Specification and Refinement of Finite
Dataflow Networks — a Relational Approach*

Manfred Broy and Ketil Stglen

Institut fur Informatik, TU Minchen, Postfach 20 24 20
D-80290 Minchen, Germany

Abstract. We specify the black box behavior of dataflow components by
characterizing the relation between their input and their output histories.
We distinguish between three main classes of such specifications, namely
time independent specifications, weakly time dependent specifications
and strongly time dependent specifications. Dataflow components are
semantically modeled by sets of timed stream processing functions. Spec-
ifications describe such sets by logical formulas. We emphasize the treat-
ment of the well-known fair merge problem and the Brock/Ackermann
anomaly. We give refinement rules which allow specifications to be de-
composed modulo a feedback operator.

1 Introduction

Dataflow components can be specified by formulas with a free variable rang-
ing over domains of so-called stream processing functions [7], [5]. Both time
independent and time dependent components can be described this way. In the
latter case, the functions are timed in the sense that the input/output streams
may have occurrences of a special message representing a time signal. For such
specifications elegant refinement calculi can be formulated.

Stream processing functions are required to be both monotonic and contin-
uous with respect to the prefix ordering on domains of stream tuples. Unfortu-
nately, there are certain weakly time dependent components, whose behaviors
cannot be specified in terms of prefix monotonic stream processing functions,
although explicit timing is not really needed in order to specify their black box
behavior. A famous example of such a component is an agent which outputs a
fair merge of the messages it receives on two input channels [7]. The behaviors of
such components can of course be specified in terms of timed stream processing
functions. However, this i1s a bit like shooting sparrows with a shot-gun.

In an attempt to abstract from unnecessary time-dependency, this paper ad-
vocates a technique, where the black box behavior of dataflow networks is spec-
ified by characterizing the relation between the input and the output streams.
We distinguish between three main classes of such specifications, namely time
independent specifications, weakly time dependent specifications and strongly

* This work is supported by the Sonderforschungsbereich 342 “Werkzeuge und Meth-
oden fir die Nutzung paralleler Rechnerarchitekturen”.

time dependent specifications — from now on shortened to ti-specifications,
wtd-specifications and std-specifications, respectively. For each class of speci-
fications refinement rules are given, which allow specifications to be decomposed
modulo a feedback operator. Rules, which allow a specification of one class to
be translated into a specification of another class, are also given.

Section 2 describes the underlying formalism. In Sect. 3 we introduce the
three main classes of specifications. The refinement of such specifications is the
topic of Sect. 4. Then, so-called general specifications are introduced in Sect. 5,
and the refinement of general specifications is discussed in Sect. 6. Finally, Sect.
7 contains a brief summary and draws some conclusions.

2 Underlying Formalism

N denotes the set of natural numbers. A stream is a finite or infinite sequence
of messages. It models the history of a communication channel by representing
the sequence of messages sent along the channel. Given a set of messages D, D*
denotes the set of all finite streams generated from D; D> denotes the set of all
infinite streams generated from D, and D“ denotes D* U D*.

Let de D, r,s € D¥, A C D and j be a natural number, then:

— ¢ denotes the empty stream;

— {di,...,d;) denotes a stream of length j, whose first message is di, whose
second message is da, etc. ;

— ft(r) denotes the first element of r if r is not empty;

— #£r denotes the length of r;

— d”, where n € NU {00}, denotes a stream of length n consisting of only d’s;

— 7|; denotes the prefix of r of length j if j < #r, and r otherwise;

— d & s denotes the result of appending d to s;

— r— s denotes r if r is infinite and the result of concatenating r with s,
otherwise;

— 7 C s holds if r is a prefix of s.

Some of the stream operators defined above are overloaded to tuples of
streams in a straightforward way. € will also be used to denote tuples of empty
streams when the size of the tuple is clear from the context. If d is an n-tuple of
messages, j is a natural number and r, s are n-tuples of streams, then #r denotes
the length of the shortest stream in r; d & s denotes the result of applying &
pointwisely to the components of d and s; r|;, » ~ s and r C s are generalized in
the same pointwise way.

A chain ¢ is an infinite sequence of stream tuples ¢y, ¢o, ... such that for all
J>1,¢; Cc¢jqqr. Ue denotes ¢’s least upper bound. Since streams may be infinite
such least upper bounds always exist.

A Boolean function P : (D¥)" — B is called admissible iff whenever P yields
true for each element of a chain, then it yields true for the least upper bound of
the chain. We write adm(P) iff P is admissible. P is prefix-closed iff whenever
it yields true for a stream tuple, then it also yields true for any prefix of this

stream tuple. P is safe iff it is admissible and prefix-closed. We write safe(P) iff
P is safe.

For formulas we need a substitution operator. Given a variable @ and term ¢,
then P[?] denotes the result of substituting ¢ for every free occurrence of a in P.
The operator is generalized in an obvious way in the case that @ and ¢ are lists.

A function 7 € (D¥)* — (D)™ is called a stream processing function iff it
is prefix monotonic and continuous:

for all stream tuples ¢ and ¢ in (D¥)" : i C i = 7(i) C (i),
for all chains ¢ generated from (D*)" : 7(Uc) = U{r(c;)|j € NT}.

That a function is prefix monotonic means that if the input is increased then
the output may at most be increased. Thus what has already been output can
never be removed later on. That a function is prefix continuous implies that the
function’s behavior for infinite inputs is completely determined by its behavior
for finite inputs.

A stream processing function 7 € (D¥)" — (D¥)™ is pulse-driven iff:

for all stream tuples ¢ in (D¥)" : 4 # oo = #7(d) > #i.

That a function is pulse-driven means that the length of the shortest output
stream is infinite or greater than the shortest input stream. This property is
interesting in the context of feedback constructs because it guarantees that the
least fixpoint is always infinite for infinite input streams. For a more detailed
discussion, see [4].

The arrows —, — and L are used to tag domains of ordinary functions,
domains of monotonic, continuous functions, and domains of monotonic, contin-
uous, pulse-driven functions, respectively.

To model timeouts we need a special message +/, called “tick”. There are
several ways to interpret streams with ticks. In this paper, all messages should
be understood to represent the same time interval — the least observable time
unit. 4/ occurs in a stream whenever no ordinary message is sent within a time
unit. A stream or a stream tuple with occurrences of \/’s are said to be timed.
Similarly, a stream processing function is said to be timed when it operates on
domains of timed streams. Observe that in the case of a timed, pulse-driven,
stream processing function the output during the first n + 1 time intervals is
completely determined by the input during the first n time intervals. For any
stream or stream tuple i, oi denotes the result of removing all occurrences of /
n 7.

In the more theoretical parts of this paper, to avoid unnecessary compli-
cations, we distinguish between only two sets of messages, namely the set D
denoting the set of all messages minus +/, and T' denoting D U {./}. However,
the proposed formalism can easily be generalized to deal with general sorting,
and this is exploited in the examples.

We use one additional function in our examples: if A is a set of n-tuples of
messages, d is an n-tuple of messages, and r is an n-tuple of streams, then A()
is a stream processing function such that the following axioms hold:

de A= AQd&r=d& A©r, d¢ A= AQd&r = A©r.

When A = {d} we write d©r instead of {d}©r.

3 Three Classes of Specifications

In this section we introduce three classes of specifications, namely time inde-
pendent specifications, weakly time dependent specifications and strongly time
dependent specifications — shortened to ti-, wtd- and std-specifications, respec-
tively.

3.1 Time Independent Specifications

A ti-specification of a component with n input channels and m output channels
is written in the form

S (i:0) = R,

where S is the specification’s name; ¢ and o are disjoint, repetition free lists
of identifiers representing n respectively m streams; R is a formula with the
elements of ¢ and o as its only free variables. The formula R characterizes the
input/output relation and is therefore referred to as such. The denotation of the
ti-specification S is the set of all timed, pulse-driven, stream processing functions
which fulfill R when time signals are abstracted away:

[S(i:0) 1= {re @) L (1) |¥r € (I*)" : R, 5,0}

In fact, in the case of ti-specifications we could also have used a set of untimed
stream processing functions. Thus timed functions are not really required in
order to model ti-specifications. However, the chosen denotation makes it easier
to relate and compare the different classes of specifications. For any specification
S, Rg represents its input/output relation.

Ezample 1. We specify a filter with two input channels y and r and one output
channel s. The data elements to be filtered are input from the channel y. When
the n-th message input from r is a fail, it means that the n’th data element
input from y is filtered out; on the other hand, if the n’th message input from »
is an ok, it means that the n’th data element input from y gets through. More
formally, given that K = {ok, fail}, the filter is specified by:

FILTER (y € D“ ,r € K¥:s € D¥) =

#s = F#ok©(rlgy) A (€, 5) E {(ok, d)|d € D}©O(r, y)

When writing ti-specifications one has to be very careful because of the strong
monotonicity constraint imposed on their denotations. For example, consider
the straightforward specification of fair merge (not necessarily order preserving)
given below:

RFM (i € D¥ ,re D¥:0€ D¥) =

Vd € D : #{d}©i + #{d}©r = #{d}©po.

This specification is inconsistent due to the monotonicity constraint. To see this,
assume that there is a timed, pulse-driven, stream processing function 7 which
fulfills the specification. This means that for a,b € D:

or(a®,€) = a™ AbEOT(a®, %) = b*°.
Clearly,
(a®,€) C (a®™,b®) A T(a™,€) L T(a™,b™),

which means that 7 is not monotonic. This contradicts the assumption. Thus
the specification is inconsistent.

The cause of this problem is that a ti-specification makes no distinction
between the behavior of a function for partial (finite) input and the behavior of
a function for complete (infinite) input. More precisely, since

o(a®, /) = o(a™,€) = (a™,€),

the specification above requires that
or(a®, /) = or(a™, €) = a°,

although strictly speaking we only want to specify that
or(a®™,€) C a™ Aor(a®™,/7) = a™.

Thus because we are not able to distinguish complete, infinite input streams with
only finitely many messages different from ./, from finite, incomplete inputs,
when time-ticks are abstracted away, our requirements become too strong.

This observation was made already in [9]. In [3] it led to the proposal of
so-called input choice specifications. In the next section we advocate a slightly
different approach with a semantically simpler foundation.

3.2 Weakly Time Dependent Specifications

A wtd-specification of a component with n input channels and m output channels
is written in the form

S {i:o) = R,

where S is the specification’s name; ¢ and o are disjoint, repetition free lists
of identifiers representing n respectively m streams; R is a formula with the
elements of ¢ and o as its only free variables. As before R characterizes the
relation between the input and output streams. Syntactically, a wtd-specification
differs from a ti-specification in that the brackets ()} are used instead of () to
embrace the lists of input/output identifiers.

The denotation of the wtd-specification S is the set of all timed, pulse-driven,
stream processing functions which fulfill R when time signals are abstracted away
and only complete inputs are considered:

[S (iz0) 1 ¥ {r € (1%)" L (T%)"|vr € (T)" : B[, 2.}

Thus in contrast to a ti-specification, a wtd-specification constrains the behavior
only for complete inputs (infinite inputs at the semantic level?). As before, for
any wtd-specification S, Rs denotes its input/output relation.

As shown in the next three examples, weakly time dependent components
can be specified in a very elegant way.

Ezample 2. The wtd-specification
RFM (i € D¥ ;r € D¥:0€ D¥) =
Vd € D : #{d}©i + #{d}©r = #{d}©o,

specifies a component performing a (not necessarily order preserving) fair merge.
Since the specification constrains complete inputs only (infinite streams at the
semantic level), the monotonicity problem of the previous section does not apply
here.

FEzample 3. A component, which not only outputs a fair merge of the streams of
messages received on its two input channels, but also preserves the ordering of
the messages with respect to the different input channels, is specified below:

FM (i€ D¥ r € D¥:0€ D¥) =

dp e {1,2}* : spliti(o,p) = i A splita(o,p) = 7,

2 Note that although the streams are infinite they may have only finitely many occur-
rences of messages different from +/.

where split; € D¥ x {1,2} = D¥ is an auxiliary function which, based on a
oracle (its second argument), can be used to extract the stream of messages
received on one of the input channels:

J=b=split;(a&o,b& p) = a & split;(o,p),
J# b= split;(a&o,b& p) = split;(o,p).

Erample 4. An arbiter is a component that reproduces its input data and in
addition adds an infinite number of tokens, here represented by e, to its output
stream. More formally:

AR (i€ D¥:0€ (DU {e})*) = Do =iAF# e (o= .

It 1s assumed that e is not an element of D.

3.3 Strongly Time Dependent Specifications

For the specification of strongly time dependent components std-specifications
are needed. An std-specification of a component with n input channels and m
output channels is written in the form

S {i:o} =R,

where S 1s the specification’s name; ¢ and o are disjoint, repetition free lists
of 1dentifiers representing n respectively m streams; R is a formula with the
elements of ¢ and o as its only free variables. Yet another pair of brackets {} is
employed to distinguish std-specifications from ti- and wtd-specifications. The
denotation of the std-specification S is the set of all timed, pulse-driven, stream
processing functions which fulfill R when only complete (infinite) inputs are
considered:

[S{i:0} 1% {re () 2 ()" vie (T°) R, (1)

Observe that in this case the time signals are not abstracted away. Thus, time
signals may occur explicitly in R.

As for wtd-specifications, only the behavior for complete, infinite inputs is
constrained. Nevertheless, the expressiveness of an std-specification would not
have been reduced if we had used the following denotation:

. def wyn © W\ [\ 5 W\ o
[{io} 1% {re () 2 (1oyvie (1) s REGT. (1)
The reason is that in the case of std-specifications there is no time abstraction,

which means that, at the syntactic level, incomplete (finite) inputs can always
be distinguished from complete (infinite) inputs. However, from a practic point

of view, it is not clear that the latter denotation (i) offers any advantages. We
therefore stick with the former (1) although we also refer to (1) later on.

Ezample 5. We specify a simple timer handling requests for time-outs. It has one
input and one output channel. Whenever it receives a set timer message set(n),
where n is a natural number, it responds by sending the timeout signal I" after
n time-units, provided it is not reset by a reset message rst. Set timer messages
received before the I for the previous set timer message has been sent are simply
ignored.

Given K = {set(n)|n € N*T} U {rst,/} and M = {I',\/}, we may specify the
timer as follows:

TT {i€ K¥:0€ M¥} =

IreN = (K¥ 5 M¥):0=/&(0)(3)
where Vn,me N : V' € K% :
7(0)(e) = e
Hn)(y/ &) =
if n =0 then /& 7(0)(¢)
else if n =1 then I"& 7(0)(¢)
else /& 7(n — D)(7) A
m(n)(rst& ') = /& T7(0)(7) A
T(n)(set(m) & ') = if n =0 then 7(m)(y/ &) else 7(n)(\/ &)

The existentially quantified function 7, which for each natural number n returns
a timed stream processing function 7(n), characterizes the relation between the
input- and the output-stream. It has a “state parameter” n, that is either equal
to 0, in which case the timer is in its idle state, or > 1, in which case n represents
the number of time-units the next time-signal 7" is to be delayed.

Any wtd-specification can also be expressed as an std-specification. Given
the wtd-specification S (i:0) = R then
S {r:s} =R[, 3]
is an equivalent std-specification. In general, the same does not hold for ti-
specifications. The reason is the way ti-specifications constrain the behavior for

partial input. For the same reason there are ti-specifications that cannot be
expressed as wtd-specifications.

4 Refinement

This section introduces a refinement concept corresponding to what is normally
referred to as behavioral refinement. With respect to this concept of refinement
we give rules which allow specifications to be decomposed modulo a feedback
operator.

We first define our feedback operator . Given a specification S with n input
and m < n output identifiers, then p .S represents the network pictured in Fig.
1 (4, # and o represent tuples of (n — m), m and m streams, respectively).

Fig. 1. The Network u S.

More formally, [£S5] def {pr|r €[S]}, where for any timed input tuple ¢,
(i) = oiff ois the least fixpoint solution of 7 with respect to ¢. This is logically
expressed by the following formula:

(i,0) =0 AV’ : 7(i,0') = o = 0 C o).

Although p is a rather restricted operator, the refinement rules for more general
feedback operators are straightforward generalizations of the rules for u. See [6].

A specification Sy refines another specification 57, written S7 ~+ Sa, iff the
behaviors specified by S5 form a subset of the behaviors specified by S7, formally:
[S21Cs]

The refinement relation ~» is reflexive, transitive and a congruence with re-
spect to feedback operators. Hence, ~ allows compositional system development:
once a specification is decomposed into a network of subspecifications, each of
these subspecifications can be further refined in isolation.

We now formulate refinement rules for the feedback operator. The first one
can be used to decompose a ti-specification:

Rule 1 :
adm(Ax : I)
I¢]

IANRs, = I[%]

IJ1A Rs,[5] = Rs,
Sy (i:0) ~ pu Sy (i,2:0)

The stream tuples are named in accordance with Fig. 1. It is a well-known result
that the least fixpoint of a feedback construct is equal to the least upper bound
of the corresponding Kleene-chain [8]. This is what fixpoint induction is based

on, and this is also the idea behind Rule 1. The formula I can be thought of as
an invariant in the sense of Hoare-logic and has the elements of ¢ and = as its
only free variables. The second premise implies that the invariant holds for the
first element of the Kleene-chain. Then the third implies that the invariant holds
for each element of the Kleene-chain, in which case it is a consequence of the
first premise that it holds for the least upper bound of the Kleene-chain. Thus
the conclusion can be deduced from the fourth premise.
The following rule

Rs,[5] = Rs,
Sy (i:0) ~ puSs (i,2:0)

is of course also sound. We refer to this rule as the degenerated version of Rule
1. With the degenerated version we can only prove properties that hold for all
fixpoints. Properties which hold only for the least fixpoints cannot be shown.
In some sense the invariant of Rule 1 is used to characterize the least fixpoint
solutions. We now look at a simple example where the inductive nature of Rule
1 1s really needed.

Ezample 6. Consider the following specification:
Sa (x:0)=2x =o.

It is clear that the result of applying the p-operator to this specification 1s a
network, which deadlocks in the sense that it never produces any output, i.e. a
network which satisfies:

S1(to)=o=c¢
Mathematically expressed, it should be possible to prove that:
Sy (:0) ~ p Sy (x:0). ()

However, Rg,[?] = o = € does not hold. This demonstrates that the degenerated

version of Rule 1 is too weak. On the other hand, with 7 = €, as invariant,
it is straightforward to deduce (*) using Rule 1.

With respect to wtd-specifications the formulation of refinement rules is more
difficult. The reason is that wtd-specifications constrain the behavior for com-
plete inputs (infinite inputs at the semantic level) only, which means that it is
no longer straightforward to carry out the induction over the Kleene-chain. We
first show that Rule 1 (with () substituted for () in the conclusion) is unsound
for wtd-specifications.

FEzample 7. Consider the following wtd-specification

So{reNY:oeNY=0=1&2®°V(e£cNho=1&z).

Let

Id:efxze\/ElnEN:x:YlAQOo.

It holds that
adm(Az : I), 117, IANRs, = I[I].

€

I[Z] A Rg,[%] implies 0 = 1 & 2°°. Thus we may use Rule 1 to prove that
Sy {0y ~ p Sy (x:0),

where Rg, &l 5 = 1& 2. To see that this deduction is unsound, note there is a

T €[Sz {x:0)] such that

7(e) = (1),
(v &r)=14&2%,
at/ = rlakr)=1&akr.

Since 7 is pulse-driven, it has a unique, infinite fixpoint, namely 7(1°°) = 1°°.
Unfortunately, this fixpoint does not satisfy Rg,, in which case it follows that
Rule 1 is unsound for wtd-specifications.

We now characterize a slightly modified version of fixpoint induction. Given
a wtd-specification Ss (¢, : o) with two input and one output identifier. As-
sume that 7 € [S2 (¢,2:0)]|. Let ¢ be the infinite sequence of infinite streams
t1,ts, ... such that:

t =", tiy1 = 7(r, 1),

for some infinite, timed stream r. For the same input r, let s be 7’s Kleene-chain,
le.

s1 =€, sip1 =71(r,s5).
Since 7 is pulse-driven, and r is infinite, the equation r(r, #) = « has a unique,
infinite solution, and this solution is according to Kleene’s theorem [8] equal to
the least upper bound of the Kleene-chain:

7(r,Us) = Us.

Since s; C 1 and 7 is monotonic, 1t follows by induction on j that

S E t]'.
The monotonicity of ¢ implies that
OS5 C <>t]'. (*)

Let I be a formula with free variables ¢ and x such that Az : I is safe (which
means that Az : T is prefixed-closed and admissible). Assume that ¢ = or, then
if for all 5

I[gtj]a ()

it follows from (%) and the fact that Az : I is prefix-closed that for all j
15,1

Since ¢ is continuous and Az : I is admissible, we also have that

sl Gexx)

Thus Az : I holds for 7’s least fixpoint solution with respect to r, when all time
ticks are removed. Consequently, to make sure that () holds, it is enough to
show that (#+) holds. Since

1T, I'NRs, = I[],
implies
1), I[itj] = I[it]url]a

it follows by a slight generalization of the argumentation above that the following
rule is sound:

Rule 2 :
safe(Az : 1)
I¢]
IARg, = I[%]
1A Rs,[7] = Rs,

Sy (i:0) ~ pSa {(i,2:0)

An interesting question at this point is of course: how strong is Rule 27 We
start by showing that the invariant is really needed — needed in the sense that
its degenerated version is strictly weaker.

FEzample 8. Given the wtd-specification

From Rg,[%] we can deduce only that ft(o) = 1. Let [Lre {1}¥, using Rule 2

we may deduce that

Sy {0y ~ p Sy (x:0),

where Rg, L do>1n0¢€ {1},

Although Rule 2 is stronger than its degenerated version, it is not as strong
as we would have liked. To see that consider the following example:

Frample 9. Given K = {1,2,+/}. Let 7 € K% 2 K“ be a function such that:

bl

() =(1)

(1) = (1, 1),

(v &in) = 1& 2%,
(1&adein) = 1& 1 & (if a = 1 then / else a) & in,
2&in) =1&2&in.

Let
Rs, L= 1&2%° V(T e =1&1&2"' ho=2)V (e #£eho=1&z),
then Sy (x:0) = R is the strongest wtd-specification such that 7 € [Sz]. Let
1¥3n e Nt U{oo}:zC 1"~ 2%,
Then [is the strongest formula such that
safe(Aw : 1), 117, IANRs, = I[2].
Moreover, I[%] A Rg,[%] implies
o=1&2°VvIze{l}¥ : Fye{2}¥ :0=1&1&zy.
Unfortunately, this formula is too weak in the sense that there are solutions for
which there are no corresponding functions in [Sz {(x:0)]. For example, there
isno 7' € [Sz {(x:0)] such that

(r)y=r=or={(1,1,2)

To see that, let r' be a finite prefix of r such that o’ = (1,1). Since r is the
fixpoint of 7/, it follows that » must be reachable from ' ~/° in the sense that

(1,1,2) C or'(r' ~ /).

However, such a computation is not allowed by Rgs,. Thus, Rule 2 is too weak
in the sense that it does not allow us to remove all “solutions” for which there
are no corresponding functions in [Sy (z:0)].

We now explain how Rule 2 can be strengthened. We first make two observa-
tions. For any timed, pulse-driven, stream processing function r € (T%)" £ (Tvym™,
where m < n:

— if r is 7’s Kleene-chain with respect to the input s then
ri Crjp1 C (s, r ~w),

where w is an m-tuple whose components are equal to \/~”

—1if

then 7 and 7' have exactly the same fixpoints with respect to complete
inputs, and 7 satisfies a wtd-specification S iff T satisfies S. Moreover, 7/
has a Kleene-chain consisting of tuples of only finite streams.

In Rule 2, the task of I i1s to characterize the elements of the Kleene-chains
with their corresponding least upper bounds. Thus we may use the two observa-
tions above to strengthen the first and the third premise, in which case we get
the following rule:

Rule 3 :

(Vi I[Z 1A ej € (D)™ Ao Rs, [T] Acjyr Eo) = I[f.]
I¢]
Inee(D)"NeC 2’ CoARs, = I[}]
1PN Rs,[7] = Rs,

Sy (i:0) ~ pSa {(i,2:0)

¢ varies over chains, and it is assumed that x represents a list of m stream
identifiers. As before, I is a formula with the elements of ¢ and x as its only free
variables. See [6] for a soundness proof.
Rule 3 solves the problem of Ex. 9, if we choose # £ 1 ~2% V2 € {1}* as the
invariant.

In the case of std-specifications, the rule for the feedback operator has only
one premise.

Rule 4 :
Rs,[5] = Rs,
Sy {i:o} ~ p Sy {i,x:0}

Since there is no time abstraction, and since any 7 € [Sy {¢,2:0}] is pulse-
driven, which means that, for any infinite stream tuple s, the equation 7(s,r) = r
has a unique, infinite solution r, an invariant is not needed. Thus there are no
additional fixpoints to be eliminated.

It is straightforward to formulate rules which allow one type of specification
to be refined by another type of specification. For example Rule b characterizes
under what conditions a wtd-specification can be refined by a ti-specification,
and Rule 6 allows an std-specification to be refined into a wtd-specification.

Rule 5 : Rule 6 :
R52 = R51 RS2 [27‘ gs] = RSl
Sy (i:0) ~ Sy (i:0) Sy {r:s}~ 53 {i:0)

Together with the more general feedback rules given in [6] these conversion rules
allow the development of networks consisting of components described by ti-,
wtd- as well as std-specifications.

To discuss the completeness of the feedback rules we introduce three classes
of components. Given that

o C (D) = (D)™, 6 C(T*) = (1),

then ti(o), wtd(8) and std(é) are components whose denotations are character-
1zed by

{re @)y Z (1w |3f o :VYr e (T)" :or(r) = f(or)},

[re(@y 2 |
Af€6:Vre (Te) T € (T)" :or =or Aor(r) = of (7')},

{re () =z (TY™|3f €6 :¥re (T) :7(r) = f(r)},

respectively. These three classes of components are of course not disjoint. Never-
theless, we refer to them as the classes of ti-, wtd- and std-components, respec-
tively.

Since components are assigned the same type of semantics as specifications,
~+ and p can be generalized in an obvious way. We then claim that:

1. It Sy (i:0) ~ pti({f}) then we may formulate a specification Sy (i, :0)
and an invariant I such that the premises of Rule 1 are valid and Sz (7, :

0) ~ ti({f}).

2. If Sy (i:0) ~ pwtd({r}) then we may formulate a specification S (¢, :0)
and an invariant I such that the premises of Rule 3 are valid and Sy {7, z:
o) ~ wtd({r}).

3. If Sy {i:0} ~ pustd(8) then we may formulate a specification Sy {i,#:0}
such that the premise of Rule 4 is valid and Sz {¢,z:0} ~ std(§).

With respect to (1), let

The proof 1s then straightforward since I holds for the least fixpoints only.
With respect to (2), let

Rs, L3 e (T 3" € (T™)" ti=oi' Ao =ox' Ao=or(¥,2'),

1¥35:. v,

where

Liya e LEZIAnz e (D))" ANJo: 2’ C e CoARs,[L],

o € 3c: Y LE1Ac € (D) Ado: Rs,[L] Acjp1 CoAx = Ue.

A proof can be found in [6].
With respect to (3), let

Rs, d:efEITE(szr(i,x)zo

The proof is then straightforward since any timed, pulse-driven, stream process-
ing function has a unique fixpoint for any complete input.

The result for std-specifications corresponds to relative, semantic complete-
ness with respect to std-components. In the case of ti- and wtd-specifications we
can prove relative, semantic completeness only with respect to restricted sets of
ti- and wtd-components, respectively — namely with respect to the sets of all
components #i(c) and witd($) where ¢ and é contain only one function.

5 General Specifications

With respect to the rules for ti- and wtd-specifications, we have been able to
claim only rather restricted completeness results. We now discuss this prob-

lem in more detail. As will be shown, the underlying cause is the so-called
Brock/Ackermann anomaly [2].
Let K = {1,4/}. To investigate the issue, (inspired by [4]) we define three

. . . . i CD
timed, pulse-driven, stream processing functions 7, 7, 73 : K = K“ such that

TZ(i) = 1&g2(l)a
(%) = 1 & ¢1(4), where m3(1) = /& g3(3),
where g2(v/ & 1) = /& ¢2(7), where
n(WV&i) =& (i), g2(1&)=&ha(i), gs(V&i) =/ &gs(i),
g(1&i) = 1&*, ho(y/ &) = V& ha(i), gs(1&i) = 1& 1 & /*
ho(1& i) = 1& /*,

Given a wtd-specification S (¢:0). It is easy to see that
{re, s} C[S o) =mn e[S (i:0)]

Thus any wtd-specification with 7 and 753 in its denotation has also 7 in its
denotation. This is no problem as long as there is no observable behavior of
wtd({m}) that it is not also an observable behavior of wtd({r2, 3}). Unfortu-
nately, since

relwtd{n})] = our={1,1),
e wtd({r, ms})] = opt € {c, (1)},

this is not the case, because when we apply the p operator to wtd({m}) we
get (1, 1) as output stream, and when we apply the p-operator to wtd({rs, 75})
we get either (1) or € as output stream. Consequently, there is no sound and
compositional proof system for wtd-specifications, which allows us to prove that
pwtd({r, m3}) cannot produce (1, 1), because any wtd-specification fulfilled by
wtd({r2, 13}) is also fulfilled by wtd({r}), and wtd({r}) does not satisfy the
property we want to prove. This explains why in the case of wtd-specifications we
could not formulate a rule for the p-operator, which satisfies the same “strong”
completeness result with respect to wtd-components as we could in the case of
std-specifications with respect to std-components.

It 1s easy to show that ti-specifications suffer from a similar expressiveness
problem. Because we consider timed, pulse-driven, stream processing functions
only, and we are only interested in the behavior for complete (infinite) inputs
— which means that the corresponding fixpoints are always infinite and unique
— there is no Brock/Ackermann anomaly in the case of std-specifications. This
is also the reason why the rules for this class of specifications satisfy a stronger
completeness result. On the other hand, had we used the alternative denotation
(1), we would have run into trouble with the Brock/Ackermann anomaly even
in the case of std-specifications.

To get around the Brock/Ackermann anomaly, ti- and wtd-specifications are

augmented with so-called prophecies. More precisely, an additional parameter
modeling the nondeterministic choices taken inside a component is added. We use
the same tagging convention as before to distinguish ti- and wtd-specifications:

S (ico:p)=R 1> P, S{ico:p)=R > P.

S 1s the specification’s name; ¢ and o are disjoint, repetition free lists of identifiers
representing the input and the output streams; p is a repetition free list of
identifiers (digjoint from the elements of i and o) representing prophecies; R
is a formula with the elements of 7, 0 and p as its only free variables; P 1s a
formula with the elements of p as its only free variables. For each prophecy
alternative p, R characterizes the relation between the input- and the output-
streams with respect to the nondeterministic choice characterized by p. P is a
so-called prophecy formula characterizing the set of possible prophecies. There
is a close correspondence between what is called a prophecy variable in [1], an
oracle in [7], and what we refer to as prophecies.

These two new formats will be referred to as general ti- and wtd-specifications,
respectively. In contrast, the formats used in the earlier sections are now called
simple t1- and wtd-specifications. A general specifications can be thought of as a
set of simple specifications — one simple specification for each prophecy. Their
denotations are characterized as follows:

[(ir0p)] = {re (1) L (%)™ [3p: PAVr € (T%) : R, 2,01},
[S (ir0p) 1= {r e (T=)" L (T%)y"[3p: P AVr € (T°)" : B[, 5 ,]}

For any general specification S, we use respectively Rs and Pg to characterize
its input/output relation and prophecy formula.

Using general specifications; the Brock/Ackermann anomaly is no longer a
problem. For example, for any wtd-component wtd(§), then

S{ico:p)y=F € (T ii=oi' No=op(i) > p €[wtd(é)]

is a general wtd-specification, whose denotation is equal to [wtd(é)].

6 Refinement of General Specifications

The definitions of ~» and p carry over straightforwardly. The rules are also easy
to generalize. We give only the general version of Rule 2:

Rule 7 :

Pg, = safe(Az : I)

Ps, = I[{]

Ps, AT A Rs, = I[]

Ps, N[F] A Rs,[5] = Rs,
Sy {(izoip)~ p Sy (i, x:0:p)

In Rule 7 the specifications are assumed to have identical prophecy formulas.
The invariants may now also refer to prophecies.

With respect to ti- and wtd-components, the rules for general ti- and wtd-
specifications satisfy the same strong completeness results as the rule for std-
specifications with respect to std-components — namely what is normally re-
ferred to a semantic, relative completeness.

7 Conclusions

Relational specifications have proved to be well-suited for the description of
sequential programs. Prominent techniques like Hoare’s assertion method, Dijk-
stra’s wp-calculus, or Hehner’s predicative specifications are based on formulas
characterizing the relation between the input and the output states.

In the case of interactive systems, the relational approach has run into dif-
ficulties. As demonstrated in [2], specifications where the relationship between
the input and the output streams is characterized by simple relations are not
sufficiently expressive to allow the behavior of a dataflow network to be deduced
from the specifications of its components in a compositional style. Simple rela-
tions are not sufficiently expressive to represent the semantic information needed
to determine the behavior of a component with respect to a feedback operator.
Technically speaking, with respect to feedback loops, we define the behavior as
the least fixpoints of the operationally feasible computations. As shown above,
for simple relations it is not possible to distinguish the least fixpoints of the
operationally feasible computations from other fixpoints. One way to deal with
this problem is to replace relations by sets of functions that are monotonic with
respect to the prefix ordering on streams. However, for certain components like
fair merge a straightforward specification leads to conflicts with the monotonicity
constraint.

Our paper shows how one can get around these problems by taking a more
pragmatic point of view. We have distinguished between three classes of specifi-
cations, namely ti-, wtd- and std-specifications. The two first classes have been
split into two subclasses, namely into simple and general specifications. For each
class of specifications refinement rules have been formulated and their complete-
ness have been discussed.

Components that can be specified by wtd-specifications constitute an im-
portant subclass of dataflow components. Of course such components can easily
be specified by std-specifications. However, it seems more adequate to spec-

ify these components without mentioning time explicitly. In some sense a wtd-
specification can be said to be more abstract than the corresponding std-speci-
fication.

Similarly, many components are time independent in the sense that they can
be specified by a ti-specification. In practice such components may just as well
be specified by wtd-specifications. However, as we have seen, the refinement rules
for ti-specifications are simpler than those for wtd-specifications, moreover it is
easier to prove consistency of a ti-specification since it is enough to construct
an ordinary (untimed) stream processing function and prove that it satisfies the
specification. To prove consistency of a wtd-specification it is in general necessary
to show that it is satisfied by a timed, pulse-driven, stream processing function.

Finally, since many components can only be specified by an std-specification,
we may conclude that all three classes of specifications have their respective mer-
its. Moreover, as we have emphasized, since they are all assigned the same type
of semantics, the different classes of specifications can be exploited in the very
same system development. In fact, using the more general feedback operators of
[6] we may build networks consisting of both ti-, wtd- and std-specifications.

Our approach is related to Park’s proposals in [9]. In some sense he distin-
guishes between the same three classes of specifications as we. Qur approach
differs from his in the insistence upon time abstraction and also in the use of
prophecies to handle the Brock/Ackermann anomaly. Another difference is our
refinement calculus.

The approach presented in this paper can easily be combined with a spec-
ification style based on the assumption/commitment paradigm. The rules for
assumption/commitment specifications presented in [10] are basically the rules
for ti-specifications given above. In fact, this paper shows how the refinement
calculus and specification technique given in [10] can be generalized to deal with
wtd- and std-specifications.

8 Acknowledgements

We would like to thank P. Collette, F. Dederichs, T. Gritzner and R. Weber who
have read earlier drafts of this report and provided valuable feedback. Helpful
comments have also been received from O. J. Dahl and O. Owe.

References

1. Abadi, M., Lamport, L.:

The Existence of Refinement Mappings.

Tech. Report 29, Digital, Palo Alto, (1988)
2. Brock, J. D., Ackermann, W. B.:

Scenarios: A Model of Non-determinate Computation.

Proc. Formalization of Programming Concepts, LNCS 107, (1981) 252-259
3. Broy, M.:

Towards a Design Methodology for Distributed Systems.

Proc. Constructive Methods in Computing Science, Springer, (1989) 311-364

. Broy, M.:

Functional Specification of Time Sensitive Communicating Systems.

Proc. Programming and Mathematical Method, Springer, (1992) 325-367

. Broy, M., Dederichs, F., Dendorfer, C., Fuchs, M., Gritzner, T. F., Weber, R.:
The Design of Distributed Systems — An Introduction to Focus.

Tech. Report SFB 342/2/92 A, TU Miinchen (1992)

. Broy, M., Stglen, K.:

Specification and Refinement of Finite Dataflow Networks — a Relational Approach.
Tech. Report SFB 342/7/94 A, TU Miinchen (1994)

. Keller, R. M.:

Denotational Models for Parallel Programs with Indeterminate Operators.

Proc. Formal Description of Programming Concepts, North-Holland, (1978) 337-366
. Kleene, S. C.:

Introduction to Metamathematics. (1952)

. Park, D.:

The “Fairness” Problem and Nondeterministic Computing Networks.

Proc. 4th Foundations of Computer Science, Mathematical Centre Tracts 159, Math-
ematisch Centrum Amsterdam, (1983) 133-161

10. Stglen, K., Dederichs, F., Weber, R.:

Assumption/Commitment Rules for Networks of Asynchronously Communicating
Agents.
Tech. Report SFB 342/2/93 A, TU Miinchen (1993)

This article was processed using the IANTRpX macro package with LLNCS style

