time.

8 Modelling Time

When developing interactive systems with behaviors that depend on the timing
of input messages we need to have system models in which time is explicitly
represented. We use a very simple discrete model of time which is sufficient for
our purposes. We think about time as a sequence of time intervals of constant
length. The timing of the messages of a stream is given by indicating in which
time interval which of its messages appear.

8.1 Time Signals

In our functional framework we model the progress of time by special messages
called time signals in the input and output histories. We use the symbol +/,
called a time tick, to indicate each end of a time interval in a stream.

To model the behavior of a component in discrete time we use stream pro-
cessing functions where all input and output streams carry time ticks. For a
tuple of streams

ze (MyU{/DY x ... x (My U{/NY)

with time ticks we write

#{\/}©l‘ for mln(#{\/}@)xlaa#{\/}@)x”)
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By #{./}©x we denote thus the number of time intervals with complete com-
munication information on all n streams. We write

7 for (M1©x1, ..., Mpy©xy).

The stream 7 denotes the tuple of streams where all information about the
timing is eliminated and only the proper messages are kept.

8.2 Timed Stream Processing Functions

A timed stream processing function takes streams containing time ticks as input
and produces streams containing time ticks as output. The specific properties
of time are taken care of by the so-called time progress property that is specified
below.

Given a timed stream-processing function:

Fo(MiUTUD® X oox (M UL — (N UL % e x (N U LU

we specify the predicate TIM E that expresses the basic teme progress property
of stream processing functions f as follows:

TIME.f=Ve e (M U{/}N* x ... x (M, U{/ Y : #{ S Of.x = #{/}©Ox

The predicate TIME.f expresses the fact that for the function f its output
history for k£ time units 1s determined by every input history that fixes the input
on all input lines for £ time units. This is a general assumption that implies
that a component cannot predict its input and time cannot go backwards.

8.3 Specifying Time Distances and Time Delays

When specifiying the behavior of time dependent components we often want
to express that two successive messages do not arrive within a very short time
distance. To be able to express this in specifications we introduce a function

dist : (M U{y/})" — IN U {0}

which yields the minimal time distance (least number of time ticks) between
two successive messages that are not time ticks in a stream z. Mathematically,
the function dist is specified by the following equation:

dist(z) = min{#t : t € {\/}* A
da,be M,z € (MU{\/})* 2 at bCaeVvzy at=uz}

With the help of this function it is not difficult to specifiy for a given number
¢ € IN functions that introduce time ticks into a stream such that the time
distance 1s at least c.
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We specify for every number ¢ € IV the predicate
H.: (MY —=(MuU{y/}))—B

which characterizes delay functions that add an arbitrary number of time ticks
to a stream such that the time distance 1s at least ¢. This is formally expressed
by the following equation:

H.(f)=Ve e MY :dist(fx)>c AN x= fx

The introduced functions and predicates are used in the following. They allow
a very compact notation of formulas specifying time dependent components.

9 Specification of a Timed One Element Buffer

A timed one element buffer is a component with one input line and one output
line. It may store at most one data element. It receives input messages which
are either data elements or requests (represented by the signal ¢ ). If the buffer
never gets a request signal when 1t is empty and never gets a data message when
it is full then 1t behaves properly like a one element buffer provided the time
distance between input signals in its input stream is large enough.

We define the sets of messages that appear in the input and output streams
of the component as follows:

M=DU{o,.}
E:DU{\/}

We represent the behaviors of a real time buffer by timed stream processing
functions: R R

f: MY — DY
The set of possible behaviors of a real time buffer is specified by the following
proposition:

B.f

where B is a predicate: R R R
B:(MY—=D")—B
We assume that there exists some given number e € IV which is the required

time distance between the messages sent to the buffer. The predicate B is
specified as follows:

B.f = TIME.fA
Ve e MY :EIf:B.j?/\f(x/Ax):f?
Vi,je N :
Fdv) =0 A _
i>e Nj>e=f(dvimo vite)=d fu
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In this specification we carefully kept in mind the monotonicity requirement
when expressing the fact that for an input stream

d /"o Jx

we are guaranteed an output stream that contains d as its first data element,
provided i and j are sufficiently large. This data element is not produced as
output before the request signal © has been received. The monotonicity reflects
the causality between input and output.

In this specification we did not give more properties about the timing of the
output than needed. From this specification we can prove a number of further
simple properties about timed one element buffers. We restrict our attention to
the relationship between the specifications B and B.

The real time one element buffer is a refinement in the sense of [Broy 92] of
the one element buffer. This is expressed by the following theorem:

B.f A (VxEM“:dist(x)Zei f.f:f?)iB.f

The proof is straightforward by induction on the length of z. The proof is in
particular easy, since the formula defining the specification B is very similar to
the one used for describing the predicate B.

Using “;” for sequential composition and a predicate A for the time abstrac-
tion specification which is defined as follows

Af=Ve: fae=T
we obtain the following theorem
H,; B; A= B

This is the classical refinement condition as formulated in [Broy 93]. Here the
predicate H. serves as the representation specification which characterizes the
set of functions that insert at least e time ticks between two successive messages
in 1ts input streams. The predicate A serves as the abstraction function that
maps timed streams onto untimed streams.

10 Specification of a Timed Loose One Element
Buffer

A real time loose one element buffer is a component with one input line and
two output lines. It can store at most one data element. It receives input
messages which are either data elements or requests (represented by the signal
® ). If the buffer never gets a request signal when it is empty and never gets a
data message when it is full then it behaves properly like a one element buffer,
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but it may lose data messages and request signals. It may lose a data message
that is sent to it in an empty state, but then this loss 1s indicated by the fact
that a positive acknowledgement is not sent within ¢ units of time; if the loose
buffer stores its data message correctly this is indicated by the signal ¢ on its
acknowledgement channel. It may also refuse to respond to a request signal,
but also this is indicated by the fact that no answer is produced within ¢ units
of time; if it sends its data message correctly this is indicated by the signal ¢
that is sent after at most ¢ units of time.

The real time loose buffer is very similar to the loose buffer that we de-
scribed above, however, 1t does not send negative acknowledgements. The lack
of negative acknowledgement can be recognized, however, by the property that
the real time loose buffer sends a positive acknowledgement, if at all, at least
after ¢ time units. We define the following message sets:

M=Du{o,/}

N ={a,}

We represent behaviors of a real time loose one element buffer by functions:
f: MY — (DY x N¥)

The set of correct behaviors of a real time loose buffer is specified by the predi-
cate: . . . .
P:(M¥—(D¥xN“)—B

The predicate P is specified as follows. We assume the time constant ¢ € IN.
The component behaves as follows provided its input messages are at least in
time distance c¢. If the component is in the empty state and it receives a data
message, it either stores the data message and acknowledges this by sending the
signal @ within ¢ units of time or 1t loses the data message. If the component
is full and it receives a request signal, it either sends its data message on its
output line and acknowledges this by sending the signal @ within ¢ units of time
or it refuses to carry out the request.

In both cases the component reacts to an input message either by a positive
acknowledgement within ¢ units of time or 1t does not accept the message and
does not react to it. So, if a reaction to a message is not received within ¢
units of time, it is clear that the message has not been accepted. However,
the loose buffer sends a positive acknowledgement after at most b attempts of
transmission where b € IV is a given constant.

These properties in the behavior of the loose buffer are expressed by the
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following equation for the predicate P:

Pf = TIME.f ANVa,ye M de D :dist(x)>c=3f:P.fA
Jiel:bt]:T=d"" = flz)=[(), ] A
z=d = f(z) =[(),8] A

Fel:b:z=d"e! = f(z7y) =[d, @A@]A%

We consider the specification P as a refinement of the specification P, but the
notion of refinement we use here is more involved since now we have represented
the negative acknowlegements that we use for the loose buffer specified by P on
the level of real time systems by a lack of a reply in a certain amount of time.
Nevertheless P can be understood as a refinement of P.

Let n € IN be a given constant. To express the refinement relation explicitly
we specify the set of functions that turn the lack of positive acknowledgements
into negative acknowledgements by the predicate:

Ge:(Nw XM”HN”) — B
It is specified by the following formula:

Gnf= VieNaeM:Voe MY yeNY:
vy, ) = fy,2) A R
i>n=f(V"ya vTr)=06 fly,®)A
i<n=f(/"8 ya STr)=8 f(yz)

With the help of the specification (&), we can interpret the specification P as a
refinement of the specification P. In particular we have

H Y5 (P 1) (Al Ge) = P

where the component I denotes the identity function and the component T
denotes the function that generates two copies of its input. In mathematical
terms:
lex==2
T =(z2)

This is again a refinement along the lines of [Broy 92]. Figure 2 gives a graphical
representation of the refinement of P by P together with the representation and
the abstraction specification. Formally, Figure 2 describes a refinement of the
component

P|I

In a more readable version along the lines of Figure 2 the formula above reads
as follows. Let A, h and f be functions such that G..h, P.f and H..h, then from

Va:fo=(z iz(y, h.z)) where (z,y) = f.ha
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G, —

Figure 2: Graphical representation of the refinement of P

we can conclude P.f.
In terms of [Broy 92] the predicate H, defines the representation specification
and A || G, the abstraction specification.

11 Specification of a Real Time Driver

A real time driver has two input lines and one output line. It receives on one
line data messages and on the other line acknowledgements. Each message
that it receives is sent after some time on its output line. Then it observes
its second input line for a certain amount of time. If it does not receive an
acknowledgement in this amount of time it repeats the data message, otherwise
it deals with the next data message.

A real time driver 1s a component with behaviors represented by stream
processing functions:

g: MY x N¥ — MY

The domain and range of these functions determine the syntactic interface of
the driver. The behavior of a real time driver is specified by the predicate

V:(Mw XNWHM“))HB
as follows:

f/.gE VaEM,yEN*,J;EM* :dke N Yie N :TIMFE.g A
g(// @ #,/Ty)=/"a v cateh(a,x,y k +c)

where the function
catch : D x D¥ x N¥ x IN — D¥

is used to express that the transmission of the message a is retried if a positiove
acknowlegement is not received within k& + ¢ time intervals. The function g is
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specified as follows:

Yae M,ye N¥, ze MY ne N :

catch(a, v %, y,n+ 1) = catch(a,z,y,n)

catch(a, z,y,0) = g(a"z,y)

catch(a,z, 0" v y,n+ 1) = g(z,y)

The driver sends repeatedly a message received on its data input line in time
distance ¢ until it gets a positive acknowledgement, provided a new message
on its data input line arrives only after the positive acknowledgement has been
received on the acknowledgement input channel.

Again the real time driver can be seen as a refinement of the driver that is
not sensitive to time as specified by the predicate V above.

The predicate

v: MY x N¥ — B

specifies the properties of pairs of input streams that we require for a driver for
its proper functioning. Let ¢ < ¢ hold.

v z,v y) = (=, y)
¥(a “x,/ & y) = v(z,y)
ya Ve STy = (e y)
’Y(\/ e Y) = false

Let v be the weakest predicate that fulfills these equations.
Now we define abstraction functions by the specification

Ay (MY x N¥ — M“ x N¥) — B
where Ay is described by the following formula
Av.a= YeeMY yeNY ie NaeEM: i<c=
alv_z,v y) = alz,y)

ala_v"e, /Ty =), 6] alr,y)
ala V7z,/ e y) = a,8] a(zr,y)

We define a representation specification
Ry : (M¥ x N¥ — M“ x N¥) — B
by
Ry.p=Va:Av(a)=pa=1

With this definition we obtain the theorem (where A denotes the abstraction
specification defined in section 9 that specifies the function that eliminates all
time ticks in a stream):

RV;V;A:>V
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In other words the specification V is a refinement of the specification V according
to the representation specification Ry and the abstraction specification A.
In particular we have for every function h with G..h and every function f
with f/f
(Va,y:9(2,y) = f(Z hy,@) =2) = V.f

where z = f(a:,y). This formula indicates that the specification V can be
understood as a refinement of the driver specification V.

e L 1
z |
—_— T ™ N N — ——

e v P e

- C Bl

Figure 3: Graphical representation of C

12 Specification of a System Composed From
the Timed Loose Buffer and the Driver

We specify a system by a data flow network composed of the real time driver
and of the timed loose one element buffer and associate with it a predicate C'.
A graphical representation of the network corresponding to the component C is
given in Figure 3.

The logical specification of the predicate C'is described by following formula:

Cf=3q,9:Pq AV.gA Ve : 3y : [fe,y] =q9(z,y)

The formula is just a translation of the data flow network given in Figure 3 into
equations.

Based on the logical specification we can prove that the component specified
by C behaves like a reliable timed one element buffer provided b * ¢ < e. Recall
that e denotes the time distance between messages required for the one-element
buffer, ¢ was the time distance of the messages between the driver and the
loose buffer. The loose buffer was supposed to accept a message after at most
b attempts. From now on we assume b ¢ < e.

Formally the verification condition for the refinement relation is expressed
by the following proposition.

Vf:C.f = B.f
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Again the proof of this proposition can be done by unfolding the predicate C
and doing a proof by induction on the length of the stream z.

However, we might also be interested just to prove that the component spe-
cification C' is a refinement of the component specification B. Mathematically
expressed:

H.;C;A= B

This can be proved by unfolding C. We obtain the following verification con-
dition. Let f be a function where C.f holds. Let §,§ be functions such that
P.g and V.j. Assume furthermore for all streams « that there exists a stream
y such that

[f.2, 9] = 4-9(,y)
We define functions g and ¢ by the logical formula
Vo :g(Z,h(z,y)) = Z where z = g(z,y)
and by the formula
Vo :qu = (Z, il(l‘, y)) where (z,y) = ¢.h.z and Gc(iz)

We obtain the equation: R
[fx,yl = q.9(x,y)
with z = g(#,y) and the equation:

[f.x, h(z, )] = ¢.9(2, h(z, y))

So the function f fulfills the specification of component C'; mathematically ex-
pressed we have R

H, ,C;A=C
and since we already have shown in Section 7 that C is a refinement of B,

mathematically expressed
=B

we obtain, that C' is a refinement of B.
The relationship between C' and C'is shown in Figure 4. Since we also have
proved above the following formula:

H,;B;A= B

by the fact R R

=B
and by the monotonicity of sequential composition with respect to the predicate
C we can conclude the validity of the following formula

H,,C;A= H,;B; A
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C |
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L 4 P b
| C—’ T j
: : |
A Ay A A
A Af A A
¢ :
e —

| v P |

Figure 4: Refinement relation between €' and C' illustrated by the abstraction
specifications?

By transitivity of implication we obtain from the formula above the following
refinement property:

H,;C;A= B

This concludes the proof of the required properties and our development.

13 Adaption to Modified Requirements

In practice the requirements often are modified and adapted to the changing
needs of an application. In these cases it is important how easy it 1s to adapt
the specifications, refinements and proofs to the modified requirements.

In our case a typical example would be to treat an n—element buffer instead
of the one element buffer. We claim that our specifications and refinements can
be adapted to this case with acceptable overhead.

Another example of a different branch of development is obtained, if we
consider a real time buffer that does not work with a constant time distance,
but indicates eventually by a signal that it is prepared to take the next input.
Then more sophisticated notions of refinement are needed. The representation

4Here we work only with abstraction specifications.
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specification that translates the non timed input into timed input has to depend
also on the output produced by the refined component, since time ticks have
to be inserted into the input until the component is prepared for further input.
This needs more sophisticated refinement concepts such as refining contexts as
described in the appendix.

14 Conclusion

It is the purpose of this paper to demonstrate the flexibility and usefulness
of functional system specification, verification and refinement techniques by a
small but nevertheless intricate example. We would appreciate very much si-
milar demonstrations by other researchers using other formal techniques for
the specification, refinement, and verification of reactive systems for the same
example.

Of course from a more practical point of view it might not be necessary
to go in detail through so many levels of abstraction as worked out above.
Nevertheless we computing scientists should be able in principle to describe
such refinements precisely. A formal method for the development of distributed
systems should support all steps in the development in a flexible way such that
we are able to express all aspects of intermediate design steps.
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A Appendix: Concepts of Specification

In this section we give a brief summary of the basic mathematical concepts of
functional system models. We consider system components with a finite num-
ber of input and output channels. Over the channels messages are exchanged.
A channel history is mathematically modelled by a stream of messages. The
behavior of a (deterministic) component corresponds to a function mapping the
streams on its input channels onto streams for its output channels.

A stream of messages over a given message set M is a finite or infinite
sequence of messages. We define

MY =def M* UM
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by 7y we denote the result of concatenating two streams z and y. We assume
that ™y = «, if # is infinite. By () we denote the empty stream. For simplicity
we write for a € M,z € M¥

a z instead of (a)Ax

x ainstead of J:A(a)

If a stream x i1s a prefir of a stream y, we write # C y. The relation C is called
prefiz order. It is formally specified by

tCy=gepdzeM” 27 2=y

The behavior of deterministic interactive systems with n input channels and m
output channels is modelled by functions

[ (ME) — (M)

called (m, n)-ary stream processing functions. We denote function application
f(z) often by f.z to avoid brackets. A stream processing function is called prefiz
monotonic, if for all tuples of streams #,y € (M*“)" we have

rCy=fzCfy

A stream processing function f is called continuous, if f is monotonic and for
every directed set S C MY we have:

fuS=w{fe:zesS}

By US we denote a least upper bound of a set S, if it exists. A set S is called
directed, if for any pair of elements = and y in S there exists an upper bound
in S. The set of streams is complete in the sense that for every directed set of
streams there exists a least upper bound.

The set of all prefix continuous stream processing functions of functionality
(MY — (M¥)™ is denoted by

SPE?

For simplicity we do not consider type information here and assume just M to
be a set of messages.
By SPECT, we denote the set of all predicates () where

Q:SPF — B

The set SPECT, denotes the set of all component specifications for a component
with n input channels and m output channels.
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The following functions on streams are used in specifications:

i MY — MY rest of a stream

ft: MY — MuU{l} first element of a stream
#: MY — INU{oo} length of a stream

© :p(M) x MY — M* filter of a stream

These functions are easily specified by the following equations (let € M, m €
M, S e p(M)):

rt.{) = (}, rt(m™x) = =,
ft.(y = 1, fttm™ ) = m,
#() =0, #(m™x) =1+ #u,

SO0 = (),
SO(m™z)=m™(SEz), ifmesS
S©(m™z) = S©w, ifméeS

These axioms specify the functions completely. They are useful in proofs, too.
We use two forms of composition: parallel composition and sequential com-
position.
Given functions
fESPF} g€ SPFF

we write
fig
for the sequential composition of the functions f and ¢ which yields a function
in SPF]. where
(f19).0 = g(f(x))
Given functions
f €SP}, g€ SPF}

we write
fllg

for the parallel composition of the functions f and g which yields a function in
SPFH%‘JI'_ZEZ where (let € (M“)"! y € (M¥)"?):

(fllg)-(z,y) = (f-x,9.y)

We assume that “;” has higher precedence than “||”.

We want to compose specifications of components to networks. Each form
of composition introduced for functions can be extended to component specifi-
cations in a straightforward way. Given component specifications

Q € SPEC? Re SPECY,
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we write
QR
for the predicate in SPEC], where
(@Q;R).f<3q,r: QeqARrANf=qr
Trivially we have for all specifications @ € SPECT, the following equations:
QI=Q
Q=@

Given specifications

Q € SPEC!,, R€ SPEC™,

ml
we write

QIR
for the predicate in SPEC%%‘:_%Z where

QIR).feIqr:QqARrAf=q|r

A specification Q € SPECY, is called a property refinement of a specification
Q) € SPECYT, if for all functions f we have @.f = Q).f. We write then

Q=Q
More sophisticated notions of refinement are obtained by abstraction and re-
presentation specifications as described in [Broy 92].

A pair of specifications A and R are called abstraction and representation,

if

RA=1T
where I denotes the identity function. Let A; be an abstraction specification and
Rs be a representation specification. The specification C'is called a refinement

of component C' if we have

CZ>A1;C;R2

Given the corresponding abstraction specification As and a representation spe-
cification Ry we obtain from

Rl;Al =1

RQ;AQ =1
from this R

Ry;C Ay = C

A more general notion of refinement is obtained for components by so-called
refining contexts. Figure b shows a graphical representation of a refining context.
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_ S

Figure 5: Refining Context R

We write
R[Q)]

for the specification defined by
RQl.f=3p,qg:Rp AN Qg ANV :3r:plx,qr)=(r f2)

For a refining context R we require an abstraction context A such that for any
specification @) of appropriate syntactic interface the network given in Figure 6

is identical to Q.

Sl

Figure 6: A network identical to @

In mathematical terms we require for every function f of appropriate func-

tionality
RpANAa= Ve yabrs:
(y,7) = p(x, a) A
(a,b) = a(r,s) A
s=fb=flx)=s

This requirement basically means that R and A have inverse effects. In other

terms we have
R[AQ] =Q

for all specifications ).
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