
Speci�cation and Re�nement

of a

Bu�er of Length One�

Manfred Broy

Institut f�ur Informatik

Technische Universit�at M�unchen

D������ M�unchen� Germany

April ��� ���	

Abstract

We illustrate the use of functional system speci�cations and their re�

�nement in the development of system components by a simple case study�

The development includes the modular speci�cation� re�nement� and veri�

�cation of system components� We start the development with an informal

description of the tasks of the case study and then step by step carry out

the tasks formally� The informal requirement speci�cation can be used as

starting point for alternative formalization and development techniques�

The emphasis in this study is laid on the modelling of a system at di�er�

ent levels of abstraction and the veri�cation conditions obtained by the

re�nement relations between these versions� We show in particular� how

we can re�ne a time independent component into a component that uses

timeouts and thus depends on the timing of the input in an essential way�

�This work is supported by the Sonderforschungsbereich ��� �Methoden und Werkzeuge

f�ur die Nutzung paralleler Rechnerarchitekturen�

�

CONTENTS �

Contents

� Preliminary Remarks �

� Informal Description of the Components �

� Speci�cation and Veri�cation Tasks �

� Speci�cation of a One Element Bu�er �

��� Informal Description and Syntactic Interface � � � � � � � � � � � �
��� Equational Speci�cations �
��� Assumption�Commitment Speci�cation Format � � � � � � � � � 	
��� State
Based Speci�cations �
��� Short Discussion of the Speci�cations � � � � � � � � � � � � � � � �

� Speci�cation of a Loose One Element Bu�er ��

� Speci�cation of a Driver ��

	 The Loose Bu�er and the Driver ��

 Modelling Time ��

��� Time Signals ��
��� Timed Stream Processing Functions � � � � � � � � � � � � � � � � �	
��� Specifying Time Distances and Time Delays � � � � � � � � � � � �	

� Speci�cation of a Timed One Element Bu�er �

�� The Timed Loose One Element Bu�er ��

�� Speci�cation of a Real Time Driver ��

�� The Timed Bu�er and the Driver ��

�� Adaption to Modi�ed Requirements ��

�� Conclusion �	

A Appendix� Concepts of Speci�cation �	

� PRELIMINARY REMARKS �

� Preliminary Remarks

For the development of reliable distributed reactive systems we need methods for
their speci�cation re�nement and veri�cation� In the literature we �nd numer�
ous suggested formalisms for describing reactive systems� Prominent examples
are

� state transition descriptions complemented by various versions of logical
calculi such as assertion logics temporal logics and several combinations
thereof

� Petri nets as a graphical formalisms for describing distributed state tran�
sition systems including explicit concurrency

� process algebras in various instances such as CCS or CSP together with
their operational semantics given by transition systems axiomatic equa�
tions and semantic models�

All these approaches have advantages and drawbacks� The best way to obtain
insights and criteria how useful these di�erent approaches are in practice are
comparisons of development case studies�

In this paper we propose such a small case study consisting of a number of
representative development steps� We then demonstrate how functional system
development techniques can deal with the proposed problem�

The small example of the stepwise development of a bu�er of length one as
described informally in section � is used to demonstrate functional formalisms
for the speci�cation re�nement and veri�cation of system components� The
emphasis is put on the usefulness of functional formalisms in the development
process and on the achieved modularity of the system descriptions and the
development process�

We start with an informal description of the tasks� Then we give formal
solutions to each of the tasks using functional system speci�cations re�nement
and veri�cation techniques�

We suggest this example also as a test case for other methods for the speci�
�cation development and veri�cation of system components�

� Informal Description of the Components

In this section we give a brief informal description of the components that we
will specify�

A one element bu�er is a component that can store one data element and
return it upon request�

A fair loose one element bu�er is a component that can store one data
element and return it upon request however it may fail in storing data elements
or in serving requests� It indicates success or failure by a positive or negative

� SPECIFICATION AND VERIFICATION TASKS �

acknowledgement� It is fair in the sense that it will not fail forever on repeated
attempts�

A driver is a component that when composed with a fair loose bu�er forms
a system that behaves like a one element bu�er�

A real time one element bu�er is a one element bu�er that operates in a
discrete time frame� It may take some time until it is ready to take the next
input� It indicates by interaction when it is ready to take the next input�

A real time fair loose one element bu�er is a component that operates in
a real time frame� it can store one data element and return it upon request
however it may fail in storing a data element or in serving a request� It indicates
success by a positive acknowledgement within a �xed amount of time� It is fair
in the sense that it will not fail forever on repeated attempts�

A real time driver is a component that operates in a real time frame� when
composed with a real time loose bu�er it forms a system that behaves like a
real time one element bu�er�

� Speci�cation and Veri�cation Tasks

The following development re�nement� and veri�cation tasks are carried out
in the sequel�

��� Speci�cation of a one element bu�er�

��� Speci�cation of a fair loose one element bu�er�

��� Speci�cation of a driver�

��� Veri�cation that the composition of the driver and the fair loose one ele�
ment bu�er is an implementation �re�nement� of the one element bu�er�

��� Speci�cation of a real time one element bu�er�

��� Veri�cation that ��� is a re�nement of ����

�	� Speci�cation of a real time fair loose one element bu�er�

��� Veri�cation that �	� is a re�nement of ����

��� Speci�cation of a real time driver�

���� Veri�cation that ��� is a re�nement of ����

���� Veri�cation that the composition of the real time driver and the real time
loose one element bu�er is an implementation �re�nement� of the real time
one element bu�er�

�We do not explain the notion re�nement here� since we want to leave freedom for for�

malizing it	 Throughout the treatment of the case study we use a very particular concept of

re�nement� which will be introduced in the appendix	

� SPECIFICATION OF A ONE ELEMENT BUFFER �

���� Veri�cation that ���� can be concluded from ��� ��� and �����

���� Discussion how easily the development may be adapted to modi�ed re�
quirements such as a k
element bu�er or modi�ed re�nements based on
other versions of unreliability of the bu�er�

In the following sections we carry out these tasks� We use functional techniques
for system speci�cation re�nement and veri�cation� We introduce and explain
these techniques through the development process� A short introduction to
functional speci�cation techniques is given in the appendix�

� Speci�cation of a One Element Bu�er

In this section we give speci�cations of a one element bu�er using and demon�
strating three speci�cation styles�

��� Informal Description and Syntactic Interface

A one element bu�er is an interactive component with one input line and one
output line� It may store at most one data element� It receives input messages
which are either data elements or requests �represented by the signal � �� As
long as the bu�er never gets a request signal when it is empty and as long as
it never gets a data message when it is full then it behaves properly like a one
element bu�er�

The behavior of the bu�er is formalized by stream processing functions� A
short introduction of the concept of streams and stream processing functions is
given in the appendix�

Let D be a set of data elements� We use the set M of input messages for
the bu�er which is de�ned as follows�

M � D � f� g

The element � is used as a signal indicating a request for the element stored
in the bu�er� We represent the behavior of a one element bu�er by stream
processing functions�

f �M� � D�

The domain and range of this function determine the syntactic interface of the
bu�er� The set of possible behaviors f of a one element bu�er is speci�ed by
the proposition�

B�f

where B is a predicate�
B � �M� � D��� IB

� SPECIFICATION OF A ONE ELEMENT BUFFER �

The predicate B characterizes the set of behaviors� of the one element bu�er
represented by stream processing functions�

��� Equational Speci�cations

The bu�er is a component with a behavior described as follows� If the bu�er is
empty and it receives a data message it stores the data message� If the bu�er
is full and it receives a request signal it sends its data message on its output
line� Mathematically the predicate B can be speci�ed by the weakest predicate
that ful�lls the following equation�

B�f � �d � D � f�hdi � hi � �x �M� � � �f � B� �f � f�d���x� � d
��f �x

One may wonder why we do not write simply

f�d
�

�

�

x� � d
�

f�x

instead of the more complicated formula

� �f � B� �f � f�d
�

�

�

x� � d
� �f�x

The reason is as follows� The simple equation for f would include the require�
ment

f�d
�

�

�

x� � d
�

f�x

also for input streams x that do not ful�ll the assumption that data are sent
only if the bu�er is not full and requests are sent only if the bu�er is not empty�
The equation includes the requirement that the unspeci�ed behavior on such
improper input coincides for the input d

�

�

�

x and x after d has been produced
as output� This overspeci�cation is avoided by the formula above�

Note on the speci�cation style� This way we have given a �recursive� or
equational de�nition of the predicate B by an equation of the form

��� B�f � � � � � �f � B� �f � � � �

Since the expression B� �f occurs in positive form on the righthand side of the
de�ning equation the logical expression on the righthand side of the equation
represents an operation that is monotonic in B with respect to logical implica�
tion� Therefore there exists a weakest and a strongest solution of the de�ning
equation �corresponding to the weakest and strongest �xpoints of the predicate
transformer represented by the righthand side of the de�ning equation�� We say
that a predicate occurs in positive form in an expression if it occurs syntacti�
cally only under an even number of negation signs� Since the equation ��� does

�If this set of behaviours contains more than one element then we speak of under�

speci�cation	

� SPECIFICATION OF A ONE ELEMENT BUFFER 	

not contain any negation signs the expression B� �f trivially occurs in positive
form�

We choose the weakest solution of the equation ��� for the predicate B
since this corresponds to the way we use this style of speci�cations� This way of
specifying B gives immediately a proof principle� We abbreviate the equation
��� for the specifying predicate by the equation

B � T �B�

T denotes the predicate transformer de�ned by the righthand side of the equa�
tion� According to our de�nition the predicate B is required to be the weakest
predicate that ful�lls the equation ���� According to this characterization we
obtain the following logical principle for every predicate C we have�

�C 	 T �C��	 �C 	 B�

This formula expresses that every predicate that is a �xpoint of T is not weaker
than the predicate B� It provides a proof principle for the specifying predicates
de�ned by recursive equations�

To keep our formulas readable we sometimes use the following abbreviation
in equations� the equation

t� � t����B��� �f�

stands for �let �f be an identi�er that does not occur in the term t��

� �f � t� � t� �B� �f
This abbreviation allows to avoid the existential quanti�er� It leads to the
following shorter syntactic form of the speci�cation of the predicate B�

B�f � �d � D � f�hdi � hi � �x �M� � f�d
�

�

�

x� � d
�

��B���x

This notation can help to keep the formulas short and more readable�

End of note on the speci�cation style

There are many styles to write functional speci�cations� In the following we
give a number of speci�cations of the predicate B written in speci�c other
speci�cation styles�

��� Assumption�Commitment Speci�cation Format

Another possibility to write a specifying formula for the predicate B is given
by the assumption�commitment format �cf� �Broy ��� �St�len et al� ����� For
such speci�cations we need to �nd an assumption predicate

A �M� � IB

� SPECIFICATION OF A ONE ELEMENT BUFFER �

and a commitment predicate

C �M�
D� � IB

The assumption predicate formalizes the constraints about the input histories
that have to be ful�lled in order to guarantee a proper behavior of the bu�er�
The commitment predicate formalizes the notion of a proper behavior�

In the case of the one element bu�er these predicates are speci�ed by the
following equations �for x �M�� d � D� y � D���

A�hi � true

A���x� � false

A�d
�

x� � �
x � hi � �ft�x � ��A�rt�x��

C�hi� y� � �y � hi�
C�hdi� y� � �y � hi�

C�d
���x� y� � �

ft�y � d �C�x� rt�y��

Both predicates A and C are assumed to be the weakest predicates that ful�ll
the de�ning equations� The assumption expresses that proper input for the one
element bu�er consists of a stream that is empty or starts with a data element
followed by a request signal �or by the empty stream� and continues this way
by successively carrying a data element and a request signal�

The commitment C�x� y� expresses for a stream x �that ful�lls the assump�
tion� the stream y contains as many elements as the stream x contains request
signals and these elements are the data elements in the su�ciently large pre�x
of x� Another way to specify the commitment predicate C would be to use the
following equation�

C�x� y� � �f�g cx � �y � y v D cx

This yields a stronger predicate C which however due to the restriction of
the input stream x by the assumption works equivalently for the assump�
tion�commitment scheme�

Similarlywe can speci�y the assumption predicate explicitly by the following
equation

A�x� � ��x � �x v x	 �f�g c�x � �D c�x � � � �f�g c�x

In this simple case of an assumption predicate we can also use a regular expres�
sion for specifying A�

A�x � �f�x �M� � �x v xg � fD�g�fDg�
Using the predicates A and C we de�ne the specifying predicate B by the
following formula�

B�f � �x �M� � A�x	 C�x� f�x�

� SPECIFICATION OF A ONE ELEMENT BUFFER �

When using this structure of a speci�cation we speak of an assumption�com�
mitment speci�cation format�

��� State�Based Speci�cations

A third possibility for the formalization of the one element bu�er is a speci�
�cation that refers to local states of the component� We introduce a set of
states�

State � D � f�g
For this set we de�ne a stream processing function for every element of the set
State by the predicate

H �
�
State � �M� � D��

� � IB

Formally the predicate H is speci�ed as follows�

H�h � �� � State� d � D � ��h � H��h �
�h����hi � hi �
�h����d

�

x� � ��h�d��x�
�h�d����x� � d

�

��h����x

Using the predicate H we can de�ne the specifying predicate B by the following
formula�

B�f � �h � H�h� f � h��

We can also give a slightly di�erent state�oriented speci�cation where the speci�
�cation �the predicate� is parameterized by the state� mathematically expressed
we use a predicate

�H � State � ��M� � D��� IB�

By the parameterized predicate �H we can associate a speci�cation with every
state by the following formula

� �H����f � �h � H�h� f � h��

The formula also relates the parameterized predicate �H and the predicate H�

��� Short Discussion of the Speci�cations

All three speci�cations of the predicate B are logically equivalent� We do not
give proofs for the equivalence of these speci�cations� The proofs are rather
straightforward by induction on the length of the input streams and therefore
left to the reader�

The speci�cations leave unspeci�ed what happens if the bu�er gets a request
when it is empty or a data message when it is full� The behavior of the bu�er is
underspeci�ed� There is an in�nite set of functions that ful�ll the predicate B�

� SPECIFICATION OF A LOOSE ONE ELEMENT BUFFER ��

Given the speci�cation B by the de�ning equation ��� we can prove a number
of simple properties about one element bu�ers such as the following formula�

B�f 	 f�hi � hi � f�d��� � hdi�
The proof is straightforward by the monotonicity of f �we base the proof on the
�rst speci�cation of B��

Assume B�f � We use that f is continous� We obtain the following proof �let
d � D��

hi v hdi by the de�nition of pre�x ordering
f�hi v f�hdi by the monotonicity of f
f�hi v hi by B�f since f�hdi � hi
f�hi � hi by the de�nition of the pre�x ordering �hi is least element��

The second part of the conclusion is proved as follows �let d � D��

f�d
�

�

�hi� � by B�f

d
��f�hi � by the lemma above �whereB� �f �
hdi

These two simple examples of proofs show two basic proof concepts for functional
speci�cations based on the monotonicity assumption for the speci�ed functions
and equational reasoning�

� Speci�cation of a Loose One Element Bu�er

A one element loose bu�er is a component with one input line and two output
lines called data output channel and acknowledgement channel� It may store
at most one data element� It receives input messages which are either data
elements or requests �represented by the signal � �� If the bu�er never gets a
request signal when it is empty and never gets a data message when it is full
then it behaves properly like a one element bu�er but it may lose data messages
and request signals� It may lose a data message that is sent to it when it is in
an empty state but then this loss is indicated by the signal � on its acknow�
ledgement channel� if it stores its data message correctly this is indicated by the
acknowledgement signal � on its acknowledgement channel� It may also refuse
to answer properly to a request signal but also this is indicated by the signal
� on its acknowledgement channel� if it sends its data message correctly this
is indicated by the acknowledgement signal � on its acknowledgement channel�
We assume that the loose bu�er is fair in the sense that it reacts by an ack�
nowledgement signal eventually if the message transmission is tried su�ciently
often�

We de�ne the following message sets�

M � D � f� g

� SPECIFICATION OF A LOOSE ONE ELEMENT BUFFER ��

N � f���g
We represent the behaviors of a loose bu�er by functions�

f �M� � �D�
N��

The domain and the range of this function �x the syntactic interface of the loose
bu�er� We use a predicate

P �
�
M� � �D�
N��

� � IB

to specify the behavior of a loose bu�er� The speci�cation of the predicate P
reads as follows�

P�f � �x �M�� d � D � �n�m � IN � �i � IN �

i � n 	 f�di� � �hi��i� �
f�dn��� � �hi��n��� �

i � m 	 f�dn����i� � �hi��n����i� � � �f � P� �f�
f�dn����m���x� � �d��n��

�

�
m�

��
��f �x

In the formula above we write mi for the stream consisting of i copies of the
message m�

The speci�cation of the loose bu�er includes both liveness properties �every
input is answered and the bu�er is fair in the sense that it eventually responds
to proper input with a positive acknowledgement� and safety properties �the
elements that are produced as output are those received as input�� This is also
the case for the speci�cation of the one element bu�er in the previous chapter
however there the liveness conditions were less involved�

Another possibility to specify a loose bu�er is obtained by using states and
prophecy variables� In a functional speci�cation we can use state concepts by
introducing a set of states� With each state we associate a behavior represented
by a stream processing function� A prophecy can be formally understood just
as part of the state� However it is used not to record the past of the input
as far as it is relevant for the future behavior of a component but it is used
as an oracle for the nondeterministic decisions of the component and helps to
express the fairness of the component� In our example we use natural numbers
as prophecies�

Let the set of states of the fair loose bu�er be speci�ed as follows�

State � D � f�g

We de�ne the auxiliary predicate �the set IN of natural numbers is used to
represent prophecies�

Q �
�
IN
 State� �M� � D�
N��

� � IB

� SPECIFICATION OF A LOOSE ONE ELEMENT BUFFER ��

by the following formula �let Q again be the weakest predicate that ful�lls the
formula��

Q�h � �d � D�x �M� � ��h � Q��h �
�n � IN � h��� ����d

�

x� � �hi�����h�n� d��x �
�n � IN � h��� d����

�

x� � �d���
��h�n� ���x �

�n � IN � h�n� �� ����d
�

x� � �hi�����h�n� ���x �
h�n� �� d����

�

x� � �hi�����h�n� d��x
In this speci�cation for the function application h�n� s��x where Q�h holds the
number n is a prophecy variable which determines the number of failing attempts
until an input is accepted and s � State represents the state of the bu�er� We
de�ne the predicate �P specifying the loose bu�er with the help of the predicate
Q as follows�

�P�f � �h� n � Q�h � f � h�n� ��

The speci�cation of the predicate Q is written carefully such that the choice of
the prophecy variable n may depend on the input stream x� So every time the
�rst parameter of h is � another number can be chosen�

The speci�cation covers the behavior of the bu�er for in�nite streams x by
the continuity property� It is not di�cult to prove that�

�P�f 	 P�f

The other direction of this implication does not hold however since the predi�
cate �P is �unnecessarily� stronger than the predicate P in a subtle way� From
P�f where f�hdi� � �hi��� we cannot conclude anything about f�d

�

� d�� with
d� �� d�� For the function h�n� �� we know that there exists a number n such
that h�n� ����d

�

� � � �
�

dn� � �hi��n�����h��n� dn� with Q��h� A more liberal speci�
�cation for Q can be given of course by using a more elaborate state space in
which we can record which data element is tried to be submitted� But such a
more liberal speci�cation is less suggestive when writing state�oriented speci��
cations�

The proof that the speci�cation �P is a re�nement of the speci�cation P is
straightforward by induction on the length of the input streams�

An assumption�commitment speci�cation for the loose bu�er is certainly
more delicate since we cannot give a characterization for input histories that
ful�ll the assumption without referring to the output history� Whether the
bu�er is empty or full can only be determined by looking both at the input and
the output history� This problem typically arises for assumption�commitment
speci�cations of nondeterministic components�

We demonstrate how to write an assumption�commitment speci�cation even
in these cases using prophecies �following �St�len et al� ����� To do this we
introduce a �lter function

filter �M�
 N� �M�

� SPECIFICATION OF A DRIVER ��

speci�ed by �let x �M�� y � N���

filter�x��
�

y� � ft�x
�

filter�rt�x� y�
filter�x��

�

y� � filter�rt�x� y�

Based on this �lter function we de�ne the assumption and the commitment
predicates for which we add prophecy parameters�

�A � M�
 N� � IB
�C � M�
 �D�
N��
N� � IB

The predicates are speci�ed by �for x �M�� y � D�� z � N�� r � N���

�A�x� r� � A
�
filter�x� r�

�

�C
�
x� �y� z�� r

� � �
z v r	 C

�
filter�x� r�� y

� �
��z ��	 �f�g cz ���

�

where the predicates A and C are de�ned as in the section on the assump�
tion�commitment speci�cation for the one element bu�er B� Based on this
speci�cation we can speci�y the predicate P by a more general assumption�com�
mitment format�

P�f � �r � N�� x �M� � �A�x� r�	 �C�x� f�x� r�

This assumption�commitment speci�cation however is much more involved� It
is not very helpful since it is rather di�cult to understand�

� Speci�cation of a Driver

In this section we speci�y a component called a driver that can be used to
construct a nonloose bu�er from the loose bu�er by composing it with the
driver into a network�

A driver is a component that has two input lines and one output line� On
one input line called its message line it gets a stream of messages which are
to be transferred and on the other input line called its control line it gets
positive and negative acknowledgements represented by the signals � and �� It
repeats the sending of a message on negative acknowledgements until it receives
a positive acknowledgement�

A driver is a component with behaviors represented formally by functions of
the functionality�

g �M�
 N� �M�

The behavior of the driver is speci�ed by the predicate

V � �M�
 N� �M��� IB

� THE LOOSE BUFFER AND THE DRIVER ��

as follows�

V�g � �a �M�x �M�� y � N� �
g�a

�

x� y� � a
�

if ft�y � � then g�x� rt�y� else g�a
�

x� rt�y� �

Again this speci�cation is written carefully taking into account the following
informal requirement� a driver sends a �rst copy of a message on its message
input channel independent of the question whether a positive or negative ack�
nowledgement is available� Only after the �rst copy of the message has been
sent the �rst signal in the acknowledgement stream is inspected� If this signal is
positive then the transmission of the message a is �nished and the transmission
of the next element in the message stream is started� If the signal is negative
then the transmission of a is repeated�

By the assumption of monotonicity for the function g we can prove the
following formula

g�hi� y� � hi
under the �weak� additional assumption that the set M contains at least two
elements� The proof is carried out by contradiction� Assume

g�hi� y� �� hi

Then for some message b � M

g�hi� y� � b
�

���

However for a �� b we have

g�a
�

���� y� � a
�

���

which yields the contradiction�

� Speci�cation of a System Composed of the

Loose Bu�er and the Driver

In this section we study a network that is obtained by composing the loose
bu�er with the driver� This networks behaves like a one�element bu�ers� We
prove this at the end of this section�

We specify a system component C that is composed of the driver and of
the one element loose bu�er� A graphical representation of the component C in
terms of a data ow network is given in Figure ��

The behavior of the component represented by the network is characterized
by the predicate

C � �M� � D��� IB

� THE LOOSE BUFFER AND THE DRIVER ��

V
�

x � �
P�

�
�

�
�
y

C

Figure �� Graphical representation of the network for component C

which is de�ned as follows�

C�f � �q� g � P�q � V�g � �x � �y � �f�x� y� � q�g�x� y�

The predicate is obtained by a straightforward translation of the network given
in Figure � into a logical formula�

Now we can envisage a proof that the component speci�ed by the predicate
C according to the structure of the network behaves like a reliable one element
bu�er as speci�ed by the predicate B� Formally the veri�cation condition for
the re�nement relation is expressed by the following proposition�

�f � C�f 	 B�f

The proof of this proposition is performed by unfolding the specifying predicate
C� Then a proof by induction on the length of the input stream x can be carried
out� We outline this proof in the following�

According to the speci�cation B to show that the proposition C�f 	 B�f
holds we have to prove C 	 T �C� as explained in section ��� since B is the
weakest predicate that ful�lls its de�ning equation for B given in Section ����
This leads to the following proposition�

C�f 	 �d � D � f�hdi � hi � � �f � C� �f � f�d
���x� � d

��f�x

By de�nition from the propositionC�f we can conclude that there exist functions
q and g for which P�q and V�g hold such that for all streams x there exists a
stream y such that the following equation holds�

�f�x� y� � q�g�x� y�

For x � hdi we obtain by induction that there exists a number n � IN such
that for all i if i � n there exists a stream �y such that

�f�x� y� � q�g�x� y� � y � �
i
�

�y

For i � n� � we obtain

�f�x� y� � �hi��n����q�g�hi� �y� � y � �
n
�

�

�

�y

� MODELLING TIME ��

and since g�hi� y� � hi and q�hi � �hi� hi� we obtain

f�hdi � hi

For x � d
�

�
�

�x we obtain by the same type of reasoning that there exist numbers
n�m � IN and a stream �y such that

�f�x� y� � �hdi��n����m����q�g��x� �y� � y � �
n
�

�

�

�
m
�

�

�

�y

We obtain from these equations that there exist streams z and �y such that the
following formula holds�

f�x � d
�

z � �z� y� � q�g��x� �y�

By induction on the length of the stream x we obtain that there exists a function
�f such that

f�x � d
��f ��x where C� �f

for �nite streams x� By the continuity of the involved functions this result
extends to in�nite streams too� This concludes the proof�

In the following sections we re�ne both the driver and the unreliable bu�er
such that they work within a framework of a discrete time�

	 Modelling Time

When developing interactive systems with behaviors that depend on the timing
of input messages we need to have system models in which time is explicitly
represented� We use a very simple discrete model of time which is su�cient for
our purposes� We think about time as a sequence of time intervals of constant
length� The timing of the messages of a stream is given by indicating in which
time interval which of its messages appear�

	�� Time Signals

In our functional framework we model the progress of time by special messages
called time signals in the input and output histories� We use the symbol

p

called a time tick to indicate each end of a time interval in a stream�
To model the behavior of a component in discrete time we use stream pro�

cessing functions where all input and output streams carry time ticks� For a
tuple of streams

x � ��M� � fpg��
 ���
 �Mm � fpg���

with time ticks we write

�fpg cx for min��fpg cx�� �����fpg cxn�

� MODELLING TIME �	

By �fpg cx we denote thus the number of time intervals with complete com�
munication information on all n streams� We write

x for �M� cx�� ����Mn cxn��

The stream x denotes the tuple of streams where all information about the
timing is eliminated and only the proper messages are kept�

	�� Timed Stream Processing Functions

A timed stream processing function takes streams containing time ticks as input
and produces streams containing time ticks as output� The speci�c properties
of time are taken care of by the so�called time progress property that is speci�ed
below�

Given a timed stream�processing function�

f � �M� � fpg��
 ���
 �Mn � fpg�� � �N� � fpg��
 ���
 �Nm � fpg��

we specify the predicate TIME that expresses the basic time progress property
of stream processing functions f as follows�

TIME�f � �x � �M� � fpg��
 ���
 �Mn � fpg�� � �fpg cf�x � �fpg cx

The predicate TIME�f expresses the fact that for the function f its output
history for k time units is determined by every input history that �xes the input
on all input lines for k time units� This is a general assumption that implies
that a component cannot predict its input and time cannot go backwards�

	�� Specifying Time Distances and Time Delays

When speci�ying the behavior of time dependent components we often want
to express that two successive messages do not arrive within a very short time
distance� To be able to express this in speci�cations we introduce a function

dist �
�
M � fpg�� � IN � f�g

which yields the minimal time distance �least number of time ticks� between
two successive messages that are not time ticks in a stream x� Mathematically
the function dist is speci�ed by the following equation�

dist�x� � minf�t � t � fpg� �
�a� b �M� z � �

M � fpg�� � z�a�t�b v x � z�a�t � xg

With the help of this function it is not di�cult to speci�y for a given number
c � IN functions that introduce time ticks into a stream such that the time
distance is at least c�

� SPECIFICATION OF A TIMED ONE ELEMENT BUFFER ��

We specify for every number c � IN the predicate

Hc �
�
M� � �M � fpg���� IB

which characterizes delay functions that add an arbitrary number of time ticks
to a stream such that the time distance is at least c� This is formally expressed
by the following equation�

Hc�f� � �x �M� � dist�f�x� � c � x � f�x

The introduced functions and predicates are used in the following� They allow
a very compact notation of formulas specifying time dependent components�

 Speci�cation of a Timed One Element Bu�er

A timed one element bu�er is a component with one input line and one output
line� It may store at most one data element� It receives input messages which
are either data elements or requests �represented by the signal � �� If the bu�er
never gets a request signal when it is empty and never gets a data message when
it is full then it behaves properly like a one element bu�er provided the time
distance between input signals in its input stream is large enough�

We de�ne the sets of messages that appear in the input and output streams
of the component as follows�

�M � D � f� � pg
�D � D � fpg

We represent the behaviors of a real time bu�er by timed stream processing
functions�

f � �M� � �D�

The set of possible behaviors of a real time bu�er is speci�ed by the following
proposition�

�B�f

where �B is a predicate�
�B � � �M� � �D��� IB

We assume that there exists some given number e � IN which is the required
time distance between the messages sent to the bu�er� The predicate �B is
speci�ed as follows�

�B�f � TIME�f �
�x � �M� � � �f � �B� �f � f�p�x� � �f �x
�i� j � IN �

f�d�p i� � hi �
i � e � j � e	 f�d�p i���p j�x� � d

� �f �x

�� THE TIMED LOOSE ONE ELEMENT BUFFER ��

In this speci�cation we carefully kept in mind the monotonicity requirement
when expressing the fact that for an input stream

d
�

pi�
�

�

pj�x

we are guaranteed an output stream that contains d as its �rst data element
provided i and j are su�ciently large� This data element is not produced as
output before the request signal � has been received� The monotonicity re ects
the causality between input and output�

In this speci�cation we did not give more properties about the timing of the
output than needed� From this speci�cation we can prove a number of further
simple properties about timed one element bu�ers� We restrict our attention to
the relationship between the speci�cations B and �B�

The real time one element bu�er is a re�nement in the sense of �Broy ��� of
the one element bu�er� This is expressed by the following theorem�

�B� �f � ��x � �M� � dist�x� � e	 f�x � �f �x
�	 B�f

The proof is straightforward by induction on the length of x� The proof is in
particular easy since the formula de�ning the speci�cation �B is very similar to
the one used for describing the predicate B�

Using ��� for sequential composition and a predicate A for the time abstrac�
tion speci�cation which is de�ned as follows

A�f � �x � f�x � x

we obtain the following theorem

He� �B�A	 B

This is the classical re�nement condition as formulated in �Broy ���� Here the
predicate He serves as the representation speci�cation which characterizes the
set of functions that insert at least e time ticks between two successive messages
in its input streams� The predicate A serves as the abstraction function that
maps timed streams onto untimed streams�

�� Speci�cation of a Timed Loose One Element

Bu�er

A real time loose one element bu�er is a component with one input line and
two output lines� It can store at most one data element� It receives input
messages which are either data elements or requests �represented by the signal
� �� If the bu�er never gets a request signal when it is empty and never gets a
data message when it is full then it behaves properly like a one element bu�er

�� THE TIMED LOOSE ONE ELEMENT BUFFER ��

but it may lose data messages and request signals� It may lose a data message
that is sent to it in an empty state but then this loss is indicated by the fact
that a positive acknowledgement is not sent within c units of time� if the loose
bu�er stores its data message correctly this is indicated by the signal � on its
acknowledgement channel� It may also refuse to respond to a request signal
but also this is indicated by the fact that no answer is produced within c units
of time� if it sends its data message correctly this is indicated by the signal �
that is sent after at most c units of time�

The real time loose bu�er is very similar to the loose bu�er that we de�
scribed above however it does not send negative acknowledgements� The lack
of negative acknowledgement can be recognized however by the property that
the real time loose bu�er sends a positive acknowledgement if at all at least
after c time units� We de�ne the following message sets�

�M � D � f� � pg
�N � f�� pg

We represent behaviors of a real time loose one element bu�er by functions�

f � �M� � � �D�
 �N��

The set of correct behaviors of a real time loose bu�er is speci�ed by the predi�
cate�

�P � � �M� � � �D�
 �N���� IB

The predicate �P is speci�ed as follows� We assume the time constant c � IN �
The component behaves as follows provided its input messages are at least in
time distance c� If the component is in the empty state and it receives a data
message it either stores the data message and acknowledges this by sending the
signal � within c units of time or it loses the data message� If the component
is full and it receives a request signal it either sends its data message on its
output line and acknowledges this by sending the signal � within c units of time
or it refuses to carry out the request�

In both cases the component reacts to an input message either by a positive
acknowledgement within c units of time or it does not accept the message and
does not react to it� So if a reaction to a message is not received within c
units of time it is clear that the message has not been accepted� However
the loose bu�er sends a positive acknowledgement after at most b attempts of
transmission where b � IN is a given constant�

These properties in the behavior of the loose bu�er are expressed by the

�� THE TIMED LOOSE ONE ELEMENT BUFFER ��

following equation for the predicate �P �

�P�f � TIME�f � �x� y � �M�� d � D � dist�x� � c	 � �f � �P � �f �
�i � �� � b� � x � di�� 	 f�x� � �hi� hi� �

x � di 	 f�x� � �hi��� �
�j � �� � b� � x � di��j 	 f�x

�

y� � �d��
�

��
��f �y�

We consider the speci�cation �P as a re�nement of the speci�cation P but the
notion of re�nement we use here is more involved since now we have represented
the negative acknowlegements that we use for the loose bu�er speci�ed by P on
the level of real time systems by a lack of a reply in a certain amount of time�
Nevertheless �P can be understood as a re�nement of P �

Let n � IN be a given constant� To express the re�nement relation explicitly
we specify the set of functions that turn the lack of positive acknowledgements
into negative acknowledgements by the predicate�

Ge �
�
�N�
 �M� � N�

� � IB

It is speci�ed by the following formula�

Gn�f � � i � IN� a �M � � x � �M�� y � �N� �
f�p

�

y� p
�

x� � f�y� x� �
i � n	 f�pi�y� a

�

pi�x� � �
�

f�y� x� �
i � n	 f�pi��

�

y� a
�

pi�x� � �
�

f�y� x�

With the help of the speci�cation Gn we can interpret the speci�cation �P as a
re�nement of the speci�cation P � In particular we have

Hc� !� � �P k I�� �A k Gc�	 P

where the component I denotes the identity function and the component !
denotes the function that generates two copies of its input� In mathematical
terms�

I�x � x

!�x � �x� x�

This is again a re�nement along the lines of �Broy ���� Figure � gives a graphical
representation of the re�nement of P by �P together with the representation and
the abstraction speci�cation� Formally Figure � describes a re�nement of the
component

P k I
In a more readable version along the lines of Figure � the formula above reads
as follows� Let h� �h and �f be functions such that Gc��h� �P� �f and Hc�h then from

� x � f�x � �"z� �h�y� h�x�� where �z� y� � �f �h�x

�� SPECIFICATION OF A REAL TIME DRIVER ��

Hc

�P A

Gc

�x

�

�

�z

�y

�"z

�

Figure �� Graphical representation of the re�nement of P

we can conclude P�f �
In terms of �Broy ��� the predicate Hc de�nes the representation speci�cation

and A k Gc the abstraction speci�cation�

�� Speci�cation of a Real Time Driver

A real time driver has two input lines and one output line� It receives on one
line data messages and on the other line acknowledgements� Each message
that it receives is sent after some time on its output line� Then it observes
its second input line for a certain amount of time� If it does not receive an
acknowledgement in this amount of time it repeats the data message otherwise
it deals with the next data message�

A real time driver is a component with behaviors represented by stream
processing functions�

g � �M�
 �N� � �M�

The domain and range of these functions determine the syntactic interface of
the driver� The behavior of a real time driver is speci�ed by the predicate

�V � � �M�
 �N� � �M��� IB

as follows�

�V �g � �a �M� y � �N�� x � �M� � �k � IN � �i � IN � TIME�g �
g�pi

�

a
�

x� pi�y� � pi�a
�

p
�

catch�a� x� y� k� c�

where the function

catch � D
 �D�
 �N�
 IN � �D�

is used to express that the transmission of the message a is retried if a positiove
acknowlegement is not received within k � c time intervals� The function g is

�� SPECIFICATION OF A REAL TIME DRIVER ��

speci�ed as follows�

�a �M� y � �N�� x � �M�� n � IN �

catch�a� p�x� p�y� n � �� � catch�a� x� y� n�

catch�a� x� y� �� � g�a
�

x� y�

catch�a� x���p�y� n� �� � g�x� y�

The driver sends repeatedly a message received on its data input line in time
distance c until it gets a positive acknowledgement provided a new message
on its data input line arrives only after the positive acknowledgement has been
received on the acknowledgement input channel�

Again the real time driver can be seen as a re�nement of the driver that is
not sensitive to time as speci�ed by the predicate V above�

The predicate
� � �M�
 �N� � IB

speci�es the properties of pairs of input streams that we require for a driver for
its proper functioning� Let i � c hold�

��p
�

x� p
�

y� � ��x� y�
��a

�

pi�x� pi��
�

y� � ��x� y�
��a

�

pc�x� pc�y� � ��x� y�
��p

�

x��
�

y� � false

Let � be the weakest predicate that ful�lls these equations�
Now we de�ne abstraction functions by the speci�cation

AV � � �M�
 �N� �M�
 N��� IB

where AV is described by the following formula

AV �� � �x � �M�� y � �N�� i � IN� a �M � i � c	
��p

�

x� p
�

y� � ��x� y�
��a

�

pc�x� pc�y� � �hi������x� y�
��a

�

pi�x� pi��
�

y� � �a���
�

��x� y�

We de�ne a representation speci�cation

RV � �M�
 N� � �M�
 �N��� IB

by
RV �� � �� � AV ���	 ��� � I

With this de�nition we obtain the theorem �where A denotes the abstraction
speci�cation de�ned in section � that speci�es the function that eliminates all
time ticks in a stream��

RV � �V �A	 V

�	 THE TIMED BUFFER AND THE DRIVER ��

In other words the speci�cation �V is a re�nement of the speci�cation V according
to the representation speci�cation RV and the abstraction speci�cation A�

In particular we have for every function h with Gc�h and every function �f
with �V � �f � �� x� y � ��x� y� 	 f�"x� h�y� x�� � "z

�	 V�f

where z � �f �x� y�� This formula indicates that the speci�cation �V can be
understood as a re�nement of the driver speci�cation V �

�V
�

x � �
�P�

�
�

�
�
y

�C

Figure �� Graphical representation of �C

�� Speci�cation of a System Composed From

the Timed Loose Bu�er and the Driver

We specify a system by a data ow network composed of the real time driver
and of the timed loose one element bu�er and associate with it a predicate �C�
A graphical representation of the network corresponding to the component �C is
given in Figure ��

The logical speci�cation of the predicate �C is described by following formula�

�C�f � �q� g � �P�q � �V �g � �x � �y � �f�x� y� � q�g�x� y�

The formula is just a translation of the data ow network given in Figure � into
equations�

Based on the logical speci�cation we can prove that the component speci�ed
by �C behaves like a reliable timed one element bu�er provided b � c � e� Recall
that e denotes the time distance between messages required for the one�element
bu�er c was the time distance of the messages between the driver and the
loose bu�er� The loose bu�er was supposed to accept a message after at most
b attempts� From now on we assume b � c � e�

Formally the veri�cation condition for the re�nement relation is expressed
by the following proposition�

�f � �C�f 	 �B�f

�	 THE TIMED BUFFER AND THE DRIVER ��

Again the proof of this proposition can be done by unfolding the predicate �C
and doing a proof by induction on the length of the stream x�

However we might also be interested just to prove that the component spe�
ci�cation �C is a re�nement of the component speci�cation B� Mathematically
expressed�

He� �C�A	 B

This can be proved by unfolding �C� We obtain the following veri�cation con�
dition� Let �f be a function where �C� �f holds� Let �q� �g be functions such that
�P��q and �V ��g� Assume furthermore for all streams x that there exists a stream
y such that

� �f�x� y� � �q��g�x� y�

We de�ne functions g and q by the logical formula

�x � g�"x� h�z� y�� � "z where z � �g�x� y�

and by the formula

�x � q�x � �"z� �h�x� y�� where �z� y� � �q�h�z and Gc��h�

We obtain the equation�
� �f�x� y� � �q��g�x� y�

with z � �g�x� y� and the equation�

� �f�x� h�z� y�� � q�g�"x� h�z� y��

So the function
"�f ful�lls the speci�cation of component C� mathematically ex�

pressed we have
He� �C�A	 C

and since we already have shown in Section 	 that C is a re�nement of B
mathematically expressed

C 	 B

we obtain that �C is a re�nement of B�
The relationship between C and �C is shown in Figure �� Since we also have
proved above the following formula�

Hn� �B�A	 B

by the fact
�C 	 �B

and by the monotonicity of sequential composition with respect to the predicate
�C we can conclude the validity of the following formula

Hn� �C�A	 Hn� �B�A

�� ADAPTION TO MODIFIED REQUIREMENTS ��

�

�
�V

�
�P

�

�
�

�
�

�C

�

�
V

�
P

�

�
�

�
�

C

A

�

�

AV

��

�

A

�

�

A

�

�

Figure �� Re�nement relation between C and �C illustrated by the abstraction
speci�cations�

By transitivity of implication we obtain from the formula above the following
re�nement property�

Hn� �C�A	 B

This concludes the proof of the required properties and our development�

�� Adaption to Modi�ed Requirements

In practice the requirements often are modi�ed and adapted to the changing
needs of an application� In these cases it is important how easy it is to adapt
the speci�cations re�nements and proofs to the modi�ed requirements�

In our case a typical example would be to treat an n
element bu�er instead
of the one element bu�er� We claim that our speci�cations and re�nements can
be adapted to this case with acceptable overhead�

Another example of a di�erent branch of development is obtained if we
consider a real time bu�er that does not work with a constant time distance
but indicates eventually by a signal that it is prepared to take the next input�
Then more sophisticated notions of re�nement are needed� The representation

�Here we work only with abstraction speci�cations	

�� CONCLUSION �	

speci�cation that translates the non timed input into timed input has to depend
also on the output produced by the re�ned component since time ticks have
to be inserted into the input until the component is prepared for further input�
This needs more sophisticated re�nement concepts such as re�ning contexts as
described in the appendix�

�� Conclusion

It is the purpose of this paper to demonstrate the exibility and usefulness
of functional system speci�cation veri�cation and re�nement techniques by a
small but nevertheless intricate example� We would appreciate very much si�
milar demonstrations by other researchers using other formal techniques for
the speci�cation re�nement and veri�cation of reactive systems for the same
example�

Of course from a more practical point of view it might not be necessary
to go in detail through so many levels of abstraction as worked out above�
Nevertheless we computing scientists should be able in principle to describe
such re�nements precisely� A formal method for the development of distributed
systems should support all steps in the development in a exible way such that
we are able to express all aspects of intermediate design steps�

Acknowledgements�

I gratefully acknowledge helpful comments by Ursula Hinkel Katharina Spies
and Max Fuchs as well as a number of stimulating discussions with Ketil St�len�

A Appendix� Concepts of Speci�cation

In this section we give a brief summary of the basic mathematical concepts of
functional system models� We consider system components with a �nite num�
ber of input and output channels� Over the channels messages are exchanged�
A channel history is mathematically modelled by a stream of messages� The
behavior of a �deterministic� component corresponds to a function mapping the
streams on its input channels onto streams for its output channels�

A stream of messages over a given message set M is a �nite or in�nite
sequence of messages� We de�ne

M� �def M
� �M�

A APPENDIX
 CONCEPTS OF SPECIFICATION ��

by x�y we denote the result of concatenating two streams x and y� We assume
that x�y � x if x is in�nite� By hi we denote the empty stream� For simplicity
we write for a �M�x �M�

a
�

x instead of hai�x

x
�

a instead of x
�hai

If a stream x is a pre�x of a stream y we write x v y� The relation v is called
pre�x order� It is formally speci�ed by

x v y �def �z �M� � x�z � y

The behavior of deterministic interactive systems with n input channels and m
output channels is modelled by functions

f � �M��n � �M��m

called �m� n��ary stream processing functions� We denote function application
f�x� often by f�x to avoid brackets� A stream processing function is called pre�x
monotonic if for all tuples of streams x� y � �M��n we have

x v y 	 f�x v f�y

A stream processing function f is called continuous if f is monotonic and for
every directed set S �M� we have�

f� t S � tff�x � x � Sg

By tS we denote a least upper bound of a set S if it exists� A set S is called
directed if for any pair of elements x and y in S there exists an upper bound
in S� The set of streams is complete in the sense that for every directed set of
streams there exists a least upper bound�

The set of all pre�x continuous stream processing functions of functionality
�M��n � �M��m is denoted by

SPFn
m

For simplicity we do not consider type information here and assume just M to
be a set of messages�

By SPECn
m we denote the set of all predicates Q where

Q � SPFn
m � IB

The set SPECn
m denotes the set of all component speci�cations for a component

with n input channels and m output channels�

A APPENDIX
 CONCEPTS OF SPECIFICATION ��

The following functions on streams are used in speci�cations�

rt �M� �M� rest of a stream
ft �M� �M � f�g �rst element of a stream
� �M� � IN � f�g length of a stream
c � 	�M �
M� �M� �lter of a stream

These functions are easily speci�ed by the following equations �let x �M��m �
M�S � 	�M ���

rt�hi � hi� rt�m�x� � x�
ft�hi � �� ft�m�x� � m�
�hi � �� ��m�x� � � ��x�

S chi � hi�
S c�m�x� � m��S cx�� if m � S
S c�m�x� � S cx� if m �� S

These axioms specify the functions completely� They are useful in proofs too�
We use two forms of composition� parallel composition and sequential com�

position�
Given functions

f � SPFn
k � g � SPF k

m

we write
f � g

for the sequential composition of the functions f and g which yields a function
in SPFn

m where
�f � g��x � g�f�x��

Given functions
f � SPFn�

m�� g � SPFn�
m�

we write
fkg

for the parallel composition of the functions f and g which yields a function in
SPFn��n�

m��m� where �let x � �M��n�� y � �M��n���

�fkg���x� y� � �f�x� g�y�

We assume that ��� has higher precedence than �k��
We want to compose speci�cations of components to networks� Each form

of composition introduced for functions can be extended to component speci��
cations in a straightforward way� Given component speci�cations

Q � SPECn
k � R � SPECk

m

A APPENDIX
 CONCEPTS OF SPECIFICATION ��

we write
Q�R

for the predicate in SPECn
m where

�Q�R��f � �q� r � Q�q �R�r � f � q� r

Trivially we have for all speci�cations Q � SPECn
m the following equations�

Q� I � Q

I�Q � Q

Given speci�cations
Q � SPECn�

m�� R � SPECn�
m�

we write
QkR

for the predicate in SPECn��n�
m��m� where

�QkR��f � �q� r � Q�q �R�r � f � qkr

A speci�cation �Q � SPECn
m is called a property re�nement of a speci�cation

Q � SPECn
m if for all functions f we have �Q�f 	 Q�f � We write then

�Q	 Q

More sophisticated notions of re�nement are obtained by abstraction and re�
presentation speci�cations as described in �Broy ����

A pair of speci�cations A and R are called abstraction and representation
if

R�A � I

where I denotes the identity function� Let A� be an abstraction speci�cation and
R� be a representation speci�cation� The speci�cation �C is called a re�nement
of component C if we have

�C 	 A��C�R�

Given the corresponding abstraction speci�cation A� and a representation spe�
ci�cation R� we obtain from

R��A� � I
R��A� � I

from this
R�� �C�A� 	 C

A more general notion of re�nement is obtained for components by so�called
re�ning contexts� Figure � shows a graphical representation of a re�ning context�

A APPENDIX
 CONCEPTS OF SPECIFICATION ��

R

�

�

x �

�r Q�
�

�
�

Figure �� Re�ning Context R

We write
R�Q�

for the speci�cation de�ned by

R�Q��f � ��� q � R�� � Q�q � �x � �r � ��x� q�r� � �r� f�x�

For a re�ning context R we require an abstraction context A such that for any
speci�cation Q of appropriate syntactic interface the network given in Figure �
is identical to Q�

R

�

�

x �y

�r

A

a

�
s

�
b

Q�
�

�
�

�

�

�

�
Figure �� A network identical to Q

In mathematical terms we require for every function f of appropriate func�
tionality

R�� �A��	 �x� y� a� b� r� s �
�y� r� � ��x� a� �
�a� b� � ��r� s� �
s � f�b	 f�x� � s

This requirement basically means that R and A have inverse e�ects� In other
terms we have

R
�
A�Q�

� � Q

for all speci�cations Q�

REFERENCES ��

References

�Abadi Lamport ��� M� Abadi L� Lamport� Composing Speci�cations� Dig�
ital Systems Research Center SRC Report �� October
����

�deBakker et al� ��� J� W� de Bakker W��P� de Roever G� Rozenberg �eds��
Stepwise Re�nement of Distributed Systems� Lecture
Notes in Computer Science ��� Springer ����

�Broy ��� M� Broy� Functional Speci�cation of Time Sens�
itive Communicating Systems� REX Workshop� In�
�deBakker et al� ��� �����	�

�Broy ��� M� Broy� Compositional Re�nement of Interactive Sys�
tem� DIGITAL Systems Research Center SCR Report
�� July ����

�Broy ��� M� Broy� Interaction Re�nement
 The EasyWay� In� M�
Broy �ed��� Programm Design Calculi� Springer NATO
ASI Series Series F� Computer and System Sciences Vol�
��� ����

�Broy ��� M� Broy� A Functional Rephrasing of the Assump�
tion�Commitment Speci�cation Style� Technische Uni�
versit#at M#unchen Fakult#at f#ur Informatik Technical Re�
port TUM�I���	 June ����

�Chandy Misra ��� K� M� Chandy J� Misra� Parallel Program Design� A
Foundation� Addison Wesley ����

�Lamport ��� L� Lamport� Specifying concurrent program modules�
ACM Toplas ��� April ���� �������

�St�len et al� ��� K� St�len F� Dederichs R� Weber� Assumption�Com�
mitment Rules for Networks of Agents� Technische Uni�
versit#at M#unchen Institut f#ur Informatik SFB
Bericht
Nr� ��������A

